• 沒有找到結果。

本論文藉由光性及電性量測,比較 InAsN/InGaAs quantum dot-in-a-well (DWELL) 結構經熱退火後的差異。DWELL 結構可以減緩應力對量子點的影響,

在許多研究中[23,28,44],皆發現在量子點結構上在蓋上一層 capping layer 可增加其 發光效率對於波長的延展也有一定效果。而在三五族合金中摻雜氮,更是可以得 到明顯的波長紅移現象,不過隨著摻雜含量的提高,會出現相分離的現象[45], 讓原子在樣品內呈不均勻,所以高含量的氮摻雜樣品,其發光效率很差[24],我 們的樣品中就可以看到這一現象,且也存在著一個低能量訊號 ( localized states ) 這是由於氮的群聚所造成[24,35];在 InAsN/InGaAs 中,因為存在著侷限載子的能 階,載子被空乏,這讓載子的放射時間變長,所以我們可以看到頻率響應的現象 發生,並且可以對量子結構進行電性分析。

比較樣品經熱退火過程前後的差異,可以看到量子訊號增強,發光效率變好,

半高寬明顯變窄,低能量訊號變弱,這是因為熱退火過程使原子重新分佈[23,33,38], 鍵結改變,也讓氮均勻的分佈在各個量子點中,還有一些由氮所造成的點缺陷也 降低。

而電性在熱退火過程前後的差異,最明顯的地方在於,不論是量子點或是深 層缺陷的電子放射速度階變快,速度差易約有兩到三個數量級之多,且可以在 C-V 圖看見兩個頻率響應的平台,在 RTA 的樣品中更可見到量子穿隧效應。這 是因為熱退火讓 localized states 的量降低,在空間上分佈變少,背景濃度得以恢 復。

參考文獻

[1] P. Hawrylak, Phys. Rev. B 60, 5597 (1999).

[2] U. Banin, Y. Cao, D. Katz, O. Millo, Nature 400, 542 (1999).

[3] Tzy-Rong Lin, Mao-Kuen Kuo, Bo-Ting Liao and Kuo-Pin Hung, “Mechanical and optical properties of InAs/GaAs self-assembled quantum dots,” Bulletin of the College of Engineering, N.T.U., No. 91 (2004).

[4] M. V. Maximov, B. V. Volovik, D. A. Bedarev, A. Yu. Egorov, A. E. Zhukov, A. R.

Kovsh, N. A. Bert, V. M. Ustinov, P. S. Kop’ev, Zh. I. Alferov, N. N. Ledentsov, D.

Bimberg, I. P. Soshnikov, and P.Werner, Appl. Phys. Lett. vol. 75, 2347 (1999) [5] D. L. Huffaker, G. Park, Z. Zou, O.B Shchekin, and D.G. Deppe, “1.3 m

room-temperature GaAs-based quantum dot laser,” Appl. Phys. Lett. vol. 73,pp.

2564-2566 (1998).

[6] Y. Arakawa and K. Sakaki, ”Evanescent-light guiding of atoms through hollow optical fiber for optically controlled controlled atomic deposition,” Appl. Phys.

Lett. vol.40,pp.939-941 (1982).

[7] H. Drexler, D. Leonard, W. Hansen, J. p. Kotthaus, and P. M. Petroff, ” Spectroscopy of Quantum Levels in Charge-Tunable InGaAs Quantum Dots,”

Phys. Rev. Lett. 73,pp.2252-2255 (1994).

[8] D. L. Huffaker and D.G. Deppe, “Electroluminescence efficiency of 1.3 m wavelength InGaAs/GaAs quantum dots,” Appl. Phys. Lett. vol. 73,pp. 520-522 (1998).

[9] National Science and Technology Program for Nanoscience and Nanotechnology, research plan, 2004.01.18

[10] Seongsin M. Kim, “Review on recent development of quantum dots: From optoelectronic devices to novel bio-sensing applications,” Proc. of SPIE, Vol.

4999, 423 (2003).

[11] T. Itoh, Y. Iwabuchi, M. Katanoka, Physica Status Solidi B vol. 145, 567 (1988).

[12] D. Bimberg, M. Grundmann, and N. N. Ledentsov, “Quantum Dot Heterostructures,” (Wiley, 1999)

[13] F. C. Frank, and J. H. van der Merwe, Proc. Roy. Soc. London A, vol. 198, pp.205 (1949).

[14] M. Volmer, and A. Weber, Z. Phys. Chen., vol. 119, pp.277 (1926).

[15] I. N. Stranski, and L. Von Krastanov, Akad. Wiss Lit. Main Math. Natur. K1. Iib, vol. 146, pp.797 (1939).

[16] F. Heinrichsdorff,A. Krost, D.Bimberg, A. O. Kosogov and P.

Werner, ”InAs/InGaAs/GaAs quantum dots with high lateral density grown by

MOC-VD,” Appl. Surf. Scie, vol.123, pp.725-728 (1998).

[17] V. M. Ustinov,N. A. Maleev,A. E. Zhukov, A.R. Kovsh, A. Yu. Egorov, A. V.

Lunev, B. V. Volovil, I. L. Krestnikov, Yu. G. Musikhin, N. A. Bert, P.S. Kop’ev, Zh. I. Alferov, N. N. Ledentsov and D. Bimberg, ”InAs/InGaAs quantum dot structures on GaAs substrares emitting at 1.3μm,” Appl. Phys. Lett. vol. 74,pp.

2815-2817 (1999).

[18] M. V. Maximov et al., ”Quantum dots formed by activated spinodal decomposition of InGa(Al)As alloy on InAs stressors,”Physica E, vol.7, pp.326-330 (2000).

[19] D. Huffaker, G. Park, Z. Zou, O. B. Shchekin, and D. Deppe, J. Select. Topics Quantum Electron. vol. 6, 452 (2000).

[20] S. Kim, H. Mohseni, M. Erdtmann, E. Michel, C. Jelen, and M. Razeghi, Appl.

Phys. Lett. vol.73, 963 (1998).

[21] Ustinov V M et al 1999 Appl. Phys. Lett. 74 2815

[22] Joyce P B, Krzyzewski T J, Bell G R, Jones T S, Le Ru E C and Murray R 2001 Phys. Rev. B 64 235317

[23] R Gargallo-Caballero, J Miguel-Sánchez, Á Guzmán, A Hierro and E Muñoz, J.

Phys. D: Appl. Phys. 41 (2008) 065413 (4pp)

[24] M. de la Mare1, Q. Zhuang1, A. Krier1, A. Patanè2, and S. Dhar3, Appl. Phys. Lett.

95, 031110 (2009)

[25] ŁUKASZ GELCZUK*, MARIA DĄBROWSKA-SZATA, Optica Applicata, Vol.

XXXIX, No. 4, 2009

[26] C. H. Goo, W. S. Lau, T. C. Chong, and L. S. Tan, Appl. Phys. Lett. 69, 2543 (1996)

[27] 陳育志,交通大學電子物理研究所碩士論文, ”摻雜不同氮含量的

InAs/InGaAs 量子點與不同長晶速率的 InGaAsN 單一量子井之電性研究” (2003) [28] Alessandro Cristofoli, SYNTHESIS AND PROPERTIES OF NEW

SEMICONDUCTOR ALLOYS FOR LONG WAVELENGTH COHERENT EMITTERS ON GALLIUM ARSENIDE

[29] L. Vegard, Z. Phys. 5, 17 (1921)

[30] L. Bellaiche, S.-H. Wei, and A. Zunger, Phys. Rev. B 54, 17568 (1996) [31] J. A. Van Vechten, Phys. Rev. 182, 891 (1969).

[32] W. Shan, W. Walukiewicz, J. W. Ager III, E. E. Haller, J. F. Geisz, D. J.

Friedman,J. M. Olson, and S. R. Kurtz, Phys. Rev. Lett. 82, 1221 (1999).

[33] Hierro A, Ulloa J M, Chauveau J M, Trampert A, Pinault M A, Tournié E, Guzmán A, Sánchez-Rojas J L and Calleja E 2003 J. Appl. Phys. 94 2319

[34] Y. D. Jang, J. S. Yim, U. H. Lee, D. Lee, J. W. Jang, K. H. Park, W. G. Jeong, J.

H. Lee, and D. K. Oh, Physica E 17, 127 (2003)

[35] E. P. O'Reilly, A. Lindsay, P. J. Klar, A. Polimeni, and M. Capizzi, Semicond. Sci.

Technol. 24, 033001 (2009).

[36] Y. P. Varshni, Physica (Amsterdam) 34, 149 (1967).

[37] I. Vurgaftmana) and J. R. Meyer, J. A. PHY.VOLUME 89, NUMBER 11

[38] Uno K, Yamada M, Tanaka I, Ohtsuki O and Takizawa O 2005 J. Cryst. Growth 278 214

[39] G. Vincent, A. Chantre, and D. Bois, J. Appl. Phys. 50, 5484 (1979) [40] E. N. Korol, Sov. Phys.-Solid State 19, 1327 (1977).

[41] O. Engström1,* and P. T. Landsberg2, Phys. Rev. B 72, 075360 (2005)

[42] A. J. Chiquito*, Yu. A. Pusep, S. Mergulhão, and J. C. Galzerani, Phys. Rev. B 61, 5499–5504 (2000)

[43] S. D. Lin et. al, Appl. Phys. Lett. 90, 263114 (2007)

[44] O. Engström, M. Kaniewska, and M. Kaczmarczyk, Appl. Phys. Lett. 95, 013104 (2009)

[45] C. T. Foxon, T. S. Cheng, S.V. Novikov, D. E. Lacklison, L. C. Jenkins, D.

Johnston,J. W. Orton, S. E. Hooper, N. Baba-Ali, T. L. Tansley, and V. V. Tret’yakov, J.Cryst. Growth 150, 892 (1995)

[46] 徐榕鎂,交通大學電子物理研究所碩士論文, ” 應力鬆弛引發之缺陷效應下 的 InAs/InGaAs 量子躍遷機制” (2008)

[47] D. V. Lang, J. Appl. Phys. 45, 1974, pp. 3023-3032.

[48] J. F. Chen, J. Appl. Phys. 102, 043705 (2007) [49] J. F. Chen, J. Appl. Phys. 105, 063705 (2009)

相關文件