• 沒有找到結果。

結論

在文檔中 中 華 大 學 (頁 52-61)

41

參考文獻

1. Zhou, Y., Liang, M., Jiang, T., Tian, L., Liu, Y., Liu, Z., Liu, H., Kuang, F.

(2007). Functionaldysconnectivity of the dorsolateral prefrontal cortex in first-episode schizophreniausing resting-state fMRI. Neurosci. Lett. 417, 297–

302.

2. Rish, I., Cecchi, G., Thyreau, B., et al. (2013). Schizophrenia as a Network Disease Disruption of Emergent Brain Function in Patients with Auditory Hallucinations, PLoS one 8(1), e50625.

3. Honey, C.J., Thivierge, J.P., Sporns, O. (2010). Can structure predict function in thehuman brain, NeuroImage 52, 766-776.

4. Sporns, O., Chialvo, D.R., Kaiser, M., Hilgetag, C.C. (2004). Organization, Developmentand Function of Complex Brain Networks, Trends Cogn. Sci. 8(9), 418-425.

5. Bullmore, E.D., Sporns, O. (2009). Complex brain networks graph theoretical analysisof structural and functional systems, Nat. Rev. Neurosci. 10, 186-198.

6. S. Ogawa, T. M. Lee, A. R. Kay, and D. W. Tank. (1990). Brain magneticresonance imaging with contrast dependent on blood oxygenation. Proc.

Nat. Acad. Sci. USA 87, 9868-9872.

7. Danielle S. Bassett and MichaelS. Gazzaniga. (2011). Understanding complexity in the human brain. Trends Cong. Sci. 15, 200-209.

8. Bassett D., Bullmore ED. (2006). Small World brain networks. The Neuroscientist 12, 512-523.

9. Andrea Mechelli, Cathy J. Price, Karl J. Friston, John Ashburner. (2005). Voxel- Based Morphometry of the Human Brain: Methods and Applications. Curr. Med.

Imag. Rev. 1, 105-113.

10. Van den Heuvel, M.P., Hulshoff Pol, H.E. (2010). Exploring the brain network:

A review on resting-state fMRI functional connectivity, Eur.

Neuropsychopharmacol. 20, 519-534.

11. Friston, K.J., (1998). The disconnection hypothesis. Schizophr. Res. 30, 115-125.

12. Beckmann, C.F., DeLuca, M., Devlin, J.T., Smith, S.M. (2005). Investigations intoresting-state connectivity using independent component analysis, Philos.

Trans. R. Soc.Lond. B. Biol. Sci. 360, 1001-1013.

13. Calhoun, V.D., Adali, T., Pearlson, G.D., Pekar, J.J. (2001). Amethod for making groupinferences from functional MRI data using independent component analysis, Hum. Brain Mapp. 14, 140-151.

14. De Luca, M., Beckmann, C.F., De Stefano, N., Matthews, P.M., Smith, S.M.

(2006). fMRI resting state networks define distinct modes of long-distance

43

interactions in the human brain, Neuroimage 29, 1359-1367.

15. Van de Ven, V.G., Formisano, E., Prvulovic, D., Roeder, C.H., Linden, D.E.

(2004). Functional connectivity as revealed by spatial independent component analysis of fMRI measurements during rest, Hum. Brain Mapp. 22, 165-178.

16. Cordes, D., Haughton, V., Carew, J.D., Arfanakis, K., Maravilla, K. (2002).

Hierarchical clustering to measure connectivity in fMRI resting-state data, Magn.

Reson. Imaging 20, 305-317.

17. Salvador, R., Suckling, J., Coleman, M.R., Pickard, J.D., Menon, D., Bullmore, E.

(2005). Neurophysiological architecture of functional magnetic resonance images of human brain, Cereb. Cortex 15, 1332-1342.

18. Zalesky, A., Fornito, A., Harding, I.H., Cocchi, L., Yucel, M., Pantelis, C., Bullmore, E. (2010) Whole-brain anatomical networks: Does the choice of nodes matter, NeuroImage 50, 970-983.

19. Bluhm, R.L., Miller, J., Lanius, R.A., Osuch, E.A., Boksman, K., Neufeld, R.W., Theberge, J., Schaefer, B., Williamson, P. (2007). Spontaneous low-frequency fluctuations in the BOLD signal in schizophrenic patients: anomalies in the default network, Schizophr. Bull. 33, 1004-1012.

20. Garrity, A.G., Pearlson, G.D., McKiernan, K., Lloyd, D., Kiehl, K.A., Calhoun, V.D. (2007). Aberrant default mode functional connectivity in schizophrenia, Am.

J. Psychiatry 164, 450-457.

21. Whitfield-Gabrieli, S., Thermenos, H.W., Milanovic, S., Tsuang, M.T., Faraone, S.V., McCarley, R.W., Shenton, M.E., Green, A.I., Nieto-Castanon, A., LaViolette, P., Wojcik, J., Gabrieli, J.D., Seidman, L.J. (2009). Hyperactivity and hyperconnectivity of the default network in schizophrenia and in first-degree relatives of persons with schizophrenia, Proc. Natl. Acad. Sci. USA 106, 1279-1284.

22. Lynall, M.E., Bassett, D.S., Kerwin, R., McKenna, P.J., Kitzbichler, M., Muller, U., Bullmore, E. (2010). Functional Connectivity and Brain Networks in Schizophrenia, J. Neurosci. 30, 9477-9487.

23. Van den Heuvel, M.P., Mandl, C.W., Stam, C.J., Kahn, R., Hulshoff Pol, H.E.

(2010). Aberrant Frontal and Temporal Complex Network Structure in Schizophrenia: A Graph Theoretical Analysis, J. Neurosci. 24, 15915-15926.

24. Rubinov, M., Knock, S.A., Stam, C.J., Micheloyannis, S., Harris, A.W.F., Williams, L.M., Breakspear, M. (2009). Small-World Properties of Nonlinear Brain Activity in Schizophrenia, Hum. Brain Mapp. 30, 403-416.

25. Liu, Y., Liang, M., Zhou, Y., Yong He, Y., YihuiHao, Y., Song, M., Yu, C., Liu, H., Liu, Z., Jiang, T. (2008). Disrupted small-world networks in schizophrenia, Brain 131, 945-961.

26. Yu, Q., Sui, J., Rachakonda, S., He, H., Gruner, W., Pearlson, G., Kiehl, K.A., Calhoun, V.D. (2011). Altered Topological Properties of Functional Network Connectivity in Schizophrenia during Resting State: A Small-World Brain Network Study, PLoS ONE 6, e25423.

27. Zhang, Y., Lin, L., Lin, C.P., Zhou, Y., Chou, K.H., Lo, C.Y., Su, T.P., Jiang, T.

(2012). Abnormal topological organization of structural brain networks in schizophrenia, Schizophr. Res. 141, 109-118.

28. Raichle, M.E., MacLeod, A.M., Snyder, A.Z., Powers, W.J., Gusnard, D.A., Shulman,G.L. (2001). A default mode of brain function, Proc. Nat. Acad. Sci.

USA 98, 672-682.

29. Raichle, M.E., Snydera, A.Z. (2007). A default mode of brain function: A brief historyof an evolving idea, NeuroImage 37, 1083-1090.

30. Repovs, G., Csernansky, J.G., Barch, D.M. (2011). Brain network connectivity in individuals with schizophrenia and their siblings. Biol. Psychiatry 69, 967–973.

31. Woodward, N.D., Rogers, B., Heckers, S. (2011). Functional resting-state networks are differentially affected in schizophrenia. Schizophr. Res. 130, 86–93.

32. Minzenberg, M.J., Laird, A.R., Thelen, S., Carter, C.S., Glahn, D.C. (2009). Meta analysisof 41 functional neuroimaging studies of executive function in schizophrenia, Arch.Gen. Psychiatry 66, 811-822.

33. Dosenbach, N.U., Fair, D.A., Cohen, A.L., Schlaggar, B.L., Petersen, S.E. (2008).

A dual networks architecture of top-down control, Trends Cogn. Sci. 12, 99-105.

34. Seeley, W.W., Menon, V., Schatzberg, A.F., Keller, J., Glover, G.H., Kenna, H., Reiss, A. L., Greicius, M.D. (2007). Dissociable intrinsic connectivity networks for salience processingand executive control, J. Neurosci. 27, 2349-2356.

35. Tu, P.C., Lee, Y.C., Chen, Y.S., Li, C.T., Su, T.P. (2013). Schizophrenia and the brain’scontrol network: Aberrant within- and between-network connectivity of the frontoparietalnetwork in schizophrenia, Schizophr. Res. 147, 339-347.

36. Plaze M., Bartrs-Faz D., Martinot J., Januel D., Bellivier F., et al. (2006). Left superior temporal gyrus activation during sentence perception negatively correlates with auditory hallucination severity in schizophrenia patients, Schizophr. Res. 87, 109–115.

37. Dosenbach, N.U.F. (2010). Prediction of Individual Brain Maturity Using fMRI, Science 329, 1358-1361.

38. M. D. Humphries, K. Gurney and T. J. Prescott (2006). The brainstem reticular formationis a small-world, not scale-free, network, Proc. R. Soc. B 273, 503–511.

39. Benjamini, Y., Hochberg, Yosef (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing, Journal of the Royal Statistical Society B 57, 289–300.

45

40. Sporns, O., Chialvo, D., Kaiser, M., and Hilgetag, C. C. (2004). Organization, development and function of complex brain networks. Trends Cogn. Sci. 8, 418–

425.

41. Bassett, D. S., Bullmore, E. T. Small world brain networks. Neuroscientist 12, 512–523 (2006).

42. Reijneveld, J. C., Ponten, S. C., Berendse, H. W. & Stam, C. J. The application of graph theoretical analysis to complex networks in the brain. Clin. Neurophysiol.

118, 2317–2331 (2007).

43. Stam, C. J. & Reijneveld, J. C. Graph theoretical analysis of complex networks in the brain. Nonlin. Biomed. Phys. 1, 3 (2007).

44. Barabasi, A.L., Albert, R., 1999. Emergence of scaling in random networks.

Science 286, 509–512.

45. Carter, Rita (1999). Mapping the mind. Berkeley: University of California Press.

46. Hemby, edited by S.E.; Bahn, S. (2006). Functional genomics and proteomics in the clinical neurosciences (1. ed. ed.). Amsterdam: Academic Press.

47. Fine EJ, Ionita CC, Lohr L (2002). The history of the development of the cerebellar examination. SeminNeurol 22 (4): 375–84.

48. Maddock, R. J., A. S. Garrett, M. H. Buonocore (2001). Rembering Familiar People: The Posterior Cingulate Cortex and Autobiographical Memory Retrieval. Neuroscience 104 (3): 667–676.

49. Carlson, Neil R. Psychology : the science of behaviour. New Jersey, USA:

Pearson Education. 2007: 115.

附錄

附錄 A 160ROIs 的 MNI 座標與在大腦中所屬的區域。

X Y Z 半徑 ROIs 描述 所屬網路

-37 -54 -37 4 infcerebellum CBN -25 -60 -34 4 infcerebellum CBN 32 -61 -31 4 infcerebellum CBN -34 -67 -29 4 infcerebellum CBN 33 -73 -30 4 infcerebellum CBN -21 -79 -33 4 infcerebellum CBN -6 -79 -33 4 infcerebellum CBN 18 -81 -33 4 infcerebellum CBN -28 -44 -25 4 latcerebellum CBN -24 -54 -21 4 latcerebellum CBN -34 -57 -24 4 latcerebellum CBN 21 -64 -22 4 latcerebellum CBN -6 -60 -15 4 medcerebellum CBN -16 -64 -21 4 medcerebellum CBN 1 -66 -24 4 medcerebellum CBN -11 -72 -14 4 medcerebellum CBN 5 -75 -11 4 medcerebellum CBN 14 -75 -21 4 medcerebellum CBN

-2 30 27 4 ACC CON

-41 -47 29 4 angulargyrus CON

38 21 -1 4 antinsula CON

-36 18 2 4 antinsula CON

27 49 26 4 aPFC CON

-6 17 34 4 basalganglia CON

-20 6 7 4 basalganglia CON

14 6 7 4 basalganglia CON

11 -24 2 4 basalganglia CON

9 20 34 4 dACC CON

54 -31 -18 4 fusiform CON

0 15 45 4 mFC CON

37 -2 -3 4 midinsula CON

32 -12 2 4 midinsula CON

-30 -14 1 4 midinsula CON

58 -41 20 4 parietal CON

47

-55 -44 30 4 parietal CON

-30 -28 9 4 post CON

-4 -31 -4 4 postcingulate CON

8 -40 50 4 precuneus CON

42 -46 21 4 suptemporal CON

51 -30 5 4 temporal CON

43 -43 8 4 temporal CON

-59 -47 11 4 temporal CON

-12 -3 13 4 thalamus CON

-12 -12 6 4 thalamus CON

11 -12 6 4 thalamus CON

-52 -63 15 4 TPJ CON

51 23 8 4 vFC CON

-46 10 14 4 vFC CON

-48 6 1 4 vFC CON

34 32 7 4 vPFC CON

9 39 20 4 ACC DMN

51 -59 34 4 angulargyrus DMN -48 -63 35 4 angulargyrus DMN

-25 51 32 4 aPFC DMN

28 -37 -15 4 fusiform DMN

52 -15 -13 4 inftemporal DMN -59 -25 -15 4 inftemporal DMN -61 -41 -2 4 inftemporal DMN

-36 -69 40 4 IPS DMN

0 51 32 4 mPFC DMN

-28 -42 -11 4 occipital DMN

-9 -72 41 4 occipital DMN

45 -72 29 4 occipital DMN

-2 -75 32 4 occipital DMN

-42 -76 26 4 occipital DMN

1 -26 31 4 postcingulate DMN -8 -41 3 4 postcingulate DMN -5 -43 25 4 postcingulate DMN -5 -52 17 4 postcingulate DMN 10 -55 17 4 postcingulate DMN -11 -58 17 4 postcingulate DMN

-3 -38 45 4 precuneus DMN

9 -43 25 4 precuneus DMN

5 -50 33 4 precuneus DMN

-6 -56 29 4 precuneus DMN

11 -68 42 4 precuneus DMN

23 33 47 4 supfrontal DMN

-16 29 54 4 supfrontal DMN

46 39 -15 4 vlPFC DMN

6 64 3 4 vmPFC DMN

9 51 16 4 vmPFC DMN

-6 50 -1 4 vmPFC DMN

-11 45 17 4 vmPFC DMN

8 42 -5 4 vmPFC DMN

-1 28 40 4 ACC FPN

29 57 18 4 aPFC FPN

-29 57 10 4 aPFC FPN

40 17 40 4 dFC FPN

44 8 34 4 dFC FPN

-42 7 36 4 dFC FPN

40 36 29 4 dlPFC FPN

46 28 31 4 dlPFC FPN

-44 27 33 4 dlPFC FPN

-41 -40 42 4 IPL FPN

54 -44 43 4 IPL FPN

-48 -47 29 4 IPL FPN

-53 -50 39 4 IPL FPN

44 -52 47 4 IPL FPN

-32 -58 46 4 IPS FPN

32 -59 41 4 IPS FPN

-35 -46 48 4 postparietal FPN

42 48 -3 4 ventaPFC FPN

-43 47 2 4 ventaPFC FPN

39 42 16 4 vlPFC FPN

-52 28 31 4 vPFC FPN

-18 -50 1 4 occipital OPN

-34 -60 -5 4 occipital OPN

36 -60 -8 4 occipital OPN

-44 -63 -7 4 occipital OPN

19 -66 -1 4 occipital OPN

49

17 -68 20 4 occipital OPN

39 -71 13 4 occipital OPN

29 -73 29 4 occipital OPN

-29 -75 28 4 occipital OPN

-16 -76 33 4 occipital OPN

9 -76 14 4 occipital OPN

15 -77 32 4 occipital OPN

20 -78 -2 4 occipital OPN

-5 -80 9 4 postoccipital OPN 29 -81 14 4 postoccipital OPN 33 -81 -2 4 postoccipital OPN -37 -83 -2 4 postoccipital OPN -29 -88 8 4 postoccipital OPN 13 -91 2 4 postoccipital OPN 27 -91 2 4 postoccipital OPN -4 -94 12 4 postoccipital OPN

46 -62 5 4 temporal OPN

60 8 34 4 dFC SMN

58 11 14 4 frontal SMN

53 -3 32 4 frontal SMN

-42 -3 11 4 midinsula SMN

33 -12 16 4 midinsula SMN

-36 -12 15 4 midinsula SMN

-26 -8 54 4 parietal SMN

-47 -12 36 4 parietal SMN

-38 -15 59 4 parietal SMN

-47 -18 50 4 parietal SMN

46 -20 45 4 parietal SMN

-55 -22 38 4 parietal SMN

41 -23 55 4 parietal SMN

18 -27 62 4 parietal SMN

-38 -27 60 4 parietal SMN

-24 -30 64 4 parietal SMN

42 -24 17 4 postinsula SMN

-41 -31 48 4 postparietal SMN 58 -3 17 4 precentralgyrus SMN -44 -6 49 4 precentralgyrus SMN 46 -8 24 4 precentralgyrus SMN

在文檔中 中 華 大 學 (頁 52-61)

相關文件