• 沒有找到結果。

參考文獻資料

沈川洲 (1996) 高精度鍶鈣比值分析及其在環境上的應用。國立清華大 學化學研究所博士論文,共157頁。

余采倫 (2007) 珊瑚骨骼中鋇鈣比值的地球化學與環境意義。國立成功 大學地球科學研究所碩士論文,共46頁。

詹明達 (2009) 南海和熱帶西太平洋之全新世氣候變遷:多種有孔蟲穩 定同位素證據(MD972146 & MD052928)。國立臺灣海洋大學應用地球 科學研究所碩士論文,共45頁。

鍾全雄、游鎮烽、樊同雲(2008)利用人工養殖珊瑚評估珊瑚骨骼化學組 成作為古環境代用指標之應用。國立臺灣博物館學刊61–2期,第63-88頁。

陳文山(2016)臺灣地質概論。臺北市:中華民國地質學會,共204頁。

陳秉範 (1949)臺灣高雄臺南間匿伏構造之鑽探談。臺灣老油田之新看 法,79-87頁。

張世安、米泓生、李匡悌、李孟陽、王士偉(2019)台灣南部現生牡蠣殼 體與水體之穩定同位素記錄。臺灣地球科學聯合學術研討會(2019),第 120頁。

林朝棨(1963)阿公店層和阿公店珊瑚礁的命名。國家長期發展科學委員 會年報,第61頁。

科技部海洋學門資料庫(Ocean Data Bank of the Ministry of Science and Technology, Republic of China )(1985~2019):http://www/odb.ntu.edu.tw

Alibert, C., and MCculloch, M.T., 1997, Strontium/calcium ratios in modern Porites coral From the Great Barrier Reef as a proxy for sea surface temperature: Calibration of the thermometer and monitoring of ENSO: Paleoceanography, v. 12, no. 3, p. 345–363.

Bar-Matthews, M., Ayalon, A., Kaufman, A. and Wasserburg, G.J., 1999, The eastern Mediterranean paleoclimate as a reflection of regional events, Soreq Cave, Israel: Earth andPlanetary Science Letters, v. 166, p. 85–95.

Barnes, R.D., 1987, Invertebrate Zoology; Fifth Edition. Fort Worth, TX:

Harcourt Brace Jovanovich College Publishers., 893 P.

Bard, E., 1988, Correction of accelerator mass spectrometry 14C ages measured in planktonic foraminifera: Paleoceanographic implications, Paleoceanography, v. 3, p. 635-645.

Bard, E., Hamelin, B., Fairbanks, R.G., and Zindler A., 1990, Comparison between radiocarbon and uranium series ages on glacial age Barbados

Bard, E, Arnold, M, Hamelin, B, Tisnerat-Laborde, N, Cabioch, G., 1998, Radi ocarbon calibration by means of mass spectrometric

230

Th/

234

U and

14

C ages of corals: an updated database including samples from Barbados, Mururoa and Tahiti: Radiocarbon, v.40, no.3, p. 1085–92.

Barnes, R.S.K. and R.N. Hughes, 1999, An Introduction to Marine Ecology, third edition. Oxford, UK: Blackwell Science Ltd, p. 117-141.

Beck, J.W., Edwards, R.L., Ito, E., Taylor, F.W., Recy, J., Rougerie, F., Joannot, P., and Henin, C., 1992, Sea-surface temperature from coral skeletal strontium/calcium ratios: Science, v. 257, p. 644–646.

Beck, J.W., Recy, J., Taylor, F., Edwards, R.L.,and Cabioch, G., 1997, Abrupt changes in early Holocene tropical sea surface temperature derived from coral records: Nature, v. 385, p. 705–707.

Berger, A., & Loutre, M. F. , 1991, Insolation values for the climate of the last 10 million years: Quaternary Science Reviews, v. 10, no. 4, p. 297–317.

Blunier, T. , Chappellaz, J., Schwander, J., Stauffer, B. and Raynaud, D., 1995, Variations in atmospheric methane concentration during the Holocene epoch: Nature, v. 374, p. 46–49.

Bond G, Kromer B, Beer J, 2001, Persistent solar influence on north atlantic climate change during Holocene: Science, v. 294 ,no. 13, p. 2130-2135.

Broecker, W.S., and Peng, T.H., 1982, Tracers in the Sea,

Lamont-Doherty Geological Observatory, Columbia University, New York.

Broecker,W. S., 1994, Massive iceberg discharges as triggers for global climate change: Nature, v. 732, p. 663–666.

Chen, W.-S., Sung, S.-H., Wu, C.-C., Hsu, H.-D., Yang, H.-C, 2005, Shoreline changes in the coastal plain of Taiwan since Last Glacial Epoch: Journal of Archaeology and Anthropology (National Taiwan University), v.26, p.40-55.

Chen, F. H., D. Wu, J. Chen, A. Zhou, J. Yu, J. Shen, S. Wang, and X. Huang , 2016, Holocene moisture and east Asian summer monsoon evolution in the northeastern Tibetan plateau recorded by Lake Qinghai and its environs: A review of conflicting proxies, Quaternary Science Reviews, v. 154, p. 111–129.

Claussen, M., Kubatzki, C., Brovkin, V. and Ganopolski, A., 1999, Simulation of an abrupt change in Saharan vegetation in th mid-Holocene:

Geophysical Research Letters, v. 0, no. 0, p. 1–4.

COHMAP (Cooperative Holocene Mapping Project) Project Members ,1988 Climatic changes of the last 18000 years: Observations and Model

Cole, J.E., 2003, Holocene coral records : Windows on tropical climate variability: In Anson M.,Rick B.,John B.,Frank O.,Global change in the Holocene, London,UK:Hodder Education, p. 168–184.

Cole, J.E. and Fairbanks, R.G., 1990, The Southern Oscillation recorded in the δ18O of coral from Tarawa Atoll: Paleoceanography, v. 5, p. 669–683.

Correge, T., Delcroix, T., Recy, J., Beck, W., Cabioch, G., Le Cornec, F., 2000, Evidence for stronger El Nino-Southern Oscillation (ENSO) events in a mid-Holocene massive coral: Paleoceanography, v. 15, no. 4, p. 465–470.

Corrège, T., 2006, Sea surface temperature and salinity reconstruction from coral geochemical tracers: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 232, no. 2-4, p. 408–428.

DeMenocal, P., Ortiz, J., Guilderson, T., Adkins, J., Sarnthein, M., Baker, L., Yarusinsky, M., 2000, Abrupt onset and termination of the Africa Humid Period: rapid climate responses to gradual insolation forcing, Quaternary Science Reviews, v.19, p. 347–361.

DeMenocal P., 2001, Cultural responses to climate change during the last late Holocene: Science, v. 292, p. 667~673.

Denton G H. Karlen W., 1973, Holocene climatic variations: Their pattern and cause: Quaternary Research, v.3, p. 155–205.

de Villiers, S., Shen, G.T., and Nelson, B.K., 1994, The Sr/Ca-temperature relationship in coralline aragonite:Influence of variability in (Sr/Ca) seawater and skeletal growth parameters: Geochim. Cosmochim. Acta, v.

58, p. 197–208.

Dodge, R.E., A.M. Szmant, R. Garcia, P.K. Swart, A Forester and J.J. Leder, 1992, Skeletal structural basis of density banding in the reef coral

Montastraea annularis: Proc. Seventh Int, Coral Reef Symp, Guam, p.

186–195

Dong, J.G., Wang, Y.J., Cheng, H., Hardt, B., Edwards, R.L., Kong, X.G., Wu, J.Y., Chen, S.T., Liu, D.B., Jiang, X.Y., Zhao, K., 2010, A high-resolution stalagmite record of the Holocene East Asian Monsoon from Mount Shennongjia, central China: Holocene, v. 20, p. 257–264.

Dong, J., Shen, C.-C., Kong, X., Wang, H.-C., and Jiang, X., 2015, Rec-onciliation of hydroclimate sequences from the Chinese Loess Plateau and low-latitude East Asian Summer Monsoon regions over the past 14,500 years: Palaeogeogr. Palaeocl., v. 435, p.127–135.

Druffel, E.R.M., Dunbar, R.B., Wellington, G.M., and Minnis, S.A., 1989, Reefbuilding corals and identification of ENSO warming episodes:

Oceanography Series, v. 52, p. 233–254.

Dunbar, R.B. and Cole, J.E., 1992, Coral records of ocean-atmosphere variability: Report from the workshop on coral paleoclimate

reconstruction, p. 1–37.

Dykoski,C.A., 2005, A High-resolution,absolute-dated Holocene and deglacial Asian monsson record from Dongge Cave, China: Earth and Planctary Science Letters , v. 233, p. 71–86.

Epstein, S., Buchsbaum, R., Lowenstam, H.A., and Urey, H.C., 1953, Revised carbonate-water isotopic temperature scale: Bull. Geol. Soc. Amer., v.64, p.

1315–1326.

Fairbanks, R.G. and Dodge, R.E., 1979, Annual periodicity of the 18O/16O and

13C/12C ratios in the coral Montastrea annularis: Geochim. Cosmochim.

Acta, v. 43, no. 7, p. 1–10

Fairbanks, R.G., Evans, M.N., Rubenstone, J.L., Mortlock, R.A., Broad, K., Moore, M.D., and Charled, C.D., 1997, Evaluating climate indices and their geochemical proxies measured in corals: Coral Reefs, v. 16, p.

93–100.

Fallon, S.J., McCulloch, M. T., and Alibert, C., 2003, Examining water temperature proxies in Porites corals from the Great Barrier Reef: a cross-shelf comparison: Coral Reefs, v. 22, p. 389–404.

Felis, T., Pätzold, J., 2004, Increased seasonality in Middle East temperatures during the last interglacial period: Nature, v. 429, no. 6988, p. 164–168.

Gagan. M.K., Chivas, A.R., and Isdale, P.J., 1994, High-resolution isotopic records from coral using ocean temperature and mass spawning chronometers: Earth and Plancetary Science Letters, v. 121, p. 549–558.

Gagan, M.K., Ayliffe, L.K., Hopley, D., Cali, J.A., Mortimer, G.E., Chappell, J., McCulloch, M.T., Head, M.J., 1998, Temperature and surface-ocean water balance of the mid-Holocene tropical Western Pacific: Science, v.

279, no. 5353, p. 1014–1018.

Gagan. M.K., Ayliffe, L.K., Hopley, D., Cali, J.A., Mortimer, G.E., Chappell, J., McCulloch, M.T., and Head, M.J., 1998, Temperature and surface-ocean water balance of the mid-Holocene tropical western Pacific:

Science, v. 279, p. 1014–1018.

Ge Q S, Zheng J Y, Fang X Q., 2003, Temperature changes of winter-half-year in eastern China during the past 2000 years: The Holocene, v. 13, no. 6, p.

933-940.

Goreau, T.J., 1977, Carbon metabolism in calcifying and photosynthetic organisms: Theoretical models based on stable isotope data. In Proceedings, Third International Coral Reef Symposium. University of

Grottoli, A.G. and Wellington, G.M., 1999, Effect of light and zooplankton on skeletal delta 13C values in the eastern Pacific corals Pavona clavus and

Pavona gigantea: Coral Reefs, v. 18, p. 29–41.

Grottoli, A.G., 2002, Effect of light and brine shrimp on skeletal delta 13C in the Hawaiian coral Porites compressa: A tank experiment: Geochimica et Cosmochimica Acta, v. 66, p. 1955–1967.

Guilderson, T.P., Fairbanks, R.G., and Rudbenstone, J.L., 1994, Tropical extension rate and stable isotopic (13C/12C and 18O/16O) composition in response to several environmental variables in the Caribbean reef coral Siderastrea sidereal: Maeine Ecology Progress Series, v. 166, p. 109–118.

Haug, G.H., Hughen, K.A., Sigman, D.M., Peterson, L.C. and Röhl, U., 2001, Southward migration of the intertropical convergence zone through the Holocene: Science, v. 293, p. 1304–1308.

Hoefs, J., 2003, Stable Isotope Geochemistry (7 th ed.), Springer.

Hou G.,Fang X., 2011, Characteristics of Holocene Temperature Change in China: Progress in Geography, v. 30, no. 9, p. 1075–1080.

Huang, C.Y., 1997, Surface ocean and monsoon climate variability in the South China Sea since the last glaciation: Marine Micropaleontology, v. 32, p.

71–94.

Hudson, J.H., E.A. Shinn, R.B. Halley, and B.H. Lidz, 1976,

Sclerochronology— a tool for interpreting past environments: Geology, v.

4, p. 361–364.

Jiang, X.Y., He, Y.Q., Shen, C.-C., Kong, X.G., Li, Z.Z., Chang, Y.-W., 2012, Stalagmite inferred Holocene precipitation in northern Guizhou Province, China, and asynchronous termination of the Climatic Optimum in the Asian monsoon territory: Chin. Sci. Bull, v. 57, p. 795–801.

Kiyama. O., Yamada, T., Nakamori, T., and Iryu, Y., 2000, Early Holocene coral δ18O-based sea surface temperature (in Japanese with English abstract): Quaternary Research, v. 39, p. 69–80.

Kutzbach, J. E. & Guetter, P. J. in Milankovitch and Climate, part 2 (eds Berger, A. L. et al.) 801–820 (Reidel, Dordrecht, 1984).

Lalli, C.M. and T.R. Parsons, 1995, Biological Oceanography: An Introduction.

Oxford, UK: Butterworth-Heinemann Ltd. p. 220-233.

Land, L.S., Lang, J.C., and Barners, D.J., 1975, Extension rate:A primary control on the isotopic composition of West Indian (Jamaican) scleractinian reef coral skeletons: Marine Biology, v. 33, p. 221–233.

Liew, P.M., Lee,C.Y., and Kou, C.M., 2006, Holocene thermal optical and climate variability of East Asian monsson inferred from forest reconstruction of a subalpine pollen sequence, Taiwan: Earth and Planetary Science Letters, v. 250, p. 596–605.

Ma, T. Y., 1933, On the seasonal changes of growth in some Palaeozoic corals:

Imp. Acad., Tokyo, Proc., v. 9, p. 407-409.

Ma, T. Y., 1934, On the seasonal change of growth in a reef coral, Favia speciosa (Dana), and the water-temperature of the Japanese seas during the latest geological times: Imp. Acad., Tokyo, Proc., v. 10, p. 353–356.

Ma, T. Y. , 1943, The climate and the relative positions of Eurasia and North America during the Ordovician periods determined by the growth rate of corals, Research on the Past Climate and Continental Drift: Imp. Acad., Tokyo, Proc., v. 1.

Ma, T. Y., 1943, The climate and relative position of continents during the Silurian period as determined by the growth rate of corals: Imp. Acad., Tokyo, Proc., v. 2.

Ma, T. Y., 1943, The climate and relative position of continents during the Devonian: Imp. Acad., Tokyo, Proc., v. 3.

McConnaaughey, T., 1989a 13C and 18O isotopic disequilibrium in biological carbonates: I. Patterns: Geochim. Cosmochim. Acta, v. 53, p. 151–162.

McConnaaughey, T., 1989b, 13C and 18O isotopic disequilibrium in biological carbonates: II. In vitro simulation of kinetic isotope effects: Geochim Cosmochim. Acta, v. 53, p. 163–171.

McCulloch, M., Gagan, M.K., Mortimer, G.E., Chivas, A.R.,and Isdale, P.J., 1994, A high-resolution Sr/Ca and δ18O coral record from the Great Barrier Reef, Australia, and the 1982-1983 El Nino: Geochim.

Cosmochim. Acta, v. 58, p. 2747–2754.

McCulloch, M., Mortimer, G., Esat, T., Xianhua, L., Pillans, B., Chappel, J., 1996, High resolution windows into early Holocene climate: Sr/Ca coral records from the Huon Peninsula, Earth and Planetary Science Letters, v.

138, p. 169–178.

McCulloch M., Fallon S., Wyndham T., Hendy E., Lough J., and Barnes D., 2003, Coral record of increased sediment flux to the inner Great Barrier Reef since European settlement: Nature , v. 421, p. 727–730.

M. Milankovitch, 1941, Kanon der Erdbestrahlungen und seine Anwendung auf das Eiszeiten Problem: Roy Serbian Acad. Spec. Pub., v. 133.

Morimoto, M., Abe, O., Kayanne, H., Kurita, N., Matsumoto, E., and Yoshida, N., 2002, Salinity record for the 1997-98 El Nino from Western Pacific corals: Geophys. Res. Lett., v. 29, no. 11, p. 15401–1544.

Morimoto, M., Kayanne, H., Abe, O., and McCulloch, M.T., 2007, Intensified mid-Holocene Asian monsoon record in corals from Kikai Island, subtropical northwestern Pacific: Quaternary Research, v. 67, p. 204–214.

Ninno, H., and Emery, K.O., 1961, Sediments of shallow portion of East China Sea and South China: Geol. Soc. Amer. Bull., v. 72, p. 731–762.

Nitani, H., 1972, Beginning of the Kuroshio: In Kuroshio, Its Physical Aspects, ed. By H. Stommel and K. Yoshida, Univ. Tokyo Press, Tokyo, p.129-163,

Nozaki, Y., D.M. Rye, K.K. Turekian, and R.E. Dodge., 1978, A 200 year record of carbon-13 and carbon-14 variations in a Bermuda coral:

Geophys. Res. Lett., v. 5, p. 825-828 .

Pätzold, J., 1984, Growth rhythms recorded in stable isotopes and density bands in the reef coral Porites lobata (Cebu, Philippines): Coral Reefs, v.

3, p. 87-90.

Quinn, T. M., and D. E. Sampson, 2002, A multiproxy approach to reconstructing sea surface conditions using coral skeleton geochemistry:

Paleoceanography, v. 17, no. 4, p. 1062.

Renssen, H., Seppä, H., Crosta, X., Goosse, H., & Roche, D. M., 2012, Global characterization of the Holocene Thermal Maximum: Quaternary Science Reviews, v. 48, p. 7–19.

Schrag, D.P., 1999, Rapid analysis of high -precision Sr/Ca ratios in corals and other marine carbonates: Paleoceanography, v. 14, no. 2, p. 97–102.

Shackleton, N.J., 1974, Attainment of isotopic equilibrium between ocean water and the benthonic foraminifera genus Uvigerina: isotopic changes in the ocean during the lastglacial, Colloque CNRS No. 219, Centre National de la Recherche Scientifique, Paris, p. 203–210.

Shen, C.C., Lee, T., Chen, C.Y., Wang, C.H., Dai, C.F., and Li, L.A., 1996, The calibration of D[Sr/Ca] versus sea surface temperature relationship for

Porites coral: Geochim. Cosmochim. Acta, v . 60, no. 20, p. 3849–3858.

Shen, C. C., Emerson, S. R., Lee, T., Chiu, C. H., and Hastings, W.D., 1999, A high precision benthic foraminiferal Sr/Ca record over the past 35000 years: Annual Meeting, Geol. Soc. China, p. 219–221.

Shen, C.C.,Liu, K.K.,Lee, M.Y., Lee, T., Wang, C.H. and Lee, H.J., 2005b, A novel method for tracing coastal water masses using Sr/Ca ratios and salinity in Nanwan Bay, southern Taiwan: Estuarine, Coastal and Shelf Sci., v. 65,p. 135–142.

Smith, S.V., Buddemeier, R.W., Redalie, R.C., and Houk, J.E., 1979, Strontium-calcium thermometry in coral skeletons: Science, v. 204, p.

Stoll, H.M. and Schrag, D.P., 1998, Effects of Quaternary sea level cycles on strontium in seawater: Geochim. Cosmochim. Acta, v. 62, p. 1107–1118.

Stott, L., Cannariato, K., Thunell, R., Haug, G.H., Koutavas, A., and Lund, S., 2004, Decline of surface temperature and salinity in the western tropical Pacific Ocean in the Holocene epoch: Nature, v. 431, p.

56–59.

Suzuki, A., Yukino, I., and Kawahata, H., 1999, Temperature-skeletal δ18O relationshop of Porites australiensis from Ishigaki Island, the Ryukyus, Japan: Geochemical Journal, v. 33, p. 419–428.

Sun, S.C. (1965) Geology and petroleum potentialities of the Chingshui- Yuanlin area, Taiwan: Petrol. Geol. Taiwan, 4, 161-173.

Sun, H.T., 1999, Coral-based Reconstruction of the Climate for Southern Taiwan during Holocene Maximum, Master thesis, National Taiwan University, Taipei, 55 pages.

Sun, Y., 2005, Last deglaciation in the Okinawa Trough: Subtropical northwest Pacific link to Northern Hemisphere and tropical climate:

Paleoceanography, v. 20, PA4005.

Sun, D., Su, R., McConnaughey, T.A., and Bloemendal, J., 2008, Variability of skeletal growth and δ13C in massive corals from the South China Sea:

Effects of photosynthesis, respiration and human activities: Chemical Geology, v. 225, p. 414–425.

Swart, P.K., 1983, Carbon and oxygen isotope fractionation in scleractinian corals: A review. Earth-Sci. Rev., v. 19, p. 51-80 .

Veron, J. E. N., 1993, Corals of Australia and the Indo-Pacific / J.E.N. Veron.

Honolulu : University of Hawaii Press.

Wang, L., Sarnthein, M., Erlenkeuser, H., 1999, Holocene variations in Asian monsoon moisture: a bidecadal sediment record from the South China Sea:

Geophysical Research Letters, v. 26, p. 2889–2892.

Wang, Y.J., Cheng, H., Edwards, R.L., He, Y.Q., Kong, X.G., An, Z.S., Wu, J.Y., Kelly, M.J., Dykoski, C.A., Li, X.D., 2005, The Holocene Asian monsoon: links to solar changes and North Atlantic climate: Science, v.

308, p. 854–857.

Weber, J.N., and Woodhead, P.M.J., 1972, Temperture dependence of

oxygen-18 concentration in reef coral carbonates: Geophys. Res., v.77, p.

463–473.

Weber, J.N., 1974, C-13/C-12 ratios as natural tracers elucidating calcification processes in reef-building and non-reef-building corals: In Proceedings of the Second International Coral Reef Symposium 2. Great Barrier Reef Commission, p. 289-298 .

Wu, C.W., 2012, Mid-Holocene paleoclimate of NW Taiwan inferred from δ18O, δ13C and Sr/Ca ratio of coral Porites Skeleton, Master thesis, NationalTaiwan Normal University, Taipei, 75 pages.

Yang, Y.-J., 2016, Environmental evolution of the western coastal plain inTaiwan since the Last Glacial Maximum periods, Master thesis, NationalTaiwan University, Taipei, 173 pages.

Yu, K.F., Chen, T.G. Huang, D.C., Zhao, H.T., Zhong, J.L., and Liu, D.S., 2001, The high-resolution climate record in the δ18O of Porites lutea from the Nansha Island of China: Chinese Science Bulletin, v. 46, no. 24, p.

2097–2102.

附錄一、AGD-2 岩芯分析區間之 Porites 珊瑚 δ18O、δ13C、Sr/Ca、Sr/Ca 換算之海溫、海估算

Sample

Sample

Sample

Sample

Sample

Sample

Sample

Sample

Sample

Sample

Sample

Sample

Sample

Sample

Sample

Sample

Sample

Sample

Sample

Sample

Sample

Sample

Sample

Sample

Sample

Sample

Sample

Sample

Sample

Sample

Sample

Sample

Sample

Sample

Sample

Sample

Sample

Sample

Sample

Sample

Sample

Sample

附錄二、AGD-2岩芯Porites珊瑚之U-Th定年結果

Sample Weight 238U 232Th 234U [230Th/238U] 230Th/232Th Age (yr ago) Age (yr ago) Age (yr BP) 234Uinitial ID g 10-6g/g a 10-9g/g measureda activityc atomic (x 10-6 uncorrected corrected c,d relative to 1950 AD correctedb

AGD1112-11 0.106 2.9263 ± 0.0034 93.85 ± 0.90 143.7 ± 1.8 0.0919 ± 0.0017 47.23 ± 0.96 9,116 ± 172 8,374 ± 410 8,305 ± 410 147.1 ± 1.8 AGD-1111 0.12 3.4331 ± 0.0027 4.5621 ± 0.0089 145.9 ± 1.4 0.08367 ± 0.00030 1038.2 ± 4.2 8,255 ± 33 8,224 ± 36 8,156 ± 36 149.4 ± 1.5 AGD1112-12 0.113 2.7262 ± 0.0041 6.830 ± 0.026 143.8 ± 2.1 0.08559 ± 0.00061 563.3 ± 4.5 8,468 ± 65 8,410 ± 71 8,342 ± 71 147.3 ± 2.1 AGD1213-13 0.127 2.5842 ± 0.0042 0.1278 ± 0.0037 144.8 ± 2.2 0.08869 ± 0.00028 29579 ± 854 8,779 ± 34 8,778 ± 34 8,709 ± 34 148.4 ± 2.3

Analytical errors are 2 of the mean.

a[238U] = [235U] x 137.77 (±0.11‰) (Hiess et al., 2012);234U = ([234U/238U]activity - 1) x 1000.

b234Uinitial corrected was calculated based on 230Th age (T), i.e., 234Uinitial = 234UmeasuredX e234*T, and T is corrected age.

c[230Th/238U]activity = 1 - e-230T + (234Umeasured/1000)[230/(230 - 234)](1 - e-230 - 234 T), where T is the age.

Decay constants are 9.1705 x 10-6 yr-1 for 230Th, 2.8221 x 10-6 yr-1 for 234U (Cheng et al., 2013), and 1.55125 x 10-10 yr-1 for 238U (Jaffey et al., 1971).

dAge corrections, relative to chemistry date on Augest 30th, 2018, were calculated using an estimated atomic 230Th/232Th ratio of 4 (± 2) x 10-6 (Shen et al., 2008).