• 沒有找到結果。

(2) 三種不同化學動力模式相互比較結果,Langmuir-Hinshelwood 反 應動力模式是比較好的選擇,它不僅對薄膜沉積速率有良好的預

參考文獻

[1] G. Wahl, "Hydrodynamic description of CVD processes," Thin Solid Films, vol. 40, p. 13, 1977.

[2] K. F. Jensen and D. B. Graves, "Modeling and analysis of low pressure CVD reactors," J. Electrochem. Soc., vol. 130, p. 1950, 1983.

[3] M. E. Coltrin, R. J. Kee, and J. A. Miller, "A mathematical model of the coupled fluid mechanics and chemical kinetics in a Chemical Vapor Deposition reactor," J. Electrochem. Soc., vol. 131, p. 425, 1984.

[4] H. K. Moffat and K. F. Jensen, "Three-dimensional flow effects in silicon CVD in horizontal reactors," J. Electrochem. Soc., vol. 135, p. 459, 1988.

[5] C. R. Kleijn and C. J. Hoogendoorn, "A study of 2- and 3-D transport phenomena in horizontal chemical vapor deposition reactors," Chem. Engng. Sci., vol. 46, p. 321, 1991.

[6] H. Habuka, M. Katayama, M. Shimada, and K. Okuyama,

"Numerical Evaluation of Silicon-Thin Film Growth from

SiHCl3-H2 Gas Mixture in a Horizontal Chemical Vapor Deposition Reactor," Jpn. J. Appl. Phys., vol. 33, p. 1977, 1994.

[7] H. Habuka, T. Nagoya, M. Katayama, M. Shimada, and K.

Okuyama, "Modeling of Epitaxial Silicon Thin-Film Growth on a Rotating Substrate in a Horizontal Single-Wafer Reactor," J.

Electrochem. Soc., vol. 142, p. 4272, 1995.

[8] H. Habuka et al., "Model on transport phenomena and epitaxial growth of silicon thin film in SiHCl3-H2 system under atmospheric pressure," Journal of Crystal Growth, vol. 169, p. 61, 1996.

[9] H. Habuka, M. Katayama, M. Shimada, and K. Okuyama,

"Nonlinear increase in silicon epitaxial growth rate in a SiHCl3-H2 system under atmospheric pressure," Journal of Crystal Growth, vol. 182, p. 352, 1997.

[10] S. Kommu, G. M. Wilson, and B. Khomami, "A

Theoretical-Experimental Study of Silicon Epitaxy in Horizontal

Single-Wafer Chemical Vapor Deposition Reactors," J. Electrochem.

Soc., vol. 147, p. 1538, 2000.

[11] H. Habuka, "Hot-wall and cold-wall environments for silicon

epitaxial film growth," Journal of Crystal Growth, vol. 223, p. 145, 2001.

[12] A. G. Salinger, R. P. Pawlowski, J. N. Shadid, and B. G. van

Bloemen Waanders, "Computational Analysis and Optimization of a Chemical Vapor Deposition Reactor with Large-Scale Computing,"

Ind. Eng. Chem. Res., vol. 43, p. 4612, 2004.

[13] A. Veneroni, D. Moscatelli, and M. Masi, "Modeling of large-scale horizontal reactor for silicon epitaxy," Journal of Crystal Growth, vol. 275, p. e289, 2005.

[14] H. Habuka et al., "Small-Batch Reactor Development for Silicon Epitaxial Film Growth Based on Theory of Transport Phenomena,"

in 209th ECS Meeting, 2007, p. 21.

[15] R. Pollard and J. Newman, "Silicon deposition on a rotating disk," J.

Electrochem. Soc., vol. 127, p. 744, 1980.

[16] G. Evans and R. Greif, "A numerical model of the flow and heat transfer in a rotating disk chemical vapor deposition reactor," J.

Heat Trans, vol. 109, p. 928, 1987.

[17] M.E. Coltrin, R.J. Kee, and G.H. Evans, "A mathematical model of the fluid mechanics and gas-phase chemistry in a rotating disk chemical vapor deposition reactor," J. Electrochem. Soc., vol. 136, p. 819, 1989.

[18] R.W. Davis, E.F. Moore, and M.R. Zachariah, "Numerical modeling of particle dynamics in a rotating disk Chemical Vapor Deposition reactor," Journal of Crystal Growth, vol. 132, p. 513, 1993.

[19] C. Theodoropoulos, T. J. Mountziaris, H. K. Moffat, and J. Han,

"Design of gas inlets for the growth of gallium nitride by

metalorganic vapor phase epitaxy," Journal of Crystal Growth, vol.

217, p. 65, 2000.

[20] C. R. Klejin, "Computational modeling of transport phenomena and detailed chemistr in chemical vapor deposition - a benchmark

solution," Thin Solid Films, vol. 365, p. 294, 2000.

[21] B. Mitrovic, A. Gurary, and L. Kadinski, "On the flow stability in vertical rotating disc MOCVD reactors under a wide range of process parameters," Journal of Crystal Growth, vol. 287, p. 656, 2006.

[22] W. T. Cheng, H. C. Li, and C. N. Huang, "Simulation and optimization of silicon thermal CVD through CFD integrating Taguchi method," Chemical Engineering Journal, vol. 137, p. 603, 2008.

[23] C. H. Lin, W. T. Cheng, and J. H. Lee, "Effect of embedding a

porous medium on the deposition rate in a vertical rotating MOCVD reactor based on CFD modeling," International Communications in Heat and Mass Transfer, vol. 36, p. 680, 2009.

[24] J. Juza and J. Cermak, "Phenomenological model of the CVD epitaxial reactor," J. Electrochem. Soc., vol. 129, p. 1627, 1982.

[25] L. Yang, B. Farouk, and R. L. Mahajan, "Three-dimensional predictions of silicon deposition in a barrel type CVD reactor," J.

Electrochem. Soc., vol. 139, p. 2666, 1992.

[26] E. De Paola and P. Duverneuil, "Simulation of silicon deposition from SiHCl3 in a CVD barrel reactor at atmospheric pressure,"

Computers Chem. Engng., vol. 22, p. S683, 1998.

[27] P. M. Frijlink, "A new versatile, large size MOVPE rector," Journal of Crystal Growth, vol. 93, p. 207, 1988.

[28] C. Werner, M. Ilg, and K. Uram, "Three-dimensional equipment modeling for Chemical Vapor Deposition," J. Vac. Sci Technol A, vol. 14, p. 1147, 1996.

[29] T. Bergunde et al., "Heat transfer and mass transport modeling in a multiwafer MOVPE reactor: modelling and experimental studies,"

Journal of Crystal Growth, vol. 170, p. 66, 1997.

[30] P. Ho et al., "Chemical Kinetics for Modeling Silicon Epitaxy from Chlorosilanes," in 194th Meeting of the Electrochemical Society, 1998.

[31] G. Valente, C. Cavallotti, M. Masi, and S. Carra, "Reduced order model for the CVDof epitaxial silicon from silane and

chlorosilanes," Journal of Crystal Growth, vol. 230, p. 247, 2001.

[32] 維基百科 - Wikipedia. http://www.wikipedia.org

[33] M. Masi, M. D. Stanislao, and A. Veneroni, "Fluid-dynamics during vapor epitaxy and modeling," Prog. Cryst. Growth Charact. Mater., vol. 47, p. 239, 2003.

[34] C. R. Kleijn, "Numerical Simulation of Flow and Chemistry in Thermal Chemical Vapor Deposition Processes," in Chemical Physics of Thin Film Deposition Processes for Micro- and

Nano-Technologies, NATO Science Series., 2001, vol. 55, p. 119.

[35] C. R. Biber, C. A. Wang, and S. Motakef, "Flow regime map and deposition rate uniformity in vertical rotating-disk OMPVE reactors," Journal of Crystal Growth, vol. 123, p. 545, 1992.

[36] K. W. Park and H. Y. Pak, "Characteristics of Three-Dimensional Flow, Heat, and Mass Transfer in a Chemical Vapor Deposition Reactor," Numerical Heat Transfer: Part A: Applications, vol. 37, p.

407, 2000.

[37] C. Cavallotti and M. Masi, "Epitaxy Growth Theory:Vapor-Phase and Surface Chemistry," in Silicon Epitaxy.: Semiconductors and Semimetals, 2001, ch. 2.

[38] R. B. Bird, W. E. Stewart, and E. N. Lightfoot, Transport Phenomena, 2nd ed.: Wiley, 2002.

[39] B. E. Poling, J. M. Prausnitz, and J. P. O'connell, Properties of Gases and Liquids, 5th ed.: McGRAW-HILL, 2001.

[40] ANSYS 13.0, FLUENT User's Guide, 2010.

相關文件