• 沒有找到結果。

結論

在文檔中 中 華 大 學 (頁 93-99)

第六章 結論與建議

6.1 結論

的效果,加勁阻尼器(ADAS)或三角形鋼板加勁阻尼器(TADAS)則是利用鋼 構材降伏後的遲滯特性(非線性變形)來達到消能的效果,兩者消能原理相 同。然而由於鉛合金於常溫下受外力變形後具有再結晶的特性,可以迅速回 復到塑性變形前之狀態,力學表現較傳統加勁阻尼器與三角形鋼板加勁阻尼 器更加穩定,且在大地震侵襲後,複合式金屬型阻尼器亦不需置換,其可大 大減少未來維修之成本。

6. 由於複合式金屬型阻尼器獨特之力學特性,若將其應用於橋樑之減震設計,

則其在中小地震下能夠發揮吸收地震能量之功能,在大地震下能夠展現如 lock-up device 之功能,進而使橋柱發生塑性行為而產生塑鉸,達到橋柱耐震 設計所預期的「韌性設計」,滿足橋樑「強梁弱柱」之設計精神。

6.2 建議

1. 可持續研究改善複合式金屬型阻尼器之設計,或者使用不同之材質或材料,

使其在較大位移時,能夠提供更佳之勁度表現,以及增加能量消散之能力,

並可設計 lock-up device 之功能能夠在較大地震時才開始發揮作用。

2. 在未來試驗規劃方向,考慮進行其他運動頻率與振幅之反覆載重循環,同時 探討溫度變化的影響,並進一步規劃振動台試驗研究,以探討複合式金屬型 阻尼器在真實地震下之減震效益。

3. 本試驗研究已初步得到複合式金屬型阻尼器之基本力學特性,未來將持續進 行相關試驗研究,並利用試驗結果迴歸分析設計應用所需之力學模型以及提 出合理之設計公式,以提供未來工程師應用之參考依據。

參考文獻

[1] M.C. Constantinou, M.D. Symans,(1993), “Experimental Study of Seismic Response of Buildings with Supplemental Fluid Dampers”.

[2] “建築物耐震設計規範及解說“,內政部營建署,民國 95 年 1 月。

[3] Yao, J.T.P., “Concept of Structural Control, “Journal of the structural division,” ASCE, Vol. 98, No. ST7, pp. 1567~1574, 1972.

[4] Soong, T.T. and Dargush, G.F., Passive Energy Dissipation Systems in Structural Engineering, John Wiley & Sons, New York, 1997.

[5] 張國鎮,黃震興,蘇晴茂,李森枏, “結構消能減震控制及隔震設計”。

[6] Michael D. Symans, Michael C. Constantinou(1997), “Semi-Active Control systems for seismic protection of structures: a state-of –the-art review”.

[7] 許丁友(1999),”LRB 隔震房屋結構之三軸向地震力試驗研究”,國立台灣科技大學碩士論 文。

[8] F. Casciati, L. Faravelli(1999), “Experimental Promotion of Semi-active, Active and Hybrid Control”.

[9] Akira Nishitani(1999), “Application of Active, Hybrid, and Semi-Active Structure Control in Japan: Recent State”.

[10] B.F. Spencer, Jr. T.T. Soong(1999), “New Applications and Development of Active, Semi-active and Hybrid Control Techniques for Seismic and Non-Seismic Vibration in the USA”.

[11] Reinhorn AM, Riley MA(1994), “Control of bridge vibrations with hybrid devices”.

[12] Symans MD, Kelly SW(1997), “Fuzzy logic Control of structures with hybrid seismic isolation systems”

[13] Constantinou, M.C., and Symans, M.D., (1992), Experimental and Analytical Investigation of Seismic Response of Structures with Supplemental Fluid Viscous Dampers, Report No.

NCEER-92-0032, National Center for Earthquake Engineering Research, Buffalo, New York.

[14] 林裕淵(1995),”加黏彈性阻尼器結構分析與設計”, 國立台灣大學碩士論文。

[15] Nielse,E.J. Lai,M.L., Soong,T.T. and Kelly,J.M.(1994), “Viscoelastic Damper Overview for Seismic and Wind Application”.

[16] Mahmoodi,P., Robertson L., Yontar,M., Moy,C. and Feld,L.(1987), “Performance of Viscoelastic Dampers in World Trade Center Towers”, ASCE Structures Congress, Orlando,FL,Augest.

[17] Chang, K.C. Soong. T.T. Lai, M.L. and Nielsen, E.J.,(1993), “Viscoelastic Dampers as Energy Dissipation Devices for Seismic Applications.” Earthquake Spectra, 9(3), 371-387.

[18] Aiken,I.D., Kelly, J.M. and Mahmoodi, P.(1990), “The Application of Viscoelastic Dampers to Seismically Resistant Structures”, 4th U.S. NCEE, Palm Springs, CA, May 20-24.

[19] Chang, K.C. Soong, T.T., Oh, S-T. and Lai, M.L.(1992). “Effect of Ambient Temperature on Viscoelastically Damped Structures”, ASCE Journal of Structural Engineering, Vol. 118, No. 7, pp. 1995-1973.

[20] Oh, S.T., Chang, K.C., Lai, M.L. and Nielsen, E.J.(1992), “Seismic Response of Viscoelastically Damped Structure Under Strong Earthquake Ground Motions”, 10WCEE, Madrid, Spain, July 19-24.

[21] Chang, K.C., Soong T.T., Lai, M.L. and Nielsen, E.J.(1993), “Development of a Design Procedure for Structure with Added Viscoelastic Dampers”, ATC-17-1 Seminar, San Francisco, CA, March.

[22] Chang, K.C., Lai, M.L. Soong T.T., Hao, D.S. and The, Y.C.(1993), “Seismic Behavior and Design Guidelines for Steel Frame Structures with added Viscoelastic Dampers”, Technical Report NCREE-93-0009, May.

[23] Crosby, P., Kelly, J.M. and Singh, J.(1994), “Utilizing Viscoelastic Dampers in the Seismic Retrofit of a Thirteen Story Steel Framed Building”, Structures Congress XII, Atlanta, GA, April 24-48.

[24] Forth, D.A. Wood, S.L. and Brady, P.A.(1993), “Seismic Retrofit of Non-Ductile Reinforced Concrete Frames Using Viscoelastic Dampers”, ATC-17-1 Seminar, San Francisco, CA, March 11-12.

[25] Chang, K.C. Shen, K.C. Soong, T.T., and Lai, M.L.(1994), “Seismic Retrofit of a Reinforced Concrete Frame With Added Viscoelastic Dampers”, 5NCREE, Chicago. IL, Vol. 3, pp.

707-716, July.

[26] 張國鎮,廖健勝, “黏彈性阻尼器之力學行為研究”, 82 年電子計算機於土木水利工程應用 論文研討會論文集,中華民國 82 年 10 月 15 日,台南市成功大學, pp.197-206。

[27] Yaomin Fu, Kazuhiko Kasai, Member, ASCE, “Comparative Study of Frames Using Viscoelastic and Viscous Dampers”.

[28] Kasai, K., Munshi, J.A., Lai, M.L. and Maison, B.F.(1993).Viscoelastic Damper Hysteretic Model: Theory, Experiment, and Application,Proceedings of Seminar on Seismic Isolation, Energy Dissipation, And Active Control, ATC-17-1, 2, pp.521-532.

[29] Chang, K. C., Tsai, M. H., Chang, Y. H., and Lai, M. L. (1998), “Temperature Rise Effect of Viscoelastically Damped Structure under Strong Earthquake Ground Motions,” The Chinese Journal of Mechanics, Vol.14, No.3, pp.45-55.

[30] Chang, K.C. Soong T.T. Lai, M.L. and Nielsen, E.J., “Viscoelastic Dampers as Energy Dissipation Devices for Seismic Applications” Earthquake Spectra, Vol. 9, NO. 3, August 1993, pp.371-388.

[31] 張國鎮,李森枏,林裕淵, “壁式黏彈性阻尼器於建築結構之應用” 國家地震工程研究中心 研究報告 NCREE-01-026。

[32] Hwang, J.S., Huang, Y.N., and Hung, Y.H., “Analytical and experimental study of toggle-brace-damper systems,” Journal of Structural Engineering, ASCE, Vol. 131, No. 7, pp.1035-1043, 2005.

[33] Hwang, J.S., Tsai, C.H., Wang, S.J., and Huang, Y.N., “Experimental Study of RC Building Structures with Supplemental Viscous Dampers and Lightly Reinforced Walls”, Engineering

Structures, Vol. 26, No.13, pp. 1816-1824, 2006.

[34] Hwang, J.S., Huang, Y.N., Yi, S.L. and Ho, S.Y., “Design formulations for supplemental viscous dampers to building structures,” Journal of Structural Engineering, ASCE, 2006.

[35] 黃震興、黃尹男,“使用線性黏性阻尼器建築結構之耐震試驗與分析”, 國家地震工程研 究中心報告 NCREE-01-022,2001。

[36] 黃震興、黃尹男、洪雅惠,“含非線性黏性阻尼器結構之減震試驗與分析”,國家地震工 程研究中心報告 NCREE-02-020,2002。

[37] Soong, T.T., and Constantinou, M.C., (1994), Passive and Active Structural Vibration Control in Civil Engineering, Springer-Verlag, New York.

[38] NEHRP Guidelines and Commentary for the Seismic Rehabilitation of Buildings (FEMA 273, 274), Federal Emergency Management Agency, 1997.

[39] Chopra, Anil K., (1995), Dynamics of Structures, Prentice-Hall, New Jersey.

[40] Seleemah, A.A. and Constantinou, M.C., Investigation of Seismic Response of Buildings with Linear and Nonlinear Fluid Viscous Dampers, Report No. NCEER-97-0004, National Center for Earthquake Engineering Research, Buffalo, New York, 1997.

[41] Tsai, K.C., Chen, H.W., Hong, C.P., and Su, Y.F. (1993) Design of Steel Triangular Plate Energy Absorbers for Seismic-Resistant Construction. Earthquake Spectra, Vol.9, No.3, 505-528.

[42] K.-C. Tsai,J.-W. Li,C.-P. Hong,H.-W. Chen,and Y.-F. Su,Welded Steel Triangular Plate Device for Seismic Energy Dissipation,Applied Technology Council(ATC17-1),Vol.2,

pp687-pp698.

[43] 蔡克銓,洪志評,三角形鋼板加勁阻尼裝置之耐震反應。(中國土木水利學刊,第 5 卷,

第 4 期,民國 89 年),pp355~365。

[44] Moffatt, W.G., The Structure and Properties of Materials, Vol. 1, John Wiley & Sons, 1976.

[45] Robinson, W.H. and Tucker, A.G., “A Lead-Rubber Shear Damper,” Bull. New Zealand Natl.

在文檔中 中 華 大 學 (頁 93-99)

相關文件