• 沒有找到結果。

對於人臉表情辨識系統,擷取影像特徵是造成整個系統好壞最重要的關鍵。

本論文提出一個方法,將表情影像以 SURF 進行特徵點計算,進而找出較具有辨 識效果的區域進行特徵擷取。擷取方法是透過 CS-LTP 與 LSDP 分別計算出區域內 各個像素點的特徵值後將其統計成特徵直方圖,再將兩特徵直方圖進行串接,形 成一個混合特徵直方圖,以此作為該張表情之特徵資訊;比起個別單獨使用 CS-LTP 或 LSDP 的方法,更能提升整體的辨識效能。

針對本論文所提之方法,主要研究結論有二:

1. 特定區域選取:由於人臉影像包含太多資訊,如何選出有利於辨識的區 域進行特徵擷取,是影響人臉表情辨識系統的關鍵。本論文所提之特定 區域選取方法,以具有高度穩健性及計算速度快等優點的 SURF 進行特 徵點計算,再根據這些特徵點選取出特徵擷取區塊。實驗結果顯示以此 方式所擷取出之區塊,具有一定程度的辨識能力,若搭配不同的特徵擷 取方法,都能使整體辨識效能得到提升。

2. 特徵擷取方法之結合:特徵擷取方法經過許多學者不斷創新、改良,已 產生出許多類型的擷取方式,每一種方式都有其優缺點。如何將某方法 之優勢突顯出來?或要以何種方式,進行不同方法的結合?本論文提供 了一種可行的方式,從實驗結果顯示,相較於單獨執行個別方法,確實 能得到更好的辨識效果。

因為特徵擷取之方法不斷推陳出新,未來可以嘗試以更好的擷取方法做結合,

或是以更好的演算法找出人臉影像的重要區域進行特徵擷取。為了使人臉表情辨 識系統更具有適用性,也可以更多表情資料庫進行方法的測試,亦可針對使用的 環境不同選擇特定表情資料庫進行開發,例如:憂鬱症患者表情資料庫、嬰幼兒

表情資料庫等。隨著科技進步,智慧型手持裝置越來越普及,若能將人臉表情辨 識系統結合至手持裝置當中,將可大幅提高其實用性。

參考文獻

[1] 謝明宏,使用臉部表情辨識作為憂鬱症分析之研究。逢甲大學資訊工程學系 碩士班碩士論文,100 年 7 月。

[2] 黃彥強,應用於自然環境中的個人化人臉表情辨識。國立雲林科技大學資訊 工程研究所碩士班碩士論文,98 年 6 月。

[3] P. Ekamn and W. V. Friesen, “Constants across cultures in the face and emotion,”

Journal of Personality and Social Psychology, vol. 17, pp. 124-129, 1971.

[4] P. Ekamn and W. V. Friesen, Unmasking the Face, Malor Books, Los Altos, 2003.

[5] W. Liu, Y. Wang, and S. Li, “LBP feature extraction for facial expression recognition,” Journal of Information & Computational Science, vol. 8, no. 3, pp.

412-421, 2011.

[6] C. Shan, S. Gong, and P. W. McOwan, “Conditional mutual information based boosting for facial expression recognition,” in Proc. British Machine Vision Conference, Sep. 2005, vol. 1, pp. 399-408.

[7] C. Shan and T. Gritti, “Learning discriminative LBP-histogram bins for facial expression recognition,” in Proc. British Machine Vision Conference, 2008, pp.

2-12.

[8] C. Shan, S. Gong, and P. W. McOwan, “Facial expression recognition based on local binary patterns: A comprehensive study,” Image and Vision Computing, vol.

27, no. 6, pp. 803-816, 2009.

[9] Y. Tian, L. Brown, A. Hampapur, S. Pankanti, A. Senior, and R. Bolle, “Real world real-time automatic recognition of facial expression,” in Proc. IEEE Workshop on Performance Evaluation of Tracking and Surveillance, 2003, pp.

2-5.

[10] Y. Tian, “Evaluation of face resolution for expression analysis,” in Proc.

Computer Vision and Pattern Recognition Workshop on Face Processing in Video, 2004, pp. 82-88.

[11] S. Liao, W. Fan, C. S. Chung, and D. Y. Yeung, “Facial expression recognition using advanced local binary patterns, tsallis entropies and global appearance features,” in Proc. IEEE International Conference on Image Processing, 2006, pp.

665-668.

[12] T. Jabid, M. H. Kabir, and O. Chae, “Robust facial expression recognition based on local directional pattern,” ETRI Journal, vol. 32, no. 5, pp. 784-794, 2010.

[13] X. Tan and B. Triggs, “Enhanced local texture feature sets for face recognition under difficult lighting conditions,” IEEE Trans. on Image Processing, vol. 19, no.

6, pp. 1635-1650, 2010.

[14] B. Hossain, A. Faisal, and H. Emam, “Person-independent facial expression recognition based on compound local binary pattern (CLBP),” The International Arab Journal of Information Technology First Online Publication, vol. 11, no. 2, pp. 195-203, 2012.

[15] M. Kabir, T. Jabid, and O Chae, “Local directional pattern variance (LDPv) : A robust feature descriptor for facial expression recognition,” The International Arab Journal of Information Technology, vol. 9, no. 4, pp. 382-391, 2012.

[16] T. Gritti, C. Shan, V. Jeanne, and R. Braspenning, “Local features based facial expression recognition with face registration errors,” in Proc. IEEE International Conference on Automatic Face and Gesture Recognition, 2008, pp. 1-8.

[17] H. Bay, T. Tuytelaars, and L. V. Gool, “SURF: Speeded up robust features,” in Proc. European Conference on Computer Vision, Berlin, Heidelberg, 2006, pp.

404-417.

[18] H. Zeng, Z. C. Mu, and X. Q. Wang, “A robust method for local image feature region description,” Acta Automatica Sinica, vol. 37, no. 6, pp. 658-664, 2011.

[19] J. A. R. Castillo, A. R. Rivera, and O. Chae, “Facial expression recognition based on local sign directional pattern,” in Proc. IEEE International Conference on Image Processing, 2012, pp. 2613-2616.

[20] C. Cortes and V. Vapnik, “Support-vector networks,” International Journal of Machine Learning, vol. 20, no. 3, pp. 273-297, 1995.

[21] T. Kanade, J. F. Cohn, and Y. Tian, “Comprehensive database for facial expression analysis,” in Proc. IEEE International Conference on Automatic Face and Gesture Recognition, Grenoble, France, 2000, pp. 46-53.

[22] P. Lucey, J. F. Cohn, T. Kanade, J. Saragih, Z. Ambadar, and I. Matthews, “The extended Cohn-Kanade dataset (CK+): A complete facial expression dataset for action unit and emotion-specified expression,” in Proc. IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2010, pp. 94-101.

[23] L. F. Chen, Y. S. Yen, TFEID: Taiwanese facial expression image database, Nov.

2011, http://bml.ym.edu.tw/tfeid.

[24] F. Y. Shih and C. F. Chuang, “Performance comparisons of facial expression recognition in JAFFE database,” International Journal of Pattern Recognition and Artificial Intelligence, vol. 22, no. 3, pp. 445-459, 2008.

[25] Y. Tian, T. Kanade, and J. F. Cohn, Handbook of Face Recognition, 2nd Ed., Springer, 2005, pp. 487-520.

[26] P. Ekman and W. V. Friesen, Facial Action Coding System: A Technique for the Measurement of Facial Movement, Consulting Psychologists Press, 1978.

[27] I. Kotsia and I. Pitas, “Using geometric deformation features and support vector

2007.

[28] M. Valstar, I. Patras, and M. Pantic, “Facial action unit detection using probabilistic actively learned support vector machines on tracked facial point data,”

in Proc. IEEE Conference on Computer Vision and Pattern Recognition, 2005, vol. 3, pp. 76-84.

[29] M. Valstar and M. Pantic, “Fully automatic facial action unit detection and temporal analysis,” in Proc. IEEE Conference on Computer Vision and Pattern Recognition, 2006, pp. 149-156.

[30] M. C. Su, Y. J. Hsieh, and D. Y Huang, “A simple approach to facial expression recognition,” in Proc. The 2007 annual Conference on International Conference on Computer Engineering and Applications, 2007, pp. 456-461.

[31] L. Zhang and D. Tjondronegoro, “Facial expression recognition using facial movement features,” IEEE Trans. on Affective Computing, vol. 2, no. 4, pp.

219-229, 2011.

[32] Y. Tian, “Evaluation of face resolution for expression analysis,” in Proc. CVPR Workshop on Face Processing in Video, 2004, pp. 82-88.

[33] C. Shan, S. Gong, and P. W. McOwan, “Robust facial expression recognition using local binary patterns,” in Proc. IEEE International Conference on Image Processing, Sep. 2005, vol. 2, pp. 370-373.

[34] P. Viola and M. J. Jones, “Robust real-time face detection,” International Journal of Computer Vision, vol. 57, no. 2, pp. 137-154, 2004.

[35] X. Feng, M. Pietikainen, and A. Hadid, “Facial expression recognition with local binary patterns and linear programming,” Pattern Recognition and Image Analysis, vol. 15, no. 2, pp. 546-548, 2005.

[36] X. Feng and M. Pietikäinen, “A coarse-to-fine classification scheme for facial expression recognition,” in Proc. International Conference on Image Analysis and Recognition, 2004, pp. 668-675.

[37] S. M. Lajevardi and Z. M. Hussain, “Facial expression recognition using Log-Gabor filters and local binary pattern operators,” in Proc. International Conference on Communication, Computer and Power, Feb. 2009, pp. 15-18.

[38] X. Tan and B. Triggs, “Enhanced local texture feature sets for face recognition under difficult lighting conditions,” IEEE Trans. on Image Processing, vol. 19, no.

6, pp. 1635-1650, 2010.

[39] M. Heikkilä, M. Pietikäinen, and C. Schmid, “Description of interest regions with center-symmetric local binary patterns,” in Proc. 5th Indian Conference on Computer Vision, Graphics and Image Processing, 2006, pp. 58-69.

[40] S. P. Khandait, R. C. Thool, and P. D. Khandait, “Automatic facial feature extraction and expression recognition based on neural network,” International

Journal of Advanced Computer Science and Applications, vol. 2, no. 1, pp.

113-118, 2011.

[41] G. M. Nagi, R. Rahmat, F. Khalid, and M. Taufik, “Region-based facial expression recognition in still images,” Journal of Information Processing Systems, vol. 9, no. 1, pp. 173-188, 2013.

[42] OpenCV, http://opencv.org.

[43] S. D. Lin, B. Liu, and J. Lin. “Combining speeded-up robust features with principal component analysis in face recognition system,” International Journal of Innovative Computing, Information and Control, vol. 8, no. 12, pp. 8545-8556, 2012.

[44] Y. T. Wang, C. T. Chi, and Y. C. Feng, “Robot simultaneous localization and mapping using speeded-up robust features,” Applied Mechanics and Materials, vols. 284-287, pp. 2142-2146, 2013.

[45] B. Sheta, M. Elhamed, and N. El-Sheimy, “Assessments of different speeded up robust features (SURF) algorithm resolution for pose estimation of UAV,”

International Journal of Computer Science and Engineering Survey, vol. 3, no. 5, pp. 15-41, 2012.

[46] C. Liu, F. Zhou, Y. Sun, K. Di, and Z. Liu, “Stereo-image matching using a speeded up robust feature algorithm in an integrated vision navigation system,”

Journal of Navigation, vol. 65, no. 4, pp. 671-692, 2012.

[47] H. F. Huang and S. C. Tai, “Facial expression recognition using new feature extraction algorithm,” Electronic Letters on Computer Vision and Image Analysis, vol. 11, no. 1, pp. 41-54, 2012.

[48] T. Ojala, M. Pietikäinen, and D. Harwood, “A comparative study of texture measures with classification based on feature distributions,” Pattern Recognition, vol. 29, no. 1, pp. 51-59, 1996.

[49] T. Ojala, M. Pietikäinen, and T. Mäenpää, “Multiresolution gray-scale and rotation invariant texture classification with local binary patterns,” IEEE Trans.

Pattern Analysis and Machine Intelligence, vol. 24, no. 7, pp. 971-987, 2002.

[50] X. Tan and B. Triggs, “Enhanced local texture feature sets for face recognition under difficult lighting conditions,” IEEE Trans. on Image Processing, vol. 19, no.

6, pp.1635-1650, 2010.

[51] C. W. Hsu and C. J Lin, “A comparison of methods for multiclass support vector machines,” IEEE Trans. on Neural Networks, vol. 13, no. 2, pp. 415-425, 2002.

[52] C. C. Chang and C. J. Lin, LIBSVM: a library for support vector machines.

Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm, 2001.

相關文件