• 沒有找到結果。

結論與未來研究方向

5.1 結論

本論文中,我們實現了遲滯控制升壓電源轉換電路,並著重於遲滯比較器的 設計,用以降低電源轉換電路的輸出漣波,觀察不同負載R 對輸出電壓L Vout的影 響。

我們使用 TSMC T18 (T18, TSMC 0.18 UM CMOS Mixed Signal RF General Purpose MiM Al 1P6M 1.8 V&3.3 V) 製程,配合 HSPICE 軟體執行佈局前與佈局後 模擬,經由反覆的驗證和修改電路,完成遲滯控制升壓電源轉換電路晶片設計,

而實現後的晶片面積為0.723×0.723mm2。佈局後模擬結果顯示,附掛不同負載並 使用遲滯比較器的升壓電源轉換電路能成功將1.8V的供應電源轉換至約2.5V的 電壓輸出,並且抑制輸出漣波在50mV至55mV,而電源轉換效率為 81.95 %,電 路的功率消耗為14.4614mW。

5.2 未來研究方向

我們認為遲滯比較器能有效降低輸出漣波,來達到供應電源經轉換後輸出電 壓的準確性,在未來希望能設計出更準確的遲滯比較器,並使用較先進的製程加 快電晶體反應時間,亦能減少實現後的晶片面積。外掛元件中使用到的二極體,

相對於主動元件來說電阻較高,導致電源轉換效率不高,未來希望能找到合適的 主動元件應用。外掛電容的使用,希望能縮小電容值同時實現成晶片,以減少外 接電路線路過長的問題。至於輸入訊號的部份可使用現有的電路產生不重疊的時 脈訊號。

62

參考文獻

[1] S. V. Cheong, H. Chung, and A. Ioinovici, “Inductorless dc-to-dc converter with high power density,” IEEE Trans. Ind. Electron., vol. 41, no. 4, pp. 208–215, Apr.

1994.

[2] C. Mak, Y. C. Wong, and A. Ioinovici, “Step-up dc power supply based on a switched-capacitor circuit,” IEEE Trans. Ind. Electron., vol. 42, no. 2, pp. 90–97, Jan. 1995.

[3] H. Chung, “Design and analysis of a switched-capacitor-based step-up dc/dc converter with continuous input current,” IEEE Trans Circuits Syst. I, vol. 46, no.

6, pp. 722–730, June 1999.

[4] C. Y. Cheng, K. N. Leng, Y. K. Sun, P. Y. Or, “Design of a low-voltage CMOS charge pump,” in Proc. IEEE 4th Int. Conf. Electronic Design, Test and Applications, Hong Kong, Jan. 2008, pp 342–345.

[5] Y. Lin, W. C. Li, C. C. Nguyen, “A MEMS-based charge pump,” in Proc. IEEE VLSI Technology (VLSIT), Kyoto, June 2013, pp. T148–T149.

[6] M. Zhang and N. Llaser, “Dynamic analysis of Dickson charge pump circuits with a resistive load,” in Proc. IEEE 10th Int. Conf. Electronics, Circuits and Syst.

(ICECS), Sharjah, Dec. 2003, vol. 2, pp. 431–434.

[7] M. A. Ansari, W. Ahmad, Q. Chen, L. R. Zheng, “Diode based charge pump design using 0.35μm Technology,” in Proc. IEEE NORCHIP Conf., Tampere, Nov. 2010, pp. 1–4.

[8] L. F. New, Z. A. B. A. Aziz, M. F. Leong, “A low ripple CMOS charge Pump for low-voltage application,” in Proc. IEEE 4th International Conference Intelligent and Advanced System (ICIAZ), Kuala Lumpur, June 2012, vol. 2, pp. 784–789.

[9] K. I. Hwu and Y. T. Yau, “A KY boost converter,” IEEE Trans. Power Electron., vol. 25, no. 11, pp. 2699–2703, Nov. 2010.

[10] K. I. Hwu and T. J. Peng, “A novel buck–boost converter combining KY and buck converters,” IEEE Trans. Power Electron., vol. 27, no. 5, pp. 2236–2241, May 2012.

[11] H. J. Yang, K. H. Chen, and Y. P. Lee, “Feed-forward pulse width modulation for high line regulation buck or boost converters,” in Proc. IEEE Int. Symp. Circuits

63

Syst. (ISCAS), New Orleans, LA, May 2007, pp. 785–788.

[12] F. Luo and D. Ma, “Design of digital tri-mode adaptive-output buck–boost power converter for power-efficient integrated systems,” IEEE Trans. Ind. Electron., vol.

57, no. 6, pp. 2151–2160, June 2010.

[13] A. Richelli, S. Comensoli, and Z. M. Kovacs-Vajna, “A DC/DC boosting technique and power management for ultralow-voltage energy harvesting applications,” IEEE Trans. Ind. Electron., vol. 59, no. 6, pp. 2701–2708, June 2012.

[14] H. P. Le, S. R. Sanders, and E. Alon, “Design techniques for fully integrated switched-capacitor DC-DC converters,” IEEE J. Solid-State Circuits, vol. 46, no.

9, pp. 2120–2131, Sept. 2011.

[15] S. R. Sanders, E. Alon, H. P. Le, M. D. Seeman, M. John, and V. W. Ng, “The road to fully integrated DC–DC conversion via the switched-capacitor approach,”

IEEE Trans. Power Electron., vol. 28, no. 9, pp. 4146–4155, Sept. 2013.

[16] J. Chen and A. Ioinovici, “Switching-mode DC-DC converter with switched-capacitor-based resonant circuit,” IEEE Trans. Circuits Syst. I, Fundam.

Theory Appl., vol. 43, no. 11, pp. 933–938, Nov. 1996.

[17] J. Y. Lee, S. E. Kim, S. J. Song, J. K. Kim, K. Sunyoung, and H. J. Yoo, “A regulated charge pump with small ripple voltage and fast start-up,” IEEE J.

Solid-State Circuits, vol. 41, no. 2, pp. 425–432, Feb. 2006.

[18] H. K. Kwan, D. C. W. Ng, and V. W. K. So, “Design and analysis of dual-mode digital-control step-up switched-capacitor power converter with pulse-skipping and numerically controlled oscillator-based frequency modulation,” IEEE Trans.

Very Large Scale Integr. (VLSI) Syst., vol. 21, no. 11, pp. 2132–2140, Nov. 2013.

[19] D. Bhatia, L. Xue, P. Li, Q. Wu, and R. Bashirullah, “High-voltage tolerant digitally aided DCM/PWM multiphase DC-DC boost converter with integrated Schottky diodes in 0.13-μm 1.2 V digital CMOS process,” IEEE J. Solid-State Circuits, vol. 48, no. 3, pp. 774–789, Mar. 2013.

[20] M. Wens, K. Cornelissens, and M. Steyaert, “A fully-integrated 0.18 μm CMOS DC-DC step-up converter, using a bondwire spiral inductor,” in Proc. 33rd Eur.

Solid State Circuits Conf. (ESSCIRC), Munich, Sept.2007, pp. 268–271.

[21] B. Sahu and G. A. Rincon-Mora, “A low voltage, dynamic, noninverting,

64

synchronous buck-boost converter for portable applications,” IEEE Trans. Power Electron., vol. 19, no. 2, pp. 443–452, Mar. 2004.

[22] Y. S. Hwamg, Y. T. Ku, A. Liu, C. H. Chen, J. J. Chen, “A New Efficiency-Improvement Low-Ripple Charge-Pump Boost Converter Using Adaptive Slope Generator With Hysteresis Voltage Comparison Techniques,”

IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 23, no. 5, pp. 935–943, Apr. 2015.

[23] 2012 University/College Full Custom IC Design: Hysteresis Controlled Voltage Booster, National Chip Implementation Center (CIC), Taiwan.

是臨纖麟籲鱗臘驢磁幣

s�!>Js?um�J:i生 �rt:t 先想烹全s

優良論文獎

主辦單位:

之丟失守己慧芳以私

國立高雄第一科技大學電子工程系

國立高雄第一科技大學智慧生活資通創新與服務中心 國立高雄大學 資訊工程學系

民 團 104 6 26

相關文件