• 沒有找到結果。

本文以程序模擬的方式將離子液體於共沸物分離上之應用做一分析,包含萃 取蒸餾製程及萃取製程,並對於此兩種製程皆以最適化分析得到最佳結果。雖然 於萃取蒸餾系統上新式離子液體夾帶劑[EMIM][Cl]在總體能耗上較傳統之夾帶劑 甘油略低,但因其於萃取蒸餾塔底之高溫使得須使用燃油作為熱源,於成本上並 不如甘油來得經濟。另外於[EMIM][EtSO4]萃取系統中分離較簡易且耗能較低之原 因在總年成本上與操作成本上皆較變壓蒸餾來得為佳。

萃取蒸餾系統中雖然[EMIM][Cl]提升酒精與水相對揮發度之能力較甘油來得 好,但於萃取蒸餾塔之再沸器熱負載卻較甘油來得高,原因有二,其一是離子液 體所具有的高沸點性質導致分離出之離子液體只要純度提高,則溫度就會較高,

因而造成萃取蒸餾塔塔底之高溫,此現象亦造成工廠中無法使用蒸汽為熱源,而 需要以燃油加熱。其二是塔底所造成之高溫及離子液體之高液相定壓熱容,而使 得再沸器熱負載提高。綜合以上兩點,以離子液體作夾帶劑即便提升相對揮發度 能力較傳統夾帶劑好,但並不一定於總年成本上具有優勢。

萃取系統之下游分離系統需要將離子液體[EMIM][EtSO4]回收,亦會遇到上述 提到之高溫及高熱負載問題,以萃取系統來說,提純之離子液體並不需要達太高 之純度,最適化結果顯示離子液體溶劑回收純度僅需 96.5 mol%即可回流至萃取塔 中,並不是特別高,也因此在提純的程度不是這麼高的情況下,壓力降低對於塔 底溫度之改變較顯著,因此能夠有效地降低高溫以及高熱負載,故以低壓蒸餾之 方式對於萃取系統之分離則相當有經濟上之優勢。

離子液體以其可塑性適用於許多共沸物之分離,例如提升萃取蒸餾中物質之 相對揮發度,或運用於萃取系統作為溶劑使用,目前之研究皆主要著眼於前段萃

取蒸餾或萃取之好處及優勢,但若是要將其實際應用於工業界上主要問題乃在於 後段之離子液體回收,離子液體幾乎無相對揮發度之性質使其要分離至高純度面 對許多挑戰,若是以傳統之蒸餾分離,使用低壓蒸餾是必要之手段,而離子液體 於氣液平衡之分離上需面對離子液體形成氣態會有熱分解之情況,使用非質子型 離子液體可有效改善熱分解之現象,但仍舊會有少部分的熱分解,不利於工業上 長久操作。但離子液體其陰陽離子之置換有無數種,目前研究出來之離子液體也 僅僅是冰山之一角,未來或許能夠發現具抗熱分解效應能夠穩定的長時間操作之 離子液體,但可以確定的是離子液體之特殊性質仍舊具有許多應用上的潛力。

命名法

ETBE ethyl tert-butyl ether

ETOH ethanol

[EMIM][Cl] 1-ethyl-3-methylimidazolium chloride [EMIM][EtSO4] 1-ethyl-3-methylimidazolium ethyl sulfate

Qr 再沸器熱負載

Qc 冷凝器熱移除

RR 回流比

D 塔徑

Cp 液相定壓比熱

MW 分子量

TB 沸點

TC 臨界溫度

PC 臨界壓力

VC 臨界體積

OMEGA 離心因子

ZC 臨界壓縮因子

MUP 偶極矩

TAC 總年成本

參考文獻

[1] Hurley, F. H.; Wier, T. P. Electrodeposition of Metals from Fused Quaternary Ammonium Salts. J. Electrochem. Soc. 1951, 98 (5), 203–206.

[2] Wilkes, J. S.; Zaworotko, M. J. Air and Water Stable 1-Ethyl-3-Methylimidazolium Based Ionic Liquids. J. Chem. Soc. Chem. Comm. 1992, (13), 965–967.

[3] Wasserscheid, P.; Welton, T. Ionic Liquids in Synthesis. Springer Verlag: Germany, 2002.

[4] Freemantle, M. An Introduction to Ionic Liquids; Springer Verlag: Cambridge, 2010.

[5] Plechkova, N. V.; Seddon, K. R. Applications of Ionic Liquids in the Chemical Industry. Chem. Soc. Rev. 2008, 37 (1), 123–150.

[6] Pereiro, A. B.; Araujo, J. M. M.; Esperanca, J. M. S. S.; Marrucho, I. M.; Rebelo, L.

P. N. Ionic Liquids in Separations of Azeotropic Systems—A Review. J. Chem.

Thermodyn. 2012, 46, 2–28.

[7] Seddon, K. R. Room–temperature Ionic Liquids: Neoteric Solvents for Clean Catalysis. Kinet Catal+ 1996, 37 (5), 693–697.

[8] Earle, M. J.; Esperanca, J. M. S. S.; Gilea, M. A.; Lopes, J. N. C.; Rebelo, L. P. N.;

Magee, J. W.; Seddon, K. R.; Widegren, J. A. The Distillation and Volatility of Ionic Liquids. Nature 2006, 439 (7078), 831–834.

[9] Dong, K.; Zhao, L. D.; Wang, Q.; Song, Y. T.; Zhang, S. J. Are Ionic Liquids Pairwise in gas Phase? A Cluster Approach and in situ IR Study. Phys. Chem.

Chem. Phys. 2013, 15 (16), 6034–6040.

[10] Foucher, E. R.; Doherty, M. F.; Malone, M. F. Automatic Screening of Entrainers for Homogeneous Azeotropic Distillation. Ind. Eng. Chem. Res. 1991, 30 (4), 760–

772.

[11] Rodriguez–Donis, I.; Gerbaud, V.; Joulia, X. Entrainer Selection Rules for the Separation of Azeotropic and Close-boiling-temperature Mixtures by Homogeneous Batch Distillation Process. Ind. Eng. Chem. Res. 2001, 40 (12), 2729–2741.

[12] Chen, B. H.; Lei, Z. G.; Li, Q. S.; Li, C. Y. Application of CAMD in Separating Hydrocarbons by Extractive Distillation. AIChE J. 2005, 51 (12), 3114–3121.

[13] Gil, I. D.; Gomez, J. M.; Rodriguez, G. Control of an Extractive Distillation Process to Dehydrate Ethanol Using Glycerol as Entrainer. Comput. Chem. Eng.

2012, 39, 129–142.

[14] Seiler, M.; Jork, C.; Kavarnou, A.; Arlt, W.; Hirsch, R. Separation of Azeotropic Mixtures Using Hyperbranched Polymers or Ionic Liquids. AIChE J. 2004, 50 (10), 2439–2454.

[15] Zaitsau, D. H.; Kabo, G. J.; Strechan, A. A.; Paulechka, Y. U.; Tschersich, A.;

Verevkin, S. P.; Heintz, A. Experimental Vapor Pressures of 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imides and a Correlation Scheme for Estimation of Vaporization Enthalpies of Ionic Liquids. J. Phys. Chem.

A 2006, 110 (22), 7303–7306;

[16] Emel'yanenko, V. N.; Verevkin, S. P.; Heintz, A. The Gaseous Enthalpy of Formation of the Ionic Liquid 1-butyl-3-methylimidazolium dicyanamide from Combustion Calorimetry, Vapor Pressure Measurements, and Ab Initio Calculations. J. Am. Chem. Soc. 2007, 129 (13), 3930–3937;

[17] Paulechka, Y. U.; Zaitsau, D. H.; Kabo, G. J.; Strechan, A. A. Vapor Pressure and Thermal Stability of Ionic Liquid 1-butyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)amide. Thermochim. Acta. 2005, 439 (1–2), 158–160;

[18] Rocha, M. A. A.; Lima, C. F. R. A. C.; Gomes, L. R.; Schroder, B.; Coutinho, J. A.

P.; Marrucho, I. M.; Esperanca, J. M. S. S.; Rebelo, L. P. N.; Shimizu, K.; Lopes, J.

N. C.; Santos, L. M. N. B. F. High–Accuracy Vapor Pressure Data of the Extended [CnC1im][Ntf2] Ionic Liquid Series: Trend Changes and Structural Shifts. J. Phys.

Chem. B 2011, 115 (37), 10919–10926.

[19] Farahani, N.; Gharagheizi, F.; Mirkhani, S. A.; Tumba, K. A Simple Correlation for Prediction of Heat Capacities of Ionic Liquids. Fluid Phase Equilibr. 2013, 337, 73–82.

[20] Valderrama, J. O.; Rojas, R. E. Critical Properties of Ionic Liquids. Revisited. Ind.

Eng. Chem. Res. 2009, 48 (14), 6890–6900.

[21] Rudkin, J. Equation Predicts Vapor Pressures. Chem. Eng. 1961, 202–203.

[22] Ge, Y.; Zhang, L. Z.; Yuan, X. C.; Geng, W.; Ji, J. B. Selection of Ionic Liquids as Entrainers for Separation of (Water plus Ethanol). J. Chem. Thermodyn. 2008, 40 (8), 1248–1252.

[23] Zhang, Z. H.; Tan, Z. C.; Sun, L. X.; Yang, J. Z.; Lv, X. C.; Shi, Q.

Thermodynamic Investigation of Room Temperature Ionic Liquid: The Heat Capacity and Standard Enthalpy of Formation of EMIES. Thermochim. Acta. 2006,

447 (2), 141–146.

[24] Rarey, J.; Horstmann, S.; Gmehling, J. Vapor–liquid equilibria and vapor pressure data for the systems ethyl tert–butyl ether plus ethanol and ethyl tert–butyl ether plus water. J. Chem. Eng. Data 1999, 44 (3), 532–538.

[25] Douglas, J. M., Conceptual Design of Chemical Process; McGraw-Hill:New York, 1988.

[26] Seider, W. D.; Seader, J. D.; Lewin, D. R.; Widagdo, S. Product and Process

Design Principles: Synthesis, Analysis and Evaluation, 3

rd Edition; Donald Fowley: United States of America, 2009.

[27] Arce, A.; Rodriguez, H.; Soto, A. Use of a Green and Cheap Ionic Liquid to Purify

Gasoline Octane Boosters. Green Chem. 2007, 9 (3), 247–253.

附錄 總 年 成 本 計 算 公 式

A. 再沸器熱交換面積(AR)

AR[𝑓𝑡2] = 𝑄𝑅 𝑈𝑅∆𝑇𝑅

where UR= 250 [𝐵𝑇𝑈 ℎ𝑟 ∙ 𝑓𝑡⁄ 2]

B. 冷凝沸器熱交換面積(AC)

AC[𝑓𝑡2] = 𝑄𝐶 𝑈𝐶∆𝑇𝐶

∆𝑇𝐶 = 𝑇𝑖𝑛− 𝑇𝑜𝑢𝑡 𝑙𝑛 (𝑇𝐶− 𝑇𝑂𝑈𝑇

𝑇𝐶− 𝑇𝑖𝑛 )

coolant type Tin(oF) Tout(oF) Uc(BTU/hr∙ft2) cooling water 90 120 150 chilled water, 40oF 45 90 150 refrigeration, 10oF 10 10 250 refrigeration, -30oF -30 -30 250 refrigeration, -90oF -90 -90 250

C. 塔高之計算(H )

𝐻[𝑓𝑡] = 2.3(𝑁𝑇− 1)

D. 蒸 餾 塔 主 體 價 格 計 算

column cost[$] =M&S

280 101.9𝐷1.066𝐻0.802(2.18 + 1) where M&S= 1,533.3 (2011 4th Q)

E. 蒸餾塔板價格計算

tray cost[$] =M&S

280 4.7𝐷1.55𝐻(1 + 0 + 0)

F. 熱 交 換 器 裝 置 價 格 計 算 heat exchanger[$] = M&S

280 101.3 [ 𝐴𝑅0.65(2.29 + 1.35) +𝐴𝐶0.65(2.29 + 0.85)]

G. 冷卻劑價格計算

coolant type Price ($/GJ) cooling water 0.29

vacuum system[$] = 𝐶𝐸

500 1690𝑆0.41𝐹 3.18 where CE=550 (2011)

S=suction pressure(torr)

F(cost multiplying cost factor) 1 Stage 1.0

2 Stage 1.8 3 Stage 2.1

J. 轉盤式萃取塔價格計算

Rotating disk contactors[$] = 𝐶𝐸

500 320𝑆0.84 3.18 where CE=550 (2011)

S = (Height, H, ft)(Diameter, D, ft)1.5

作者簡介

姓名:陳柏彰 出生地:台北市

出生日:民國 78 年 3 月 9 日 學歷:台北市立建國高級中學

國立台灣大學化學工程學系學士 國立台灣大學化學工程學系碩士

相關文件