• 沒有找到結果。

結論

在文檔中 中 華 大 學 (頁 101-108)

對於構裝體之可靠度評估,銲錫接點的疲勞破壞是相當關鍵之問 題。本文所採用之等效全域模型搭配次模型分析可達到簡單建模及快 速分析之要求。在全域模型中可得疲勞破壞之關鍵位置,並可同時以 次模型分析覆晶封裝層之銲錫凸塊以及球柵陣列層之錫球在溫度循 環下之熱-機行為。

1. 藉由全域模型分析之結果,覆晶封裝層之焊錫凸塊破壞位置於對 角線上銲錫凸塊密度分佈交界處外圍之焊錫凸塊上,而球柵陣列 層之錫球破壞位置於晶片邊緣及晶片角落位置。

2. 藉由次模型分析之結果,由等效應變對時間關係曲線圖可發現,

潛變應變較塑性應變大,可推測在 TCT 溫度循環中,銲錫接點之 潛變行為為疲勞破壞之主要因素。

3. 由於分析研究發現,底膠的材料其性質轉換溫度在測試溫度範圍 之內,其剛性及熱膨脹係數變化相當大,於高溫中其真實狀態並 非為彈性體,並無法完整模擬其真實狀態。

4. 覆晶封裝層之銲錫凸塊,其構造較球柵陣列層之錫球複雜,由等 效應變對時間關係曲線圖觀察其塑性應變較大,且較早發生,造 成其疲勞壽命較短。

5. 當built-up材料楊氏係數越高時,銲錫凸塊之等效非彈性應變則越 小,並且等效非彈性應變範圍亦越小,壽命則會上升,錫球之等 效非彈性應變則越大,並且等效非彈性應變範圍亦越大,壽命則 會下降。

參考文獻

[1] V. Sarihan, “Energy Based Methodology for Damage and Life Prediction of Solder joints under Thermal Cycling,” IEEE 43rd Electronic Components and Technology Conference, pp. 32-38, 1993.

[2] J. H. Lau, “Effects of Built-Up Circuit Board Thickness on the Solder Joint Reliability of a Wafer Level Chip Scale Package

(WLCSP),” Int’l Symp on Electronic Materials and Packaging, pp.

115-126, 2000.

[3] B. Z. Hong and L. S. Su, “On Thermal Stresses and Reliability of a PBGA Chip Scale Package,” IEEE 48th Electronic Components and Technology Conference, pp.503-510, 1998.

[4] B. A. Zahn, “Impact of Ball Via Configurations on Solder Joint Reliability in Tape-Based, Chip-Scale Packages,” IEEE 52nd Electronic Components and Technology Conference, pp.1475-1483, 2002.

[5] B. Z. Hong, “Finite Element Modeling of Thermal Fatigue and Damage of Solder joint in a Ceramic Ball Grid Array Package,”

Journal of Electronic Materials, Vol. 26, No. 7, pp. 814-820, 1997.

[6] B. Vandevelde, M. Gonzalez, E. Beyne, G. Q. Zhang and J. Caers,

“Optimal Choice of FEM Damage Volumes for Estimation of the Solder Joint Reliability for Electronic Package Assemblies,” IEEE 53rd Electronic Components and Technology Conference, pp.

589-596, 2003.

[7] I. Guven, V. Kradinov, E. Madenci and J. L. Tor, “Solder Joint Life Prediction Model Based on the Strain Energy Density Criterion”, Electronic Components and Technology Conference, pp. 214-220, 2003.

[8] 賴俊諺,「有限元素次結構覆晶球柵陣列構裝體錫球潛變行為分 析」,碩士論文,中華大學機械與航太工程研究所,2006。

[9] ANSYS users manual 5.1, 1994.

[10] J. H Lau, Y.-H. Pao, “Solder Joint Reliability of BGA, CSP, Flip Chip, and Fine Pitch SMT Assemblies,” McGraw-Hill, New York, 1997.

[11] M. Ikemizu, Y. Fukuzawa, J. Nakano, T. Yokoi, K. Miyajima, H.

Funakura and E. Hosomi, “CSP Solder Ball Reliability,” IEEE Electronics Manufacturing Technology Symposium, pp. 447-451,

[12] K. H. Teo, “Reliability Assessment of Flip Chip on Board Connections,” IEEE 48th Electronics Packaging Technology Conference, pp. 269-273, 1998.

[13] L. L. Mercado, V. Sarihan, Y. Guo and A. Mawer, ”Impact of Solder Pad Size on Solder Joint Reliability in Flip Chip PBGA Packages,” IEEE Transactions Advanced Packaging, Vol. 23, pp.

415-420, 2000.

[14] S. Baba, Q. Wu, E. Hayashi and M. Watanabe, “ Flip-Chip BGA Applied High-Density Organic Substrate,” IEEE 49th Electronic Components and Technology Conference, pp. 243-249, 1999.

[15] L. Chen, Q. Zhang, G. Wang, X. Xie and Z. Cheng, “The Effect of Underfill and Its Material Models on Thermomechanical Behavior of a Flip Chip Package,” IEEE Transaction Advanced Packaging, Vol. 24, pp. 17-24, 2001.

[16] Z. Liji, W. Li, X. Xiaoming, and W. Kemps, “An Investigation on Thermal Reliability of Underfill PBGA solder Joint,” IEEE Transactions Electronics Packaging Manufacturing, Vol. 25, pp.

284-288, 2002.

[17] B. Joiner and T. Montes, “ Thermal Performance of Flip Chip Ball Grid Array Packages,” IEEE Semiconductor Thermal Measurement and Management, pp. 50-56, 2002.

[18] B. Cheng, L. Wang, Q. Zhang, X. Gao, X. Xie and W. Kempe,

“Reliability and New Failure Modes of Encapsulated Flip Chip on Board Under Thermal Shock Testing,” ICEPT Electronic Packaging Technology Proceedings, pp. 416-421, 2003.

[19] Tong Hong Wang, Yi-Shao Lai, Jenq-Dah Wu, “Effect of Underfill Thermomechanical Properties on Thermal Cycling Fatigue Reliability of Flip-Chip Ball Grid Array,” Journal of Electronic Packaging, Vol. 126, pp. 560-564, 2004.

[20] Rainer Dudek, Margareta Nylen, Andreas Schubert, Bemd Michel, Herbert Reichl, “An Efficient Approach to Predict Solder Fatigue Life and its Application to SM- and Area Array Components,” IEEE 47th Electronic Components and Technology Conference, 1997.

[21] J. H. L, Pang and T.-I. Tan, “Thermo-Mechanical Analysis of Solder Joint Fatigue and Creep in a Flip Chip On Board Package Subjected to Temperature Cycling Loading,” IEEE 48th Electronic Components and Technology Conference, pp. 878-883, 1998.

[22] Z. Qian, M. Lu, W. Ren and S. Liu, “Fatigue Life Prediction of Flip-Chips in Terms of Nonlinear Behavior of Solder and Underfill,”

[23] J. H. L. Pang, C. W. Seetoh, Z. P. Wang, “CBGA Solder Joint Reliability Evaluation Based on Elastic-Plastic-Creep Analysis,”

Journal of Electronic Packaging, Vol. 29, pp. 997-1002, 2001.

[24] J. H. L. Pang, D. Y. R Chong and T. H. Low, “Thermal Cycling Analysis of Flip Chip Solder Joint Reliability,” IEEE Transactions Components and Packaging Technology, Vol. 24, Issue 4, pp.

705-712, 2001.

[25] S. Sahasrabudhe, E. Monroe, S. Tandon and M. Patel,

“Understanding the Effect of Dwell Time on Fatigue Life of Packges Using Thermal Shock and Intrinsic Material Behavior,”

IEEE 53rd Electronic Components and Technology Conference, pp.898-904, 2003.

[26] S. Moreau, T. Lequeu and R. Jerisian, “Comparative Study of Thermal Cycling and Thermal Shocks Tests on Electronic Components Reliability,” Microelectronics Reliability, Vol. 44, pp.

1343-1347, 2004.

[27] R. M. Jones, Mechanics of Composite Materials, McGraw-Hill, 1975.

[28] S. M. Heinrich, M. Schaefer, S. A. Schroeder and P. S. Lee,

“Prediction of Solder Joint Geometries in Array-Type Interconnects”, Transaction of ASME Journal of Electronic Packaging, Vol. 118, pp.

118-121, 1996.

在文檔中 中 華 大 學 (頁 101-108)

相關文件