• 沒有找到結果。

1. 利用 3 種不同修飾 SPCE 方式皆可提升電極對 H2O2電化學反應特性,

其中以利用7.5% Tween 20 修飾 SPCE 為最佳條件,在增強 SPCE 反 應電流值方面。

2. 利用非離子界面活性劑修飾 SPCE 除了可提升 H2O2反應電流值外,

也可些微降低抗壞血酸的干擾,代表其具有選擇性作用。且由於其價 格低廉,並且可在短時間內大量修飾SPCE,對於應用於生物感測器 上將有相當大潛力。

3. 利用非離子界面活性劑修飾 SPCE 可連續性使用,且其再現性表現良 好。

4. 利用 SEM 觀察非離子界面活性劑修飾 SPCE 將在其表面上形成一層 光滑薄膜平鋪其上,而 Tween 20 薄膜結構將比 Triton X-100 在 SPCE 上均勻一致。

5. 利用非離子界面活性劑修飾 SPCE 可改變其表面特性,使其由疏水性 轉為親水性,將可應用於生物元件之固定化技術上。

6. 利用非離子界面活性劑修飾 SPCE 除了可在工作電位 0.7 V 偵測到 H2O2反應值外,也可在工作電位-0.1 V 偵測到 H2O2電流值,在此電 位下可避免干擾物質影響。

7. 利用非離子界面活性劑修飾 SPCE 可應用於葡萄糖生物感測器上,同

樣具有提升反應電流值之效果,且也不會同時提升干擾物質反應電流 值,代表其可應用於氧化酶生物感測器系統上,並具有相當大競爭優 勢。

8. SPCE 廣泛的應用於生物感測器中,由於其價格低廉、製程簡單、易 圖案化等優點。利用非離子行界面活性劑修飾方式,除了可有效提升 SPCE 對 H2O2電化學反應特性,並具有選擇性效應,而其價格低廉方 便大量製程也為一大優勢,所以利用此修飾方式將具有相當大市場價 值,應用於氧化酶生物感測器系統上。

參考文獻

1. L.C. Clark, Jr., C. Lyons, Electrode systems for continuous monitoring in cardiovascular surgery. Annals of the New York Academy of Sciences 102 (1962) 29-45.

2. M.P. Byfield, R.A. Abuknesha, Biochemical aspects of biosensors. Biosensors &

bioelectronics 9 (1994) 373-400.

3. F.W. Scheller, F. Schubert, B. Neumann, D. Pfeiffer, R. Hintsche, I. Dransfeld, U.

Wollenberger, R. Renneberg, A. Warsinke, G. Johansson, et al., Second generation biosensors. Biosensors & bioelectronics 6 (1991) 245-253.

4. Andres R.T., N. R., Fibre-optic pesticide biosensor based on covalently immobilized acetylcholinesterase and thymol blue. Talanta 44 (1997) 1335-1352.

5. Liao S.C., A. J.R., Real time fiber optic technologies for monitoring physiological parameters with optical biosensors. Biomedical Engineering 8 (1996) 325-331.

6. C. Zhang, G. Feng, Z. Gao, Development of a new kind of dual modulated QCM biosensor. Biosensors & bioelectronics 12 (1997) 1219-1225.

7. J. Rickert, A. Brecht, W. Gopel, Quartz crystal microbalances for quantitative

biosensing and characterizing protein multilayers. Biosensors & bioelectronics 12 (1997) 567-575.

8. J. Wang, M. Jiang, E. Palecek, Real-time monitoring of enzymatic cleavage of nucleic acids using a quartz crystal microbalance. Bioelectrochemistry and bioenergetics (Lausanne, Switzerland) 48 (1999) 477-480.

9. B.C. Towe, E.J. Guilbeau, A vibrating probe thermal biochemical sensor. Biosensors

& bioelectronics 11 (1996) 247-252.

10. K. Ramanathan, M. Rank, J. Svitel, A. Dzgoev, B. Danielsson, The development and applications of thermal biosensors for bioprocess monitoring. Trends in biotechnology 17 (1999) 499-505.

11. E. Bakker, Electrochemical sensors. Analytical chemistry 76 (2004) 3285-3298.

12. S. Mu, Catechol sensor using poly(aniline-co-o-aminophenol) as an electron transfer mediator. Biosensors & bioelectronics 21 (2006) 1237-1243.

13. G. Liu, Y. Lin, Electrochemical sensor for organophosphate pesticides and nerve agents using zirconia nanoparticles as selective sorbents. Analytical chemistry 77 (2005) 5894-5901.

14. T. Jovanovic, Z. Koricanac, B. Stankovic, Silver electrode in direct potentiometric determination of propylthiouracil in pharmaceutical dosage form. Journal of pharmaceutical and biomedical analysis 13 (1995) 679-681.

15. M. Macka, G. Gerhardt, P. Andersson, D. Bogan, R.M. Cassidy, P.R. Haddad, Capillary electrophoresis with end-capillary potentiometric detection using a copper electrode. Electrophoresis 20 (1999) 2539-2546.

16. S. Lin, C.C. Liu, T.C. Chou, Amperometric acetylcholine sensor catalyzed by nickel anode electrode. Biosensors & bioelectronics 20 (2004) 9-14.

17. S. Serban, N. El Murr, Synergetic effect for NADH oxidation of ferrocene and zeolite in modified carbon paste electrodes. New approach for dehydrogenase based biosensors. Biosensors & bioelectronics 20 (2004) 161-166.

18. Y.T. Kong, M. Boopathi, Y.B. Shim, Direct electrochemistry of horseradish peroxidase bonded on a conducting polymer modified glassy carbon electrode.

Biosensors & bioelectronics 19 (2003) 227-232.

19. J. Susuki, M. Yamada, A. Uchiyama, N. Niwa, [Biomedical electrode with silicon oxide film (author's transl)]. Iyo denshi to seitai kogaku 17 (1979) 53-59.

20. L. Wang, D. Xiao, E. Wang, L. Xu, Electrochemistry of ITO electrode modified by multilayer ultrathin films based on crown-shaped polyoxomolybdate. Journal of colloid and interface science 285 (2005) 435-442.

21. D.R. Thevenot, K. Toth, R.A. Durst, G.S. Wilson, Electrochemical biosensors:

recommended definitions and classification. Biosensors & bioelectronics 16 (2001) 121-131.

22. S. Sukeerthi, A.Q. Contractor, Applications of conducting polymers as sensors.

Indian Journal of Chemistry 33A (1994) 565-571.

23. A. Senillou, A. Jaffrezic-Renault, C. Martelet, S. Cosnier, A miniaturized urea sensor based on the integration of both ammonium based urea enzyme field effect transistor and a reference field effect transistor in a single chip. Talanta 50 (1999) 219-226.

24. A.N. Reshetilov, [Biosensor models based on potentiometric and amperometric transducers for use in medicine, biotechnology, and environmental monitoring (review)]. Prikladnaia biokhimiia i mikrobiologiia 32 (1996) 78-93.

25. J. Fei, Y. Wu, X. Ji, J. Wang, S. Hu, Z. Gao, An amperometric biosensor for glucose based on electrodeposited redox polymer/glucose oxidase film on a gold electrode.

Anal Sci 19 (2003) 1259-1263.

26. Y.C. Tsai, J.D. Huang, C.C. Chiu, Amperometric ethanol biosensor based on poly(vinyl alcohol)-multiwalled carbon nanotube-alcohol dehydrogenase biocomposite. Biosensors & bioelectronics 22 (2007) 3051-3056.

27. A. Lindgren, T. Ruzgas, L. Gorton, E. Csoregi, G.B. Ardila, I.Y. Sakharov, I.G.

Gazaryan, Biosensors based on novel peroxidases with improved properties in direct and mediated electron transfer. Biosensors & bioelectronics 15 (2000) 491-497.

28. 陳治誠, 生化感測器技術簡介, 科儀新知, 1993, pp. 71-81.

29. S. Milardovic, Z. Grabaric, M. Tkalcec, V. Rumenjak, Determination of oxalate in urine, using an amperometric biosensor with oxalate oxidase immobilized on the surface of a chromium hexacyanoferrate-modified graphite electrode. Journal of AOAC International 83 (2000) 1212-1217.

30. S. Han, M. Zhu, Z. Yuan, X. Li, A methylene blue-mediated enzyme electrode for the determination of trace mercury(II), mercury(I), methylmercury, and mercury-glutathione complex. Biosensors & bioelectronics 16 (2001) 9-16.

31. N.J. Forrow, G.S. Sanghera, S.J. Walters, J.L. Watkin, Development of a commercial amperometric biosensor electrode for the ketone D-3-hydroxybutyrate. Biosensors &

bioelectronics 20 (2005) 1617-1625.

32. J.P. Hart, A. Crew, E. Crouch, K.C. Honeychurch, R.M. Pemberton, Some recent

designs and developments of screen-printed carbon electrochemical sensors/biosensors for biomedical, environmental, and industrial analyses. . Analytical Letters 37 (2004) 789 - 830

33. D.R. Matthews, R.R. Holman, E. Bown, J. Steemson, A. Watson, S. Hughes, D. Scott, Pen-sized digital 30-second blood glucose meter. Lancet 1 (1987) 778-779.

34. R. Nagata, S. A. Clark, K. Yokoyama, E. Tamiya, I. Karube, Amperometric glucose biosensor manufactured by a printing technique. Analytica Chimica Acta 304 (1995) 157-164.

35. A. R.N., Carbon paste electrodes. Analytical chemistry 28 (1958) 1576-1576.

36. R.G. Evans, C.E. Banks, R.G. Compton, Amperometric detection of glucose using self-catalytic carbon paste electrodes. The Analyst 129 (2004) 428-431.

37. K.R. Rogers, J.Y. Becker, J. Cembrano, Improved selective electrocatalytic oxidation of phenols by tyrosinase-based carbon paste electrode biosensor. Electrochimica Acta 45 (2000) 4373-4379.

38. F. Palmisano, P.G. Zambonin, Ascorbic-Acid Interferences in Hydrogen-Peroxide Detecting Biosensors Based on Electrochemically Immobilized Enzymes. Analytical chemistry 65 (1993) 2690-2692.

39. J.P. Lowry, R.D. O'Neill, Homogeneous mechanism of ascorbic acid interference in hydrogen peroxide detection at enzyme-modified electrodes. Analytical chemistry 64 (1992) 453-456.

40. S.A. Wring, J.P. Hart, Chemically modified, carbon-based electrodes and their application as electrochemical sensors for the analysis of biologically important compounds. A review. Aanlyst 117 (1992) 1215-1229.

41. S. Senthil Kumar, S. Sriman Narayanan, Amperometric sensor for the determination of ascorbic acid based on Cobalt hexacyanoferrate modified electrode fabricated through a new route. Chemical & pharmaceutical bulletin 54 (2006) 963-967.

42. X.C. Tan, Y.X. Tian, P.X. Cai, X.Y. Zou, Glucose biosensor based on glucose oxidase immobilized in sol-gel chitosan/silica hybrid composite film on Prussian blue

modified glass carbon electrode. Analytical and bioanalytical chemistry 381 (2005) 500-507.

43. B. Liu, Z. Liu, D. Chen, J. Kong, J. Deng, An amperometric biosensor based on the coimmobilization of horseradish peroxidase and methylene blue on a beta-type zeolite modified electrode. Fresenius' journal of analytical chemistry 367 (2000) 539-544.

44. F. Ricci, G. Palleschi, Sensor and biosensor preparation, optimisation and applications of Prussian Blue modified electrodes. Biosensors & bioelectronics 21 (2005) 389-407.

45. J. Wang, J. Liu, L. Chen, F. Lu, Highly Selective Membrane-Free, Mediator-Free Glucose Biosensor. Analytical chemistry 66 (1994) 3600-3603.

46. H. Sakslund, J. Wang, O. Hammerich, Analysis of the factors determining the sensitivity of a miniaturized glucose biosensor made by codeposition of palladium and glucose oxidase onto an 8 mu m carbon fiber. Journal of Electroanalytical Chemistry 402 (1996).

47. S.B. Hall, E.A. Khudaish, A.L. Hart, Electrochemical oxidation of hydrogen peroxide at platinum electrodes. Part 1. An adsorption-controlled mechanism.

Electrochimica Acta 43 (1998) 579 - 588.

48. S.B. Hall, E.A. Khudaish, A.L. Hart, Electrochemical oxidation of hydrogen peroxide at platinum electrodes. Part II: effect of potential. . Electrochimica Acta 43 (1998) 2015-2024.

49. J. Liu, F. Lu, J. Wang, Metal-alloy-dispersed carbon-paste enzyme electrodes for amperometric biosensing of glucose. Electrochemistry Communications 1 (1999) 341-344.

50. G. Cui, J.H. Yoo, J.S. Lee, J. Yoo, J.H. Uhm, G.S. Cha, H. Nam, Effect of pre-treatment on the surface and electrochemical properties of screen-printed carbon paste electrodes. The Analyst 126 (2001) 1399-1403.

51. J. Wang, M. Pedrero, H. Sakslund, O. Hammerich, J. Pingarron, Electrochemical activation of screen-printed carbon strips. The Analyst 121 (1998).

52. I. Svancara, K. Vytras, J. Barek, J. Zima, Carbon Paste Electrodes in Modern Electroanalysis Critical Reviews in Analytical Chemistry 31 (2001) 311-345.

53. L.S. Rocha, H.M. Carapuca, Ion-exchange voltammetry of dopamine at Nafion-coated glassy carbon electrodes: quantitative features of ion-exchange partition and reassessment on the oxidation mechanism of dopamine in the presence of excess ascorbic acid. Bioelectrochemistry (Amsterdam, Netherlands) 69 (2006) 258-266.

54. J. M. Zen, J. J. Jou , G. Ilangovan, Selective voltammetric method for uric acid detection using pre-anodized Nafion-coated glassy carbon electrodes. The Analyst 123 (1998) 1345-1350.

55. S. Wang, X. Ji, Z. Yuan, Study of cellulose acetate membrane-based glucose biosensors. Chinese journal of biotechnology 11 (1995) 199-205.

56. S. Iijima, Helical microtubules of graphitic carbon. Nature 354 (1991) 56-58.

57. A.Merkoçi, Carbon nanotubes in analytical sciences. Microchimica Acta 152 (2006) 157-174.

58. J. Wang, M. Musameh, Carbon nanotube/teflon composite electrochemical sensors and biosensors. Analytical chemistry 75 (2003) 2075-2079.

59. K. Gong, M. Zhang, Y. Yan, L. Su, L. Mao, S. Xiong, Y. Chen, Sol-gel-derived ceramic-carbon nanotube nanocomposite electrodes: tunable electrode dimension and potential electrochemical applications. Analytical chemistry 76 (2004) 6500-6505.

60. J. Wang, M. Musameh, Y. Lin, Solubilization of carbon nanotubes by Nafion toward the preparation of amperometric biosensors. Journal of the American Chemical Society 125 (2003) 2408-2409.

61. M. F. Islam, E. Rojas, D. M. Bergey, A. T. Johnson, A.G. Yodh, High Weight Fraction Surfactant Solubilization of Single-Wall Carbon Nanotubes in Water. Nano letters 3 (2003) 269-273.

62. R.R. Moore, C.E. Banks, R.G. Compton, Basal plane pyrolytic graphite modified

electrodes: comparison of carbon nanotubes and graphite powder as electrocatalysts.

Analytical chemistry 76 (2004) 2677-2682.

63. C.E. Banks, R.R. Moore, T.J. Davies, R.G. Compton, Investigation of modified basal plane pyrolytic graphite electrodes: definitive evidence for the electrocatalytic properties of the ends of carbon nanotubes. Chemical communications (Cambridge, England) (2004) 1804-1805.

64. http://www.cpmah.org.tw/2002/home/c91c064/www/cnt/a.htm.

65. 蘇建雄, 細胞及酵素固定技術, 九州圖書文物有限公司, 1996.

66. 陳治誠, 生化感測器技術簡介, 科儀新知, 1993, pp. 71-81.

67. V.A. Shcherbakova, K.S. Laurinavichius, V.K. Akimenko, Toxic effect of surfactants and probable products of their biodegradation on methanogenesis in an anaerobic microbial community. Chemosphere 39 (1999) 1861-1870.

68. 歐靜枝譯編, 乳化溶化技術實務, 復漢出版社, 台灣台南, 1990.

69. C.J. Yuan, S.C.W. C.L. Hsu, K.S. Chang, Eliminating the interference of ascorbic acid and uric acid to the amperometric glucose biosensor by cation exchangers membrane and size exclusion membrane. Electroanalysis 24 (2005).

70. J. Li, X. Wei, T. Peng, Fabrication of herbicide biosensors based on the inhibition of enzyme activity that catalyzes the scavenging of hydrogen peroxide in a thylakoid membrane. Anal Sci 21 (2005) 1217-1222.

71. http://www.cheng.cam.ac.uk/research/groups/electrochem/teaching.html.

72. http://people.bath.ac.uk/chsataj/CH20016%202006/CH20016%20Lecture%2014%20 and%2015.pdf.

73. X. Li, K. Horita, Electrochemical characterization of carbon black subjected RF oxygen plasma. Carbon 38 (2000) 133-138.

74. Y. Lin, F. Lu, Y. Tu, Z. Ren, Glucose Biosensors Based on Carbon Nanotube Nanoelectrode Ensembles. Nano letters 4 (2004) 191-195.

75. D.A. Skoog, Principles of instrumental analysis, 1998.

76. W. H. Scouten, J. H.T. Luong, B.R.S. Brown, Enzyme or protein immobilization techniques for applications in biosensor. Trends in biotechnology 13 (1995) 178-185.

圖一、利用含SWNT 溶劑與其純溶劑修飾 SPCE 對 1 mM H2O2反應性。

一條件為將 2 mg/mL SWNT 溶於 0.5, 1, 2, 5, 7.5, 10% Triton X-100,

或溶於 1, 2 及 5% Tween 20,或溶於 0.5%及 5% Nafion 中,另一條件 為純溶劑狀態。與未修飾 SPCE 比較其電性反應倍率。在 pH 7.4, PBS 溶液環境中,添加 1 mM H2O2測其電化學反應值。工作電位為0.7 V (vs. Ag/AgCl)。

TX-0.5%

Potential (V)

-0.4 -0.2 0.0 0.2 0.4 0.6 0.8

Current (nA)

-1500 -1000 -500 0 500 1000 1500

Control

7.5% Triton X-100 7.5% Tween 20

圖三、不同工作電位對Triton X-100 與 Tween 20 修飾 SPCE 之對 1 mM H2O2反應電流。

探討7.5% Triton X-100 與 7.5% Tween 20 修飾之 SPCE,在不同工作 電位-0.3 ~ 0.7 V (vs. Ag/AgCl) 底下,添加 1 mM H2O2記錄其反應電 流值,在pH 7.4, PBS 溶液中。

Potential (V)

-0.1 0.1 0.3 0.5 0.7

Current (nA)

-1500 -1000 -500 0 500 1000 1500

Control

2 mg/ml SWNT/0.5% Nafion

圖四、不同工作電位對SWNT 修飾之 SPCE 對 1 mM H2O2反應電流。

利用 2 mg/mL SWNT/ 0.5% Nafion 修飾之 SPCE,在不同工作電位 -0.1 ~ 0.7 V (vs. Ag/AgCl) 底下,添加 1 mM H2O2記錄其反應電流

值,在pH 7.4, PBS 溶液中。

Potential (V)

-0.3 -0.1 0.1 0.3 0.5 0.7

Current (nA)

0 2000 4000 6000 8000 10000 12000 14000 16000

Control

7.5% Triton X-100 7.5% Tween 20

圖五、不同工作電位對Triton X-100 與 Tween 20 修飾 SPCE 之對 500 μM ascorbate 之反應電流。

探討7.5% Triton X-100 與 7.5% Tween 20 修飾之 SPCE,在不同工作 電位-0.3 ~ 0.7 V (vs. Ag/AgCl) 底下,添加 500 μM ascorbate 記錄其反 應電流值,在pH 7.4, PBS 溶液中。

Number of reactions

0 5 10 15 20

Res pones e (nA)

0 500 1000 1500 2000 2500

7.5% Triton X-100 7.5% Tween 20

R.S.D = 2.88%

R.S.D = 4.42%

圖六、以

Triton X-100

Tween 20

修飾

SPCE

之連續性測試。

利用

7.5% Triton X-100

7.5% Tween 20

修飾之

SPCE

。在

pH 7.4,

PBS

溶液環境中,添加

1 mM H

2

O

2測其電化學反應值。工作電位為

0.7 V (vs. Ag/AgCl)

。連續測試

20

次。

圖七、利用不同溶液對

SPCE

以循環伏安法進行表面修飾比較。

利用

0.1% HCl

,飽和

KCl

0.05 M phosphate buffer

1 M NaHCO

3與 飽和

Na

2

CO

3五種溶液,以

0.0 ~ 2.0 V

1.0 ~ 2.0 V

進行

5, 10

15

圈之

CVs

前處理後,在工作電位為

0.7 V (vs. Ag/AgCl), pH 7.4, PBS

中,量測

1 mM H

2

O

2反應電流與未修飾之

SPCE

比較。

(A) (B)

(C) (D)

(E)

圖八、利用不同溶液對

SPCE

以循環伏安法進行表面修飾

CV

圖。

(A) 0.1% HCl

(B)

飽和

KCl

(C) 0.05 M phosphate buffer

(D) 1 M NaHCO

3

(E)

飽和

Na

2

CO

3五種溶液,對

SPCE

進行

15

CVs

Control

1 M NaHCO3

SW NT/0.5%

Nafion

7.5% Triton X-100

7.5% Tween 20

Relative Response (Fold)

0 2 4 6 8 10

圖九、比較利用

4

SPCE

修飾方式對於

1 mM H

2

O

2反應性。

利用

NaHCO

3

15

圈循環伏安法前處理,

2 mg/mL SWNT/0.5%

Nafion

7.5% Triton X-100

7.5% Tween 20

四種修飾

SPCE

式,量測

1 mM H

2

O

2反應電流與未修飾之

SPCE

比較,在工作電

位為

0.7 V (vs. Ag/AgCl), pH 7.4, PBS

中。

(A)

未修飾之

SPCE

(B) 7.5% Triton X-100

修飾後之

SPCE (C) 7.5% Tween 20

修飾後之

SPCE

圖十、反射光學顯微鏡拍攝

SPCE

圖。

拍攝倍率為

100X

(A)

為未修飾之

SPCE

(B)

7.5% Triton X-100

修飾後之

SPCE

(C)

7.5% Tween 20

修飾後之

SPCE

(A)

未修飾之

SPCE (D)

未修飾之

SPCE

(B) 7.5% Triton X-100

修飾後之

SPCE (E) 7.5% Triton X-100

修飾後之

SPCE

(C) 7.5% Tween 20

修飾後之

SPCE (F) 7.5% Tween 20

修飾後之

SPCE

圖十一、

SEM

拍攝

SPCE

圖。

(A - C)

1000X

(D - F)

7000X

(A and D)

是未處理之

SPCE

(B and E)

是以

Triton X-100

修飾後之

SPCE

(C and F)

是以

7.5%

Tween 20

修飾後之

SPCE

(A)

未修飾之

SPCE

(B) 7.5% Triton X-100

修飾後之

SPCE (C) 7.5% Tween 20

修飾後之

SPCE

圖十二、以

Triton X-100

Tween 20

修飾

SPCE

之接觸角測試

( A)

為未修飾之

SPCE

(B)

7.5% Triton X-100

修飾後之

SPCE

(C)

7.5% Tween 20

修飾後之

SPCE

圖十三、比較以

Triton X-100

Tween 20

修飾

SPCE

與葡萄糖生物感測

器效率比較圖。

1 mM H

2

O

2在未修飾

SPCE

0.7 V

工作電位下,及

SPCE

7.5%

Triton X-100

,與

7.5% Tween 20

修飾後在

-0.1 V

工作電位下之電

化學反應。以

PVA-SbQ

包埋

10 U GOx

在未修飾的

SPCE

0.7 V

工作電位下,及

SPCE

7.5% Triton X-100

7.5% Tween 20

修飾,

-0.1 V

工作電位下對

5 mM

葡萄糖之電化學反應。於

pH 7.4,

PBS

,其工作電位為相對於

Ag/AgCl

參考電極。

(A)

R2 = 0.9997

Control

Glucose (μM)

0 500 1000 1500 2000 2500 3000 3500

Response (nA)

0 200 400 600 800 1000 1200 1400 1600

0

(B)

Triton X-100

Gluscose (μM)

0 500 1000 1500 2000 2500

Response (nA)

0 200 400 600 800 1000 1200 1400 1600

0

(C)

Tween 20

Glucose (μM)

0 500 1000 1500 2000 2500

Response (nA)

0 200 400 600 800 1000 1200 1400 1600

0

(A) (B)

Response current 2.62nA Response time 31.7sec

Response current 16.8nA Response time 63.2sec

Response current 22.5nA Response time 45.3sec

(A) (B)

(A) -0.1 V

(A) -0.1 V

附錄一、 生物感測器裝置

[76]

Working electrode (SPCE)

Counter electrode (Gold)

Reference electrode (Ag/AgCl)

CHI 440 PC

Stirrer bar Working electrode

(SPCE)

Counter electrode (Gold)

Reference electrode (Ag/AgCl)

CHI 440 PC

Stirrer bar

附錄二、電化學系統之示意圖

附錄三、以

Triton X-100

Tween 20

修飾

SPCE

之氧化酶感測器模型。

Triton X-100/Tween 20 SPCE

OH OH OH OH OH OH OH OH Oxidase

Glucose

H2O2

O2 +

e

-bulk

相關文件