• 沒有找到結果。

本研究建立了對底部填膠的熱性質及機械性質量測方法,利用熱 機械分析(TMA)、示差掃描熱量計(DSC)、奈米壓痕儀(NI)和四點彎矩 試驗(4PT Bending)量測底部填膠的熱膨脹係數(CTE)、玻璃轉換溫度 (Tg)、彈性模數(E)、硬度(H)、彎曲彈性模數(Ef),量測正確的材料性 質為有效模擬分析的必要條件,根據本研究結果可發現由廠商提供的 材料性質數據有需要重新驗証。

本研究的模擬結果與熱循環測試實驗結果有很好的相聯性,熱 循環測試中錫球的破裂位置,與模擬分析中最大熱應力位置相同,且 較高的熱應力才能引起其失效,應力模擬搭配熱循環測試,可有效的 預測錫球的可能失效位置,及其臨界所能承受的熱應力。而模擬分析 的結果,對於高鉛銲錫的使用,選擇低熱膨脹係數和高彈性模數的底 部填膠,能有效減低其所受熱應力並提升其可靠度,但相對會提高在 晶片角落的熱應力,要同時保護錫球和晶片的內連層,須選擇性質同 時能保護兩者的底部填膠。

針對薄膜界面的強度,本研究建立薄膜的界面強度量測方法,包 括四點彎矩和雙懸臂樑試驗為有效的薄膜界面強度量測方法,可量測 高精準度、高靈敏度的界面強度比較值,並可分析在不同破裂模式下

的界面強度。從界面強度測試結果中可發現晶片內連層內之薄膜材料 間的界面強度相當微弱,即使很小的殘留應力,也有可能造成其界面 的失效。

經過本次研究後,對於未來的研究建議,底部填膠的性質研究 與改善,可進一步從其化學組成結構進行改變,自行配製性質優良的 底部填膠,底部填膠為一環氧樹脂為基材的混合物,不同材料配上不 同的比例都會影響其性質,利用模擬分析可找出底部填膠的合適性 質,更重要的是能進ㄧ歩製備出合適性質的底部填膠。

在封裝體的應力分析上,可自行建立模擬系統,模擬分析封裝 體的力學現象為預測封裝可靠度的重要依據,包括錫球可靠度與熱應 力的模擬,材料薄膜界面強度與熱應力的模擬,建立模擬系統,可做 更全面的研究討論。雖然電腦能夠模擬複雜結構在熱循環下所售到的 熱應力分布情形,但能以實驗數據佐證,更可提升模擬結果的可靠 度,建立實驗量測材料受熱應力的分佈情形,如雲紋干涉法(Laser Moiré Interferometry)、彎柄儀(Bending Beam)等以光學原理量測熱應 力和分布,可做更全面的分析討論。

對於材料界面強度的量測,除了本質的材料界面強度外,可進 ㄧ歩研究實際環境因素對於界面附著力的影響,建立溫溼度環境控制 條件,可幫助了解溫度及溼度對於材料的界面強度及其可靠度的影

響,在了解材料的本質界面強度後,如何增進其界面強度已提高其可 靠度也是重要的研究,可利用界面強化物的添加或表面處理等方法進 行材料界面強化的研究。

參考文獻

[1] 陳力俊,微電子材料與製程,中國材料科學學會,2000。

[2] J. H. Lau, Flip Chip Technologies, McGraw-Hill, New York, 1996.

[3] 董鍾明,2005 台灣封裝產值及業務分佈概況,ITIS 產業觀察,2006。

[4] J. H. Lau, Low Cost Flip Chip Technologies, McGraw, New York, 2000.

[5] H. Lu, G. Glinski and C. Bailey, “Computer Modelling of Flip-chip Self-alignment Process,” APACK Conference on Advances in Packaging, Singapore, 245-250, 2001.

[6] S. Luo, Tsuyoshi Yamashita and C. P. Wong,Adhesion Performance and Thermo-Mechanical Property of Epoxy-based Underfill,”

Adhesive Joining and Coating Technology in Electronics Manufacturing,Espoo, Finland, 70-76, 2000.

[7] J. Qu and C. P. Wong, ”Effective Elastic Modulus of Underfill Material for Flip-Chip Applications,” IEEE, Components and Packaging Technologies 25, 53-55, 2002.

[8] K.C. Norris and A.H. Landzberg, “Reliability of Controlled Collapse Interconnections,” IBM journal of research and development, 266-271, 1969.

[9] W. T. Chen and C. W. Nelson, “Thermal Stress in Bonded Joints,”

IBM journal of research and development, 179-188, 1979.

[10] R. Darveaux and K. Baneji, “Fatigue Analysis of Flip Chip Assemblies Using Thermal Stress Simulations and a Coffin-Manson Relation,”

Electronic Components and Technology Conference, Atlanta, GA, USA, 797-805, 1991.

[11] S. F. Popelar, “A parametric study of flip chip reliability based on solder fatiguemodelling,” Electronics Manufacturing Technology Symposium, Austin, 299-307, 1997.

[12] J. H. Lau, Solder Joint Reliability of BGA, CSP, Flip-Chip, and Fine Pitch SMT Assemblies, McGraw-Hill, New York 1997.

[13] J. H. Lau, S.-W. Lee and C. Chang, “Effects of underfill material properties on the reliability of solder bumped flip chip on board with imperfect underfill encapsulants,” IEEE, Components and Packaging Technologies 23, 323-333, 2000.

[14] Y.L. Zhang , D.X.Q. Shi and W. Zhou, “Reliability study of underfill/chip interface under accelerated temperature cycling (ATC) loading,” Microelectronics Reliability 46, 409-420, 2006.

[15] L.L. Mercado, C. Goldberg, S.-M. Kuo,. T. Lee and S. Pozder,

“Analysis of flip-chip packaging challenges on copper/low-k interconnects,” IEEE, Device and Materials Reliability 3, 111-118, 2003.

[16] P.-H. Tsao, C. Huang, M.-J. Lii, B. Su and N.-S. Tsai, “Underfill Characterization for Low-k Dielectric/Cu Interconnect IC Flip-Chip Package Reliability,” Electronic Components and Technology Conference, 767-769, 2004.

[17] J.H. Lau and C. Chang, “Characterization of Underfill Materials for Functional Solder Bumped Flip Chips on Board Applications,”

Electronic Components and Technology Conference, 1361-1371, 1998.

[18] 汪建民,材料分析,中國材料科學學會,民國 87 年。

[19] B. A. Walmsley, Y. Liu, X. Z. Hu, M. B. Bush, K. J. Winchester, M.

Martyniuk, J. M. Dell, and L. Faraone, “Effects of deposition temperature on the mechanical and physical properties of silicon nitride thin films,” Journal of Applied Physics 98, 044904, 2005.

[20] L. Drummond, J. Botsis, D. Zhao and J. Sayman, European Journal of Oral Science 106, 661-666, 1998.

[21] Y.C. Hsu, K.Y. Hsu, K.M Chen, Y.P. Wang, J. Leu, “Reliability studies of novel underfill materials for flip-chip,” IMAPS Technical Symposium, Taiwan, 2006.

[22] 王新榮,陳時錦,劉亞忠,有線元素法及其應用,中央圖書出版社,

1997。

[23] J.-H. Zhao, X. Dai and P. S. Ho, “Analysis and Modeling Verification for Thermal-mechanical Deformation in Flip-chip Packages,”

Electronic Components and Technology Conference, 336-344, 1998 [24] Z. Suo, “Reliability of Interconnect Structures,” Comprehensive

Structural Integrity 8, 265-324, 2003.

[25] M. Miller, “Interfacial Adhesion and Subcritical Debonding of Low-k Dielectrics in Flip-Chip-Packaged Copper/Low-k Interconnect Structures,” Dissertation of the University of Texas at Austin, 2000.

[26] C. Pastre, “Effects of Mode-Mixity and Porosity on Interfacial adhesion of Porous Low-k materials,” Thesis of the University of Texas at Austin, 2003.

[27] M. Lane, “Interface Fracture,” Annual Review of Materials Research

33, 27-54, 2003.

[28] G.S. Frankel, S. Purushothaman, T.A. Petersen, S. Farooq, S.N. Reddy and V. Brusic,Corrosion and Adhesion of Multilayer Pad Structures for Packaging Applications,” IEEE, Components, Packaging, and Manufacturing Technology-Part B, 18, 709-714, 1995.

[29] Y.H. Wang, M.R. Moitreyee, R. Kumar, S.Y. Wu, J.L. Xie, P. Yew, B.

Subramanian and L. Shen, K.Y. Zeng, “The mechanical properties of ultra-low-dielectric-constant films,” Thin Solid Films, 462–463, 227–

230, 2004.

[30] A. Prabhakumar, A. Zhong, S. Tonapi, D. Sherman, H. Cole, F.

Schattenmann and K. Srihari, “Comparison of the Adhesion Strength of Epoxy and Silicone Based Thermal Interface Materials,” Electronic Components and Technology Conference, 1809-1814, 2003.

[31] A.G. Evans, M. Ruhle, B.J. Dalgleish and P.G. Charalambides, “The Fracture Energy of Bimaterial Interfaces,” Metallurgical Transactions A, 21A, 2419-2429, 1990.

[32] P.G. Charalambides, J. Lund, A.G. Evans and R.M. McMeeking, “A Test Specimen for Determining the Fracture Resistance of Bimaterial Interfaces,” Journal of applied mechanics, 56, 77-82, 1989.

[33] M. F. Kanninen, “An Augmented Double Cantilever Beam Model for Studying Crack Propagation and Arrest,” International Journal of Fracture, 9 , 83-92, 1973.

[34] F. E. Penado, “A Closed Form Solution for the Energy Release Rate of the Double Cantilever Beam Specimen with an Adhesive Layer,”

Journal of Composite Materials, 27, 383-407, 1993.

[35] X. Dai, “Materials Study for Interfacial Adhesion and Reliability of Microelectronics Packaging Structures,” Dissertation of The University of Texas at Austin, 1998.

[36] D.J. Welsh, R.A. Pearson, S. Luo and C.P. Wang, “Fundamental Study on Adhesion Improvement for Underfill Using Adhesion Promoter,”

Electronic Components and Technology Conference, 1502-1506, 2001.

相關文件