• 沒有找到結果。

本文所研究的分析種類有十二種,利用 ANSYS 有限元素軟體分析錫 球的應力-應變行為,再分別代入四種疲勞壽命預測方法和求得比例因子,

並且將分析結果做以下結論:

1. FC-PBGA 錫球進行非等溫熱傳分析時,基板材料在 Y 方向具有較小的 熱傳導係數,造成基板溫度梯度在 Y 方向較為複雜;TCT 非等溫熱傳 分析的最大溫差為 1℃,在 TST 非等溫熱傳分析的最大溫差為 4.8℃,

預估 TST 非等溫分析熱傳的結果會對結構分析造成較大的影響。

2. TCT 和 TST 測試中,FC-PBGA 錫球進行等溫和非等溫分析最大等效應 力的位置皆發生在晶片邊緣下方錫球的右上角,預期此處為 FC-PBGA 最先發生疲勞破壞的位置。

3. 在 TCT 和 TST 測試中,錫球的遲滯曲線在第二週次溫度循環後有逐漸 穩定收斂的趨勢。

4. 在 TCT 測試中,等效塑性應變、塑性剪應變、累積塑性應變和累積塑 性應變能密度的數值,由於數值很小並不會對結構分析和壽命計算造成 影響,但是在 TST 測試中,其數值對結構分析和疲勞壽命的影響不能 忽略。

5. 在 TCT 和 TST 測試中,發現錫球在第三週次低溫停留區,Primary + Secondary 潛變模式的應力釋放比另外兩種穩態潛變模式的應力釋放 慢。

6. 在 TCT 測試中,可以發現潛變行為是造成錫球疲勞的主要原因;在 TST 測試中,因為潛變行為在升溫和降溫時無足夠的時間發展,而造成錫球

7. 在 Darveaux 能量法中,用 Primary + Secondary 潛變模式和 Norton 潛變 模式的疲勞壽命比值比較,發現主要潛變對 TCT 等溫分析和非等溫分 析影響不大,但在 TST 等溫分析和非等溫分析中由於快速升溫和降溫 必須考慮到主要潛變的影響。

8. 等溫分析和非等溫分析對於 TCT 和 TST 的影響不大。

9. 以本文中使用的四種疲勞壽命公式計算得到的結果,發現 Darveaux 和 Engelmaier 的疲勞壽命偏高,Coffin-Mason 的疲勞壽命偏低。

10. TCT 和 TST 疲勞壽命的比例因子,以 Darveaux 能量法計算發現 TCT 的 疲 勞 壽 命 比 TST 的 疲 勞 壽 命 長 , 以 Coffin-Mason 、 Engelmaier 、 Creep-Fatigue 三種方式計算疲勞壽命發現 TCT 疲勞壽命比 TST 疲勞壽 命短。

參 考 文 獻

[1] Lau, J. H. Wong, C. P. Prince, J. L. and NaKayama, “Electronic Packaging:

Design, Material, Process and Reliability”, McGraw-Hill, New York, 1998.

[2] ANSYS Introduction to ANSYS for Release 7.0, 2003.

[3] Frank Feustel, Steffen Wiese, Ekkehard Meusel, “Time-Dependent Material Modeling for Finite Element Analyses of Flip Chip,” in IEEE

50th Electron. Components and Technol Conference, May 2000, pp.

1548-1553.

[4] Pao, Y-.H., S. Badgley, R. Govila, L. Baumgartner, R. Allor and T. Cooper,

“Measurements of Mechanical Behavior of High Lead Lead-Tin Solder Joints Subject to Thermal Cycling,” ASME Journal of Electronic

Packaging, vol. 114, 1992, pp. 135-45.

[5] John H. Lau, Yi-Hsin Pao, “Solder Joint Reliability of BGA, CSP, Flip Chip, and Fine Pitch SMT Assemblies,” McGraw-Hill, New York, 1997.

[6] Daqing Max Shi, Kathy McKeen, Bill Jenson, “Advances in Flip Chip Underfill Material Cure Rates and Reliability,”International Symposium

on Advanced Packaging Material, 1998, pp. 29-32.

[7] Zhang Liji, Wang Li, Xie Xiaoming, and Wolfgan Kemps, “An Investigation on Thermal Reliability of Underfill PBGA solder Joint,”IEEE Trans. Electron. Packag. Manufact., vol. 25, Oct. 2002, pp.

284-288,

[8] James Pyland, Raghuram V.Pucha, and Suresh K. Sitaraman,

Trans. Electron. Packag. Manufact., vol. 25, April 2002, pp. 100-106.

[9] Lei L. Mercado, Vijay Sarihan, Yifan Guo, and Andrew Mawer,“Impact of Solder Pad Size on Solder Joint Reliability in Flip Chip PBGA Packages,”IEEE Trans. Adv. Packag., vol. 23, Aug. 2000, pp. 415-419.

[10] Hong Yang, Philip Deane, Paul Magill and K. Linga Murty, “Creep Deformation of 96.5Sn-3.5Pb Solder Joints In A Flip Chip Package,” in

IEEE 46th Electron. Comp. and Technol. Conference, May 1996, pp.

1136-1142.

[11] Dongi Xie, David Geiger, Minna Arra, Dongkai Shangguan and Hoang Phan, “Reliability of CSP/Lead Free Solder Joint with Different surface Finishes and Reflow Profiles,”in IEMT 27th Electron. Manufact. Technol.

Symposium, July 2002, pp. 323-328.

[12] Zhenwei Hou, Guoyun Tian, Casey Hatcher, R. Wayne Johnson, Erin K.

Yaeger, Mark M. Konarski, and Lawrence Crane, “Lead-Free Solder Flip Chip-on-Laminate Assembly and Reliability,”IEEE Trans. Electron.

Packag. Manufact., vol. 24, Oct. 2001, pp. 282-291.

[13] Pál Németh, “Accelerated Life time Test Methods for New Package Technologies,” in IEEE 24th International Spring Seminar on Electronics

Technology, May 5-9, 2001, Calimanesti-Caciulata, Romania.

[14] A. S. Chen, L. T. Nguyen and S. A. Gee, “Effect of Material Interactions During Thermal Shock Testing On Ic Package Reliability,” IEEE Trans.

Comp., Hybrids, and Manufact. Technol., vol. 16, Dec. 1993, pp.

932-939.

[15] John H. L. Pang and Tze-Ing Tan, “Thermal-Mechanical Analysis of solder

Temperature Cycling Loading,”in IEEE 48th Electron. Components and

Technol. Conference, May 1998, pp. 878-883.

[16] John H. L. Pang, C.W. Seetoh, Z. P. Wang, “CBGA Solder Joint Reliability Evaluation Based on Elastic-Plastic-Creep Analysis,”ASME Journal of

Electronic Packaging, vol. 122, Sep. 2000, pp.255-261.

[17] John H. Lau, S. -W. Ricky Lee, Chris Chang, “Solder Joint Reliability of Wafer Level Chip Scale Packages (WLCSP): A Time-Temperature- Dependent Creep Analysis,”ASME Journal of Electronic Packaging, vol.

122, Dec. 2000, pp. 311-316.

[18] John H. L. Pang and T. H. Low, “Modeling Thermal Cycling And Thermal Shock Tests For FCOB,” in ITHERM 8th Thermal and

Thermomechanical Phenomena in Electronic Systems, 30 May-1 June

2002, pp. 987-992.

[19] B. Z. Hong, and T. D. Yuan, “Integrated Flow-Thermomechanical Analysis of Solder Joints Fatigue in a Low Air Flow C4/CBGA Package,”Journal

of Microcircuits and Electronic Packaging, vol. 21, Second Quarter 1998,

pp. 137-144.

[20] Yushi Matsuda, Tadashi Takai, Yoshio Okada, Pradeep Lall, Corey Korey, Ted Tessier and Dennis Olsen, “Reliability Study of the Laminate-Based Flip-Chip Chip Scale Package,” IEMT/IMC Symposium, April 15-17 1998, pp. 40 -44.

[21] Liu Chen, Qun Zhang, Guozhong Wang, Xiaoming xie, and Zhaonian Cheng, “The Effect of Underfill and Its Material Models on Thermomechanical Behaviors of a Flip Chip Package,”IEEE Trans. Adv.

[22] John H. L. Pang and Chong,“Flip Chip on Board Solder Joint Reliability Analysis Using 2-D and 3-D FEA Models,”IEEE Trans. Adv. Packag. vol.

24, Nov. 2001, pp. 499-506.

[23] Kuo-Yu Chou, Ming-Jer Chen, Chiu-Ching Lin, Yen-Shien Su, Chin-Shan Hou and Tong-Chern Ong,“Die Cracking Evaluation and Improvement in ULSI Plastic Package,”Proc. IEEE Microelectronic Test Structures, vol.

14, March 2001, pp.239-244.

[24] P. L. Tu, Y. C. Chan, K. C. Hung, and Joseph K. L. Lai, “Comparative Study of Micro-BGA Reliability Under Bending Stress,”IEEE Trans. Adv.

Packae. vol. 23, Nov. 2000, pp. 750-756.

[25] P. L. Tu, Y. C. Chan, and Joseph K. L. Lai, “Effect of Intermetallic Compounds on Vibration Fatigue of µBGA Solder Joint,”IEEE Trans. Adv.

Packag., vol. 24, May 2001, pp. 197-205.

[26] Y. C. Chan, P. L. Tu, C. W. Tang, K. C. Hung and Joseph K. L. Lai,

“Reliability Studies of µBGA Solder Joints – Effect of Ni-Sn Intermetallic Compound,”IEEE Trans. Adv. Package., vol. 24, Feb. 2001, pp. 25-32.

[27] D. J. Xie, Yan C. Chan, J. K. L. Lai, and I. K. Hui,“Fatigue Life Estimation of Surface Mount Solder Joints,”IEEE Trans. Com. Packag., and

Manufact Technol., vol. 19, Aug. 1996, pp. 669-678.

[28] H. D. Solomon, “Fatigue of 60/40 Solder,”IEEE Trans. Comp., Hybrids,

Manufact. Technol., vol. 9, Dec. 1986, pp. 423-432.

[29] S, Wiese, F. Feustel, S. Rzepka, E. Meusel, “Creep and Crack Propagation in Flip Chip SnPb37 solder Joints,”in IEEE 49th Electron. Comp. and

Technol. Conference, June 1999, pp. 1015-1020.

Prediction of Solder Joints Under Thermal Cycling,”IEEE Trans. Comp.

Packag. and Manufact. Technol., vol. 17, Nov. 1994, pp. 626-631.

[31] Qiang Yu, Masaki Shiratori, “Fatigue-Strength Prediction of Microelectronics Solder Joints Under Termal Cyclic Loading,”IEEE

Trans. Comp. Packag. and Manufact. Technol., vol. 20, Sept. 1997, pp.

266-273.

[32] Terry Dishongh, Cemal Basaran, Alexander N. Cartwright, Ying Zhao, and Heng Liu, “Impact of Temperature Cycle Profile on Fatigue Life of Solder Joints,”IEEE Trans. Adv. Packag., vol. 25, Aug. 2002, pp.

433-438.

[33] 任貽明,葉昀鑫,”散熱蓋與基板間黏著劑尺寸對散熱型覆晶式球柵 陣列構裝之可靠性分析”,

中國機械工程學會第十九屆全國學術研討 會論文集,第五冊新興工程技術(上),

雲林,2002,第 419-426 頁。

[34] ANSYS Menu, Analysis User’s Guide Reversion, 7.0, 2003

[35] Rao R. Tummala, “Fundamentals of Microsystems Packaging,”

McGraw-Hill, 2001, p.198.

[36] Pao, Y-H., R. Govila and S. Badgley, “Thermal Fatigue Fracture of 90Pb/10Sn Solder Joints,”Proc. ASME/JSME Electronic Packaging

Conference, 1992, pp. 291-300.

[37] R. Darveaux, K. Banerji, A. Mawer, and G. Dody, “Reliability of Plastic Ball Grid array assembly,”in Ball Grid Array Technology, J. H. Lau, Ed New York: McGraw-Hill, 1995, ch. 13.

[38] L. F. Coffin, Jr., “Fatigue at High Temperature,”Fatigue and Elevated

Temperatures, ASTM STP 520, ASTM, 1973, pp. 5-34.

相關文件