• 沒有找到結果。

摻入銻量子點經由 PL 與 AFM 的分析,量子點分為兩群,得到銻元素有相分離的 現象,此現象導致 InSb-rich 量子點較晚出現,而後量子點隨著磊晶厚度增加而 增加。由磊晶結果得知,形成量子點的臨界厚度由 1.68ML(19.9sec)後推約至 2.0ML(24sec),表示二維轉三維的臨界厚度增加,Sb 延緩量子點形成,此即 Sb 的表面活化效應。由低溫半高寬判定,2.8ML 的 uniformity 最好,其他較差。由 變溫 PL 與半高寬知,低溫載子有穿隧現象,高溫載子容易由 InAs-rich 量子點 跳到 InSb-rich 量子點,隨著磊晶厚度增加,密度與尺寸變大,此現象於更低溫 發生。

無摻氮樣品溫度 18K時載子時間常數仍小於 10-6秒,沒有缺陷。有摻氮樣品於溫 度 300K載子時間常數約 10--3~10-5秒,有缺陷能階產生,造成載子空乏。以深層能 階暫態頻譜與電容暫態頻譜量測,此缺陷能階位於傳導帶下方約 0.2~0.25eV,隨 著偏壓加大能階愈深,為能階分佈很廣的缺陷,缺陷濃度約 1~2.8×1015cm-3。此缺 陷的暫態電容為可以填充達到飽和的指數函數,推測應該是摻入氮引起的點缺 陷。DLTS改變填充偏壓時間與不同速率視窗,求得捕捉位能障高度 0.15eV,再配 合縱深分佈的空乏區寬度 0.25μm,要造成此空乏所需要的的缺陷濃度為

1.06×1015cm-3。因此電性量測結果有很高的一致性,將其作成缺陷的能帶模擬圖,

如圖 4.10,推測直接將氮摻入量子點會於量子點位置產生缺陷造成載子空乏,使 得原本無摻氮量子點非常短的時間常數變長為 10-3~10-5秒(室溫)。因此我們相信 可以藉由摻入氮元素於量子點來調變所需要的時間常數。

參考文獻

[1]F. C. Frank, and J. H. van der Merwe, Proc. Roy. Soc. London A 198, 205 (1949).

[2]M. Volmer, and A. Weber, Z. Phys. Chem. 119, 277 (1926).

[3]I. N. Stranski, and Von L. Krastanow, Akad. Wiss. Lit. Mainz Math.-Natur. K1. Iib 146, 797 (1939).

[4] Oleg B. Shchenkin, Gyoungwon Park, Diana L. Huffaker, and Dennis G. Deppe, “Discrete energy level separation and the threshold temperature dependence of quantum dot lasers”

Appl. Phys. Lett. 77, 466 (2000)

[5] P. B. Joyce, T. J. Krzyzewski, G. R. Bell, T. S. Jones, S. Malik, D. Child, and R. Murray,

“Growth and characterization of single quantum dots emitting at 1300 nm”, J. Crystal Growth 227/228, 1000 (2001)

[6] M. J. da Silva, S. Martini, T. E. Lamas, A. A. Quivy, E. C. F. da Silva, J. R. Leite, “Low growth rate InAs/GaAs quantum dots for room-temperature luminescence over 1.3 µm”, Microelectronics Journal. 34, 631 (2003)

[7] V. M. Ustinov, N. A. Maleev, et al. Appl. Phys. Lett. 74, 2815 (1999) [8] A. Stintz, et al. IEEE Photon. Tech. Lett. 12, 591 (2000)

[9]V. M. Ustinov and A. E. Zhukov,” GaAs-based long-wavelength lasers” Semicond. Sci.

Technol. Vol.15, No 8, R41-R54, (2000)

[10]H. Y. Liu, M. Hopkinson, C. N. Harrison, et al.” Optimizing the growth of 1.3 µm InAs/InGaAs dots-in-a-well structure” J. Appl. Phys. 93, 2931 (2003)

[11]K. Nishi, H. Saito, S. Sugou, and J. Lee,” A narrow photoluminescence linewidth of 21 meV at 1.35 µm from strain-reduced InAs quantum dots covered by In0.2Ga0.8As grown on GaAs substrates” Appl. Phys. Lett. 74, 1111 (1999)

[12]H. Y. Liu, I. R. Sellers, T. J. Badcock, et al.” Improved performance of 1.3 µm multilayer InAs quantum-dot lasers using a high-growth-temperature GaAs spacer layer” Appl. Phys.

Lett. Vol85, No5, 704 (2004)

[13]I. R. Sellers, H. Y. Liu, M. Hopkinson, D. J. Mowbray, and M. S. Skolnick, ” 1.3 µm lasers with AlInAs-capped self-assembled quantum dots” Appl. Phys. Lett. 83, 4710 (2003) [14]A. R. Kovsh, N. A. Maleev, A. E. Zhukov, et al. ” InAs/InGaAs/GaAs quantum dot lasers of 1.3 µm range with enhanced optical gain”, J. Cryst. Growth 251, 729 (2003)

[15]H. Y. Liu, I. R. Sellers, M. Gutiérrez, K. M. Groom, et al. “Influences of the spacer layer growth temperature on multilayer InAs/GaAs quantum dot structures”, J. Appl. Phys. 96, 1988 (2004)

[16]X. Huang, A. Stintz, C. P. Hains, G. T. Liu, J. Cheng, and K. J. Malloy, “Very Low Threshold Current Density Room Temperature Continuous-Wave Lasing from a Single-Layer InAs Quantum-Dot Laser”, IEEE Photonics Technol. Lett. Vol.12, iss.3, 227 (2000)

[17]G. Park, O. B. Shchekin, D. L. Huffaker, and D. G. Deppe, “Low-Threshold

Oxide-Confined 1.3-µm Quantum-Dot Laser”, IEEE Photonics Technol. Lett. 12, 230 (2000) [18] H. Y. Liu and M.Hopkinson, “Tuning the structural and optical properties of 1.3-µm InAs/GaAs quantum dots by a combined InAlAs and GaAs strained buffer layer”Appl. Phys.

Lett. 82, 3644 (2003)

[19]M. V. Maximov, A. F. Tsatsul’nikov, B. V. Volovik, et al. “Tuning quantum dot properties by activated phase separation of an InGa(Al)As alloy grown on InAs stressors”

Phys. Rev. B 62, 16671 (2000)

[20]H. Y. Liu, I. R. Sellers, M. Hopkinson, C. N. Harrison, D. J. Mowbray, and M. S.

Skolnick, ” Engineering carrier confinement potentials in 1.3-µm InAs/GaAs quantum dots with InAlAs layers: Enhancement of the high-temperature photoluminescence intensity” Appl.

Phys. Lett. 83, 3716 (2003)

[21] H. Y. Liu, M. J. Steer, T. J. Badcock, D. J. Mowbray, and M. S. Skolnick, et al.

“Long-wavelength light emission and lasing from InAs/GaAs quantum dots covered by a GaAsSb strain-reducing layer”, Appl. Phys. Lett. 86, 143108 (2005)

[22]N. Grandjean, J. Massies, and V. H. Etgens “Delayed relaxation by surfactant action in highly strained III-V semiconductor epitaxial layers” Phys. Rev. Lett. 69, 5, 796 (1992)

[23]X. Yang, J. B. Heroux, L. F. Mei, and W. I. Wang “InGaAsNSb/GaAs quantum wells for 1.55 µm lasers grown by molecularbeam epitaxy” , Appl. Phys. Lett., Vol.78, Num.26, 4086 (2001)

[24]X. Yang, M. J. Jurkovic, J. B. Heroux, and W. I. Wang, “Molecular beam epitaxial growth of InGaAsN:Sb/GaAs quantum wells for long-wavelength semiconductor lasers”, Appl. Phys. Lett., Vol. 75, Num.2 ,178,(1999)

[25]J. C. Harmand, L. H. Li, G. Patriarche, and L. Travers, “GaInAs/GaAs quantum-well growth assisted by Sb surfactant: Toward 1.3 mm emission”, Appl. Phys. Lett. Vol. 84, Num.

20, 3981(2004)

[26] Takeo Kageyama, Tomoyuki Miyamoto, Masataka Ohta, et al. “Sb surfactant effect on GaInAs/GaAs highly strained quantum well lasers emitting at 1200 nm range grown by

molecular beam epitaxy”, J. Appl. Phys. Vol 96, Num 1, Page44(2004)

[27] H. Shimizu, K. Kumada, S. Uchiyama and A. Kasukawa, “1.2µm range GalnAs SQW

1379,(2000)

[28] H. Shimizu, K. Kumada, S. Uchiyama and A. Kasukawa, “High performance CW 1.26µm GalnNAsSb-SOW and 1.20µm GalnAsSk-SQW ridge lasers”, IEEE,

ELECTRONICS LETTERS, Vol.36, No.20, 1701(2000)

[29] X. Yang, M.J. Jurkovic, J.B. Heroux and W.I. Wang, “Low threshold InGaAsN/GaAs single quantum well lasers grown by molecular beam epitaxy using Sb surfactant”, IEEE, ELECTRONICS LETTERS, Vol.35, No.13, 1082(1999)

[30] Y. Sun, S. F. Cheng, G. Chen, R. F. Hicksa!, J. G. Cederberg and R. M. Biefeld, “The effect of antimony in the growth of indium arsenide quantum dots in gallium arsenide (001)”, J. Appl. Phys. 97, 053503 (2005)

[31] Tetsuya MATSUURA, Tomoyuki MIYAMOTO, Takeo KAGEYAMAy, et al.

“Surfactant Effect of Sb on GaInAs Quantum Dots Grown by Molecular Beam Epitaxy”, Japanese Journal of Applied Physics, Vol. 43, No. 5A, pp. L605–L607(2004)

[32] J. S. Wang, A. R. Kovsh, L. Wei, et al. Nanotechnology 12 (2001)430-433

[33] J. S. Wang, L. Wei, R. S. Shiao, and J. Y. Chi J. Vac. Sci. Technol. B, vol.20,No.3 2002.

[34] W. G. Bi, and C. W. Tu,“Bowing parameter of the band-gap energy of GaNxAs1-x”, Appl. Phys. Lett. 70, 1608(1997)

[35] M. Sato, Abs. of Topical Workshop on Ⅲ-Ⅴ Nitredesm(Nagoya,1995) G4;Solid-State Electrons, 40(1997)

[36] J.-M. Chauveau, A. Trampert, and K. H. Ploog, Appl. Phys. Lett., Vol.82, No.20(2003) [37] M. Sopanen, H. P. Xin, and C.W. Tu, Vol.76, No.8(2000)

[38] Hiroyuki Miyoshi, Ryo Suzuki, Hidetoshi Amano, Yoshiji Horikoshi, “Sb surface

segregation effect on the phase separation of MBE grown InAsSb”, Journal of Crystal Growth 237–239, 1519–1524, (2002)

[39] Kudo, Makoto, Mishima, Tomoyoshi, et al. ” Long-wavelength luminescence from GaSb quantum dots grown on GaAs substrates”, PHYSICA E: LOW-DIMENSIONAL SYSTEMS AND NANOSTRUCTURES 21, 275 – 278, (2004)

[40] B N Zvonkov, et al. “Surfactant effect of bismuth in the MOVPE growth of the InAs quantum dots on GaAs”Nanotechnology, 11, 221–226, (2000)

[41] 陳育志 交通大學電子物理研究所碩士論文, ”掺雜不同氮含量的 InAs/InGaAs 量 子點與不同長晶速率的 InGaAsN 單一量子井之電性研究”, 2003.

[42] 陳宜屏, 交通大學電子物理研究所碩士論文, “氮含量與砷化銦厚度對砷化銦/砷

GaAs GaAs

圖2.1 摻入銻(Sb)量子點系列樣品的能帶與結構圖 InAs QDs doped with Sb

(24s、26s、32.9s) (2.0ML、2.2ML、2.8ML) 0.256Å/sec,485ºC

n-GaAs, 0.3μm, 595ºC Si:3×1016cm-3, 3.03Å/s

n+-GaAs Substrate n-GaAs 0.3μm, 595ºC Si:3×1016cm-3 , 3.03Å/s

在同樣長晶條件下

InAs QDs without Sb InAs QDs doped with Sb

19.9s形成量子點,約1.68ML 24s形成量子點,約2.0ML

量子點形成判定是藉由反射式高能電子束繞射(Reflection High-Energy Electron Diffraction, RHEED)圖形

GaAs

圖2.2 摻入氮(N)量子點與其對照樣品的能帶與結構圖 Al

0.3µm GaAs Nd=8×1016cm-3

GaAs

In

0.14

GaAs

0.3µm GaAs

InAs ( QDs )

InAsN

17%

( QDs )

Nd=8×1016cm-3

n+-GaAs substrate

In Si

圖2.3 PL量測系統之架構圖

圖2.4 InAsSb ternary alloys X-ray分成InAs-rich與InSb-rich兩群 Ref. Journal of Crystal Growth vol.237–239, p1519–1524, 2002

Laser 532nm

1.3W VNDF

Chopper Focus lens

PC

Vacuum and cooling system

Long-pass filter Ref. Signal

Lock-in Amplifier

Monochromator InGaAs

GPIB Interface

Multi-meter

photodetector

(a)

(b)

(c)

防震系統

圖2.5 (a)AFM懸臂樑及針頭TEM圖(圖片來源Ultrasharp公司網站) (b)凡得瓦力與距離的關係圖

(c)AFM示意圖

(a)

1000 1100 1200 1300 1400 1500 0.0

2.0x10-3 4.0x10-3 6.0x10-3 8.0x10-3

300K 50K dots-in-well 2.7ML 10mW

int ens ity (a. u.)

wavelength(nm)

(b)

1000 1100 1200 1300 1400 1500 0.0

1.0x10-2 2.0x10-2 3.0x10-2 4.0x10-2

1mW 100mW dots-in-well 2.7ML 300K

In tensit y(a. u. )

Wavelength(nm)

圖3.1 一般dots-in-well量子點 (a) 變溫PL圖 (b)室溫300K變功率PL圖

1000 1100 1200 1300 1400 1500

Inte nsi ty( a.u .)

Wavelength(nm)

dots-in-well 2.7ML 300K

1mW 100mW

圖3.2 一般dots-in-well量子點 室溫300K變功率正規化調整PL圖

InAs-rich InSb-rich

0.52eV

0.734eV 1.424eV 0.83eV

0.24eV

量子點尺寸 量子點尺寸

圖 3.3 二群量子點室溫能階模擬圖

900 1000 1100 1200 1300 1400

dots+Sb 2.0ML 25K

Intensity(A.U.)

900 1000 1100 1200 1300 1400 0.0

6.0x10-2

dots+Sb 2.2ML 25K

intensity (a.u.)

900 1000 1100 1200 1300 1400 0.0

dots+Sb 2.8ML 25K

Wavelength(nm) (a1)2.0ML (b1)2.2ML (c1)2.8ML

900 1000 1100 1200 1300 1400

Intensity(A.U.)

Wavelength(nm)

dots+Sb 2ML 25K

15mW

900 1000 1100 1200 1300 1400

dots+Sb 2.2ML 25K

Intensity (A.U.)

900 1000 1100 1200 1300 1400

dots+Sb 2.8ML 25K

Intensity(A.U.) (a2)2.0ML (b2)2.2ML (c2)2.8ML

900 1000 1100 1200 1300 1400 0.000

0.002 0.004 0.006

dots+Sb 2.0ML 300K

Wavelength(nm)

900 1000 1100 1200 1300 1400 0.0000

0.0005 0.0010 0.0015 0.0020

dots+Sb 2.2ML 300K

intensity (a.u.)

900 1000 1100 1200 1300 1400 0.0000

0.0005 0.0010 0.0015

dots+Sb 2.8ML 300K

Intensity(A.U.) (a1)2.0ML (b1)2.2ML (c1)2.8ML

900 1000 1100 1200 1300 1400

Intensity(A.U.)

Wavelength(nm)

dots+Sb 2ML 300K

7.5mW 750mW

(a2)

900 1000 1100 1200 1300 1400

10mW 90mW

dots+Sb 2.2ML 300K

Wavelength(nm)

Intensity (A.U.)

900 1000 1100 1200 1300 1400

32mW 320mW

dots+Sb 2.8ML 300K

Intensity(A.U.)

Wavelength(nm)

(b2)

(c2)

圖3.5 室溫300K變功率正規化調整PL圖 (a2)2.0ML (b2)2.2ML (c2)2.8ML

間距小

( 密 度 大 ) 間距大

( 密

度 小 )

圖3.6 載子侷限空間分佈耦合機率圖

900 1000 1100 1200 1300 1400

900 1000 1100 1200 1300 1400 0.0

5.0x10-3 1.0x10-2 1.5x10-2 2.0x10-2

2.5x10-2

dots+Sb 2.2ML

intensity (a.u.)

900 1000 1100 1200 1300 1400 0.0

dots+Sb 2.8ML

Intensity(A.U.)

(a1)2.0ML (b1)2.2ML (c1)2.8ML

800 900 1000 1100 1200 1300 1400 1500 1600

dots+Sb 2.0ML

Intensity(A.U.)

Wavelength(nm)

25K 70K 115K 150K 180K 200K 250K 275K 300K

(a2)

900 1000 1100 1200 1300 1400 300K

25K 200K

Intensity (A.U.)

Wavelength(nm)

dots+Sb 2.2ML

(b2)

圖3.7 變溫正規化調整PL圖 (a2)2.0ML (b2)2.2ML

950 1000 1050 1100 1150 1200 1250 1300 1350 1400

dots+Sb 2.8ML

Intensity(A.U.)

Wavelength(nm)

150K 120K 80K 60K 40K 25K

(c2)

950 1000 1050 1100 1150 1200 1250 1300 1350 1400

dots+Sb 2.8ML

Intensity(A.U.)

Wavelength(nm)

210K 190K 180K 170K 160K 150K

(c3)

圖3.7 變溫正規化調整PL圖 2.8ML (c2)低溫區(c3)高溫區

0 50 100 150 200 250 300 0.06

0.08 0.10 0.12 0.14

FWHM(eV)

T(K) InAs-rich

ML2.0 ML2.2 ML2.8

0 50 100 150 200 250 300

0.03 0.04 0.05 0.06 0.07

InSb-rich

FWHM(eV)

T(K)

ML2.0 ML2.2 ML2.8

圖3.8 各樣品半高寬隨溫度變化圖 (a)InAs-rich量子點

(b)InSb-rich量子點

(a)

(b)

(c)

圖3.9 AFM平面圖

(a)2.0ML (b)2.2ML (c)2.8ML

(a)

2.0ML

(b)

2.2ML

(c)

2.8ML

圖3.10 AFM 3D圖

(a)2.0ML (b)2.2ML (c)2.8ML

102 103 104 105 106 107 108

InAsN/InGaAs 300K

C(pF)

InAsN/InGaAs 300K

-2V -1.5V

1000 10000 1000001000000 1E7 1E8 0

50 100 150

InAsN/InGaAs -1.5volt

G/f(pS/Hz) ln( τ T

2

) (sec-K

2

)

-1.5V Ea=0.34eV σ=4.16E-16 cm2

-0.5V Ea=0.08eV σ=2.63E-19 cm2 -1V Ea=0.13eV σ=1.13E-18 cm2 -2V Ea=0.38eV σ=5.74E-16 cm2 -2.5V Ea=0.41eV σ=3.10E-16 cm2

圖4.2 (a)變溫G/f-f量測偏壓1.5v (b)各偏壓的Arrhenius plot

(a)

150 200 250 300

-1.0

v=-1~-1.5volt

τ

=0.86ms

∆ C(pF)

T(K)

filling pulse tp 0.05ms

150 200 250 300

-1.0

v=-1~-1.5volt

τ

=2.15ms

∆ C(pF )

T(K)

filling pulse tp 0.05ms

50 100 150 200 250 300

filling pulse tp 0.05ms

v=-1~-1.5volt

τ

=4.3ms

(c)

v=-1~-1.5volt

τ

=8.6ms

∆ C(pF)

T(K)

filling pulse tp 0.05ms

-1 0 1 2 3 4 5 6 7 8 -4.0

-3.5 -3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0

ln(1-S(t

p

)/S( ))

t

p

(ms)

τ=8.6ms C=0.824 s-1 T=205K τ=4.3ms C=1.468 s-1 T=215K τ=2.15ms C=2.067 s-1 T=228K τ=0.86ms C=3.243 s-1 T=242.5K

(a)

4.0 4.2 4.4 4.6 4.8 5.0

-57.0 -56.5 -56.0 -55.5 -55.0

ln( σ ) (cm

2

)

1000/T(1/K)

E

σ

=0.151eV

(b)

圖4.4 (a)不同速率視窗之對應溫度及其捕捉速率 (b)捕捉位能障

(a) (a) -1~-1.5v Emission

(b) -1.5~-1v Capture

(a)

ln( τ T

2

) (sec-K

2

)

1000/T(1/K)

ln( τ T

2

) (se c -K

2

)

1000/T(1/K)

圖4.6 暫態電容(Transient)量測所得Arrhenius plot (a) -1~-1.5v Emission

(b) -1.5~-1v Capture

(b) (a) -1.5~-2v Emission

(b) -2~-1.5v Capture

0 50 100 150 200 0.01

0.1 1

Emission

δ

C(t)/

δ

C(0)

Time(sec)

120K 125K 130K 135K 140K

(a)

0 10 20 30 40 50

0.01 0.1 1

Capture

δ C(t )/ δ C(0)

Time(sec)

120K 125K (b)

圖4.8 △C(t)/△C(0) (a)Emission (b)Capture

7.0 7.5 8.0 8.5 10

11 12 13

14

Emission

ln( τ T

2

) (sec-K

2

)

1000/T(1/K)

Ea=0.25 eV σ =2.5E-16 cm2

(a)

8.0 8.2 8.4

11.0 11.5 12.0

Ea=0.19eV σ =3.4E-18 cm2

Capture

ln (

τ

T

2

)(sec-K

2

)

1000/T (1/K)

(b)

圖4.9 暫態電容(Transient)量測所得Arrhenius plot (a) -1.5~-2v Emission (b) -2 ~-1.5v Capture

圖4.10 缺陷能帶模擬圖

Ec

capture barrier Defect level 0.15eV 0.2~0.25eV

Et Defect concentration

1×10

15

cm

-3

Depletion width

0.25μm

相關文件