• 沒有找到結果。

可分成(1)銲料內部之延性破裂(2)IMC/Ni 介面之脆性破裂(3)IMC/Ti 介面之脆 性破裂。

(1)銲料內部之延性破裂

對 5µm-Cu/3µm-Ni 和 3µm-Cu/2µm-Ni 試片而言,其時效前後破裂面都為銲料

內部,時效 200 小時,則剪力強度下降原因是由於銲料晶粒成長和 Ag3Sn 粗 化所造成,時效 200 小時、500 小時、和 1000 小時,則剪力強度維持不變之 原因是由於銲料晶粒成長和 Ag3Sn 粗化達飽和。

(2)IMC/Ni 介面之脆性破裂

對 0µm-Cu/1µm-Ni 試片而言,時效 200 小時,其破裂面由銲料內部轉變成部

分 IMC/Ni 介面,代表其破裂機構改變,使剪力強度進一步下降,時效 500 小 時、1000 小時,其破裂面轉變成全部 IMC/Ni 介面,其破裂機構可能是由於鎳 層邊界反應成 Ni3Sn4造成 Side-attack 效應,其 IMC/Ni 介面縮短造成破裂。

(3)IMC/Ti 介面之脆性破裂

對 0µm-Cu/1µm-Ni 試片而言,時效 1000 小時,少部分其破裂面出現 IMC/Ti 介面破裂,其發生原因為部分鎳層消耗完畢,進一步和濺鍍的銅層反應形成 (Ni,Cu)3Sn4,造成(Ni,Cu)3Sn4和鈦層接合,因(Ni,Cu)3Sn4和鈦層具有高的界面 能,造成 IMC/Ti 介面破裂形式。

參考文獻

[1] A. A. Liu, H. K. Kim, K. N. Tu, and P. A. Totta: Spalling of Cu6Sn5 spheroids in the soldering reaction of eutectic SnPb on Cr/Cu/Au thin films. J. Appl. Phys. 80, 2774-2779(1996).

[2] C. Y. Liu, K. N. Tu, T. T. Sheng, C. H. Tung, D. R. Frear, and P. Elenius: Electron microscopy study of interfacial reaction between eutectic SnPb and Cu/Ni(V)/Al thin film metallization. J.

Appl. Phys. 87, 750-754(2000).

[3] J.W. Jang, D. R. Frear, T. Y. Lee, and K. N. Tu: Morphology of interfacial reaction reaction between lead-free solders and electroless Ni-P under bump metallization. J. Appl. Phys. 88, 6359-6363(2000).

[4] C. S. Huang, J. G. Duh, Y. M. Chen: Metallurgical Reaction of the Sn-3.5Ag Solder and Sn-37Pb Solder with Ni/Cu Under-Bump Metallization in a Flip-Chip Package. Journal of Electronic Materials, Vol.32, No.12, 2003.

[5] K. Zeng, K. N. Tu: Six cases of reliability Study of Pb-free solder joints in electronic packaging technology. Materials Science and Engineering R 38 (2002) 55-105.

[6] M. Li, K. Y. Lee, D.R. Olsen, W. T. Chen, B. T. Chong, and S. Mhaisalkar: Microstructure, joint strength and failure mechanisms of SnPb and Pb-free solders in BGA packages. IEEE transactions of electronics packaging, Vol. 25, No.3, 2002.

[7] J. W. Nah, K. W. Paik, J. O. Suh, and K. N. Tu: Mechanism of electromigration-induced failure in the 97Pb-3Sn and 37Pb-63Sn composite solder joints. J. Appl. Phys. 94, 7560-7566 (2003).

[8] J. W. Nah, J. H. Kim, H. M. Lee, K. W. Paik: Electromigration in filp chip solder bump of 97Pb-3Sn/37Pb-63Sn combination structure. Acta Materialia 52(2004)129-136

[9] K. N. Tu, A. M. Gusak, and M. Li: Physics and materials challenges for leas-free solders. J.

Appl. Phys. 94, 1335-1352(2003).

[10] K. N. Tu, T. Y. Lee, J.W. Jang, D. R. Frear, K. Zeng, and J. K. Kivilahti: Wetting reaction versus solid state aging of eutectic SnPb on Cu. J. Appl. Phys. 89, 4843-4849(2001).

[11] H. K. Kim, H. K. Liou, and K. N. Tu: Three-dimensional morphology of a very rough interface formed in the soldering reaction between eutectic SnPb and Cu. Appl. Phys. Lett., 66, 2337-2339 (1995).

[12] A. Sharif, Y. C. Chan: Interfacial reactions on electrolytic Ni and electroless Ni(P) metallization with Sn-In-Ag-Cu solder. Journal of Alloy and Compounds 393(2005) 135-140.

[13]M. He, W. H. Lau, G. Qi, Z. Chen: Intermetallic compound formation between Sn-3.5Ag solder and Ni-based metallization during liquid state reaction. Thin Solid Films 462-463 (2004) 376-383.

[14] W. C. Luo, C.E. Ho, J. Y. Tsai, Y. L. Lin, C. R. Kao: Solid-state reactions between Ni and Sn-Ag-Cu solders with different Cu concentrations. Materials Science and Engineering A 396 (2005) 385-391.

[15] L. L. Duan, D. Q. Yu, S. Q. Han, J. Zhao, L. Wang: Microstructure and interface reaction between Sn-3.5Ag solder and electroplated Ni layer on Cu substrate during high temperature exposure. Business of Electronic Product Reliability and Liability, 2004 International Conference on Apr 27-30, 2004 Page(s):35 – 41

[16] F. Ochoa, J. J. Williams, and N. Chawla: Effects of cooling Rate on the Microstructure and Tensile Behavior of a Sn-3.5 wt%Ag solder. Journal of Electronic Materials 32 (12), 1414-1420 (2003).

[17]X. Huang, R. Lee, C. C. Yan , and S. Hui, Characterization and Analysis On solder Ball Shear Testing Conditions, 2001 Electronic Components and Technology Conference

[18] R. J. Coyle, P. P. Solan, A. J. Serafino, and S. A. Gahr: The influence of room temperature aging on ball shear strength and microstructure of area array solder balls. 2000 Electronic Components and Technology Conference.

[19]M. N. Islam, Y. C. Chan, A. Sharif, M. O. Alam: Comparative study of the dissolution kinetics of electrolytic Ni and electroless Ni-P by the molten Sn3.5Ag0.5Cu solder alloy.

Microelectronics reliability 43 2031-2037 (2003)

[20] M. O. Alam, Y. C. Chan, K. C. Hung: Reliability study of the electroless Ni-P layer against solder alloy. Microelectronics reliability 42 1065-1073 (2002)

[21]K. Zeng, R. Stierman, T. C. Chiu, D. Edwards, K. Ano, K. N. Tu : Kirkendall void formation in SnPb solder joints in bare Cu and it effect in joint reliability. J. Appl. Phys. 97(2) 8 (2004).

[22] International Tin Research Institute, Publ. No. 656; through: William B. Hampshire, "The Search for Lead-Free Solders," Proc. Surface Mount International Conference (Sept. 1992) San Jose, CA, P. 729

[23] Robert E. Reed-Hill, Reza Abbaschian, Physical Metallurgy Principles, 3rd ed.(Florida Univ.

Press, PWS publishing company, Boston, 1994), P118, P120, P532.

[24]J. W. Yoon, S. W. Kim, S. B. Jung: Interfacial reaction and mechanical properties of eutectic Sn-0.7Cu/Ni BGA solder joints during isothermal long-term aging. Journal of Alloy and Compounds 391(2005) 82-89

[25]T. H. Leng, G. Kirkpatrick, A. Tay, L. Li: Cr/Cu/Ni Underbump Metallization Study.

Electronic Components and Technology Conference.

[26] V. Kripesh, P. S. Teo, C. T. Chong, and G. Vishwanadam: Development of a lead free chip scale package for wireless applications. Electronic Components and Technology Conference 939-944 (2001).

[27]W. S. Chai, M. Gupta, A. A. O. Tay, and J. F. J. Caers: Effect of gold layer thickness on the characteristics of flip-chip interconnects. 2002 Electronics Packaging Technology Conference.

[28] R. J. Coyle, P. P. Solan, A. J. Serafino, and S. A. Gahr: The influence of room temperature aging on ball shear strength and microstructure of area array solder balls. 2000 Electronic Components and Technology Conference.

[29]A. Sharif, M. N. Islam, C. Y. Chan: Interfacial reactions of BGA Sn-3.5%Ag-0.5%Cu and Sn-3.5 % Ag solder during high-temperature aging with Ni/Au metallization. Materials Science and Engineering B 113,184-189 (2004).

[30] H. T. Lee, M. H. Chen, H. M. Jao, C. J. Hsu: Effect of adding Sb on microstructure and adhesive strength of Sn-Ag solder joint. J. Electronic Materials 33 (9), 1048-1054 (2004) [31]Chih-Tang Peng, Chia-Tai Kuo, Kuo-Ning Chiang: Experimental Characterization and

Mechanical Behavior Analysis on Intermetallic compounds of 96.5Sn-3.5Ag and 63Sn-37Pb Solder Bump with Ti-Cu-Ni UBM on Copper Chip, 2004 Electronic Components and Technology Conference Vol. 1, 90-97 (2004).

[32]A. M Gusak, K. N. Tu: Theory of normal grain growth in normalized size space. Acta Materialia 51 (2003) 3895-3904.

[33] Robert E. Reed-Hill, Reza Abbaschian, Physical Metallurgy Principles, 3rd ed.(Florida Univ.

Press, PWS publishing company, Boston, 1994), P185, P251.

[34] Robert E. Reed-Hill, Reza Abbaschian, Physical Metallurgy Principles, 3rd ed.(Florida Univ.

Press, PWS publishing company, Boston, 1994), P193.

[35] A. M Gusak, K. N. Tu: Kinetic theory of flux-driven ripening. Physical Review B vol. 66, Issue 11, 115403 (2002).

相關文件