• 沒有找到結果。

第三章 元件模擬結果與討論

3.4 總結

模擬的結果顯示,三種類型的元件中,對低掺雜通道的多重閘極金

氧半場效電晶體元件,因鰭式場效電晶體對製程參數變異及隨機掺雜濃 度變動具有較佳的抗擾性,皆可得到最小的起始電壓漂移量。而對高掺 雜通道的多重閘極金氧半場效電晶體元件,因類平面場效電晶體具有較 小的隨機掺雜濃度變動,故可得到較小的起始電壓漂移量。圖 3-32(a)及

對三種類型的起始電壓變量總和比較圖。由圖 3-32(a),對於低掺雜通道 鰭式場效電晶體無採用薄絕緣層的需要;而由圖 3-32(b),高掺雜通道類 平 面 場 效 電 晶 體 採 用 薄 絕 緣 層 及 類 接 地 面 基 底 可 得 到 較 佳 的 electrostatics。

0 10 20 30 40 50 60 70 80

1.0E+17 6.0E+18

∆ V th (m V )

Doping Concentration (cm -3 )

Hfin= 2Wfin (FinFET) Hfin= Wfin (Tri-gate) Hfin=1/2Wfin (Q.Planar)

圖 3-1 通道長度漂移(±10%)引起之起始電壓變量比較圖

0

Doping=1E17 cm

-3

W

total

=75nm

t

HfO2

=2nm, V

DS

=0.05V

Doping=6E18cm

-3

W

total

=75nm

t

OX

=1nm, V

DS

=0.05V

(b)

圖 3-2 起始電壓對通道長度之關係圖 (a)低掺雜通道元件;(b)高掺雜通道元件

0

Doping Concentration (cm

-3

)

Hfin= 2Wfin (FinFET) Hfin= Wfin (Tri-gate) Hfin=1/2Wfin (Q.Planar)

Doping Concentration(cm

-3

)

Hfin= 2Wfin (FinFET) Hfin= Wfin (Tri-gate) Hfin=1/2Wfin (Q.Planar)

(b)

圖 3-3 鰭狀通道寬度漂移引起之起始電壓變量比較圖

0

Doping=1E17cm

-3

L

g

=25nm

0

Doping Concentration (cm

-3

)

Hfin= 2Wfin (FinFET) Hfin= Wfin (Tri-gate) Hfin=1/2Wfin (Q.Planar)

Doping Concentration (cm

-3

)

Hfin= 2Wfin (FinFET) Hfin= Wfin (Tri-gate) Hfin=1/2Wfin (Q.Planar)

(b)

圖 3-5 鰭狀通道高度漂移引起之起始電壓變量比較圖

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

20 22.5 25 27.5 30 32.5 35 37.5 40

V th (V)

L g (nm)

Hfin_15nm Hfin_25nm

Doping=1E17 cm

-3

t

HfO2

=2nm, V

DS

=0.05V

圖 3-6 不同鰭狀通道高度的三閘極電晶體起始電壓對通道長度之關係圖

0 5 10 15 20 25 30 35 40

1.0E+17 6.0E+18

∆ V th (m V )

Doping Concentration (cm -3 )

Hfin= 2Wfin (FinFET) Hfin= Wfin (Tri-gate) Hfin=1/2Wfin (Q.Planar)

圖 3-7 閘極氧化層厚度漂移(±10%)引起之起始電壓變量比較圖

0 5 10 15 20 25 30 35 40

1.0E+17 6.0E+18

∆ V th (m V )

Doping Conerntration (cm -3 )

Hfin= 2Wfin (FinFET) Hfin= Wfin (Tri-gate) Hfin=1/2Wfin (Q.Planar)

圖 3-8 通道掺雜濃度漂移(±10%)引起之起始電壓變量比較圖

0 10 20 30 40 50 60 70 80

1.0E+17 6.0E+18

∆ V th (m V )

Doping Concentration (cm -3 )

Hfin= 2Wfin (FinFET) Hfin= Wfin (Tri-gate) Hfin=1/2Wfin (Q.Planar)

圖 3-9 隨機掺雜濃度變動引起之起始電壓變量比較圖

0.25

1.5E+10 5.0E+17 1.0E+18 1.5E+18 2.0E+18

V

th

(V)

4.0E+18 5.0E+18 6.0E+18 7.0E+18

V

th

(V)

NCH(cm-3) FinFET

Trigate Q.Planar

Doping=6E18 cm

-3

W

total

=75nm, L

g

=25nm t

OX

=1nm, V

DS

=0.05V Doping=1E17 cm

-3

W

total

=75nm, L

g

=25nm t

HfO2

=2nm, V

DS

=0.05V

(b)

圖 3-10 起始電壓對通道掺雜濃度之關係圖 (a)低掺雜通道元件;(b)高掺雜通道元件

74

0 10 20 30 40 50 60 70 80

1.0E+17 6.0E+18

∆ V th (m V )

Doping Concentration (cm -3 )

Hfin= 2Wfin (FinFET) Hfin= Wfin (Tri-gate) Hfin=1/2Wfin (Q.Planar)

圖 3-12 通道長度漂移(±10%)引起之起始電壓變量比較圖

(a)

(b)

圖 3-13 電流分佈圖

0

Doping Concentration (cm

-3

)

Hfin= 2Wfin (FinFET) Hfin= Wfin (Tri-gate) Hfin=1/2Wfin (Q.Planar)

Doping Concentration (cm

-3

)

Hfin= 2Wfin (FinFET) Hfin= Wfin (Tri-gate) Hfin=1/2Wfin (Q.Planar)

(b)

圖 3-14 鰭狀通道寬度漂移引起之起始電壓變量比較圖

0

Doping Concentration (cm

-3

)

Hfin= 2Wfin (FinFET) Hfin= Wfin (Tri-gate) Hfin=1/2Wfin (Q.Planar)

Doping Concentration (cm

-3

)

Hfin= 2Wfin (FinFET) Hfin= Wfin (Tri-gate) Hfin=1/2Wfin (Q.Planar)

(b)

圖 3-15 鰭狀通道高度漂移引起之起始電壓變量比較圖

0 5 10 15 20 25 30 35 40

1.0E+17 6.0E+18

∆ V th (m V )

Doping Concentration (cm -3 )

Hfin= 2Wfin (FinFET) Hfin= Wfin (Tri-gate) Hfin=1/2Wfin (Q.Planar)

圖 3-16 閘極氧化層厚度漂移(±10%)引起之起始電壓變量比較圖

0 5 10 15 20 25 30 35 40

1.0E+17 6.0E+18

∆ V th (m V )

Doping Concentration (cm -3 )

Hfin= 2Wfin (FinFET) Hfin= Wfin (Tri-gate) Hfin=1/2Wfin (Q.Planar)

圖 3-17 通道掺雜濃度漂移(±10%)引起之起始電壓變量比較圖

0 10 20 30 40 50 60 70 80

1.0E+17 6.0E+18

∆ V th (m V )

Doping Concentration (cm -3 )

Hfin= 2Wfin (FinFET) Hfin= Wfin (Tri-gate) Hfin=1/2Wfin (Q.Planar)

圖 3-18 隨機掺雜濃度變動引起之起始電壓變量比較圖

0 5 10 15 20 25 30 35 40

1.0E+17 6.0E+18

∆ V th (m V )

Doping Concentration (cm -3 )

Hfin= 2Wfin (FinFET) Hfin= Wfin (Tri-gate) Hfin=1/2Wfin (Q.Planar)

圖 3-19 矽基底掺雜濃度變動引起之起始電壓變量比較圖

78

∆ V th,t ota l (m V)

Aspect Ratio

scenario #2 (bulk)

scenario #1 (100nm-box)

(a)

scenario #2 (bulk)

scenario #1 (100nm-box)

(b)

圖 3-20 厚絕緣層/矽基底多重閘極電晶體的起始電壓變量總和比較圖 (a)低掺雜通道元件;(b)高掺雜通道元件

0

Doping Concentration (cm-3)

Hfin= 2Wfin (FinFET)

Hfin= Wfin (Tri-gate)

Hfin=1/2Wfin (Q.Planar)

S D

(a)

S D

(b)

圖 3-22 類似平面電晶體的電位分布圖 (a) 厚絕緣層(類型一);(b)薄絕緣層(類型三)

0

Doping Concentration (cm

-3

)

Hfin= 2Wfin (FinFET) Hfin= Wfin (Tri-gate) Hfin=1/2Wfin (Q.Planar)

Doping Concentration (cm

-3

)

Hfin= 2Wfin (FinFET) Hfin= Wfin (Tri-gate) Hfin=1/2Wfin (Q.Planar)

(b)

圖 3-23 鰭狀通道寬度漂移引起之起始電壓變量比較圖

0

Doping Concentration (cm

-3

)

Hfin= 2Wfin (FinFET) Hfin= Wfin (Tri-gate) Hfin=1/2Wfin (Q.Planar)

Doping Concentration (cm

-3

)

Hfin= 2Wfin (FinFET) Hfin= Wfin (Tri-gate) Hfin=1/2Wfin (Q.Planar)

(b)

圖 3-24 鰭狀通道高度漂移引起之起始電壓變量比較圖 (a)±10%漂移量;(b)1.5nm 固定漂移量

0 5 10 15 20 25 30 35 40

1.0E+17 6.0E+18

∆ V th (m V )

Doping Concentration(cm -3 )

Hfin= 2Wfin (FinFET) Hfin= Wfin (Tri-gate) Hfin=1/2Wfin (Q.Planar)

圖 3-25 閘極氧化層厚度漂移(±10%)引起之起始電壓變量比較圖

0 5 10 15 20 25 30 35 40

1.0E+17 6.0E+18

∆ V th (m V )

Doping Concentration(cm -3 )

Hfin= 2Wfin (FinFET) Hfin= Wfin (Tri-gate) Hfin=1/2Wfin (Q.Planar)

圖 3-26 通道掺雜濃度漂移(±10%)引起之起始電壓變量比較圖

0 10 20 30 40 50 60 70 80

1.0E+17 6.0E+18

∆ V th (m V )

Doping Concentration (cm -3 )

Hfin= 2Wfin (FinFET) Hfin= Wfin (Tri-gate) Hfin=1/2Wfin (Q.Planar)

圖 3-27 隨機掺雜濃度變動引起之起始電壓變量比較圖

0.25

1.5E+10 5.0E+17 1.0E+18 1.5E+18 2.0E+18

Vth(V)

1.5E+10 5.0E+17 1.0E+18 1.5E+18 2.0E+18

V

th

(V)

N

CH

(cm

-3

)

FinFET

Trigate Q.Planar

Doping=1E17 cm

-3

W

total

=75nm, L

g

=25nm t

HfO2

=2nm, V

DS

=0.05V Doping=1E17 cm

-3

W

total

=75nm, L

g

=25nm t

HfO2

=2nm, V

DS

=0.05V

(b)

圖 3-28 低摻雜通道元件的起始電壓對通道摻雜濃度關係圖 (a) 厚絕緣層(類型一);(b)薄絕緣層(類型三)

0 5 10 15 20 25 30 35 40

1.0E+17 6.0E+18

∆ V th (m V )

Doping Concentration (cm -3 )

Hfin= 2Wfin (FinFET) Hfin= Wfin (Tri-gate) Hfin=1/2Wfin (Q.Planar)

圖 3-29 埋層氧化層厚度變動引起之起始電壓變量比較圖

0 5 10 15 20 25 30 35 40

1.0E+17 6.0E+18

∆ V th (m V )

Doping Concentration (cm -3 )

Hfin= 2Wfin (FinFET) Hfin= Wfin (Tri-gate) Hfin=1/2Wfin (Q.Planar)

圖 3-30 矽基底掺雜濃度變動引起之起始電壓變量比較圖

74

scenario #1 (100nm-box) scenario #3 (10nm-box)

(a)

scenario #1 (100nm-box) scenario #3 (10nm-box)

(b)

圖 3-31 厚/薄絕緣層多重閘極電晶體的起始電壓變量總和比較圖

16 17

scenario 1 scenario 2 scenario 3

∆ V

th,total

(m V )

scenario 1 scenario 2 scenario 3

∆ V

th,total

(m V )

(b)

圖 3-32 三種類型的起始電壓變量總和比較圖

(a)低通道掺雜鰭式場效電晶體;(b)高通道掺雜類似平面電晶體

第 四 章 結論與展望

4.1 結論

在本論文中探討了三種基底類型對應不同長寬比的多重閘極電晶 體,因製程參數漂移及隨機掺雜濃度變動,對元件的起始電壓所造成之 影響。由模擬的結果中,我們觀察到製程漂移引起的鰭狀通道高度 (fin-height)及鰭狀通道寬度(fin-width)變化,對不同長寬比的低掺雜通道 元件之起始電壓的影響不盡相同。低掺雜通道元件對元件的長寬比具有 相依性,亦即對不同長寬比的元件,在一固定的總通道寬度(Wtotal)下,製 程參數漂移會引起不同的起始電壓變異。相反的,高掺雜通道元件對元 件的長寬比則幾近乎不具有相依性。

由三種類型(厚絕緣層、矽基底及薄絕緣層)多重閘極金氧半場效電 晶體的模擬結果及所呈現的趨勢來觀察,我們可以得到如下幾個結論:

(1) 對低掺雜通道的多重閘極金氧半場效電晶體元件,因鰭式場效電 晶體(AR=2)具有較佳的 electrostatics,是故由製程參數漂移所引 起的起始電壓變量較小。

(2) 對低掺雜通道的多重閘極金氧半場效電晶體元件,因鰭式場效電 晶體(AR=2)對通道摻雜的敏感度較低,使其對隨機掺雜濃度變動 的抗擾性較高。

(3) 對高掺雜通道的多重閘極金氧半場效電晶體元件,因類平面場效 電晶體(AR=1/2)對隨機掺雜濃度變動的抗擾性較高,使其具有較

(4) 當矽基底被採用來製作多重閘極金氧半場效電晶體時,類平面場 效電晶體(AR=1/2)的 electrostatics 將會變差。

(5) 當薄絕緣層與高摻雜的接地平面基底被採用來製作多重閘極金 氧半場效電晶體時,將可改善低掺雜通道的類平面場效電晶體 (AR=1/2)及三閘極場效電晶體(AR=1)的 electrostatics。但對於鰭 式場效電晶體(AR=2)則無採用薄絕緣層的需要。

(6) 採用薄絕緣層與高摻雜的類接地平面基底來製作多重閘極金氧 半場效電晶體,可增強元件對隨機掺雜濃度變動的抗擾性,尤其 是對低掺雜通道類平面場效電晶體(AR=1/2)的改善最為明顯。

由於厚絕緣層及矽基底兩種類型元件對起始電壓的抗擾度非常接 近,因矽基底多重閘極金氧半場效電晶體因具有較低的晶圓成本,對金 氧半製程相容性高及具有較佳的熱散逸等特性,如採用的為高掺雜通道 元件時,不失為一良好選擇。而薄絕緣層多重閘極金氧半場效電晶體,

因絕緣層的邊緣效應(Electric-field fringing)得到抑制,及類接地面基底可 得到較好元件起始電壓的抗擾度,對低掺雜通道類似平面電晶體及三閘 極電晶體,薄絕緣層與高摻雜的接地平面基底應為最佳選擇,但較薄厚 度的埋層氧化層在製程上的挑戰,是採用此種基底所需面臨的問題。

4.2 後續工作

本論文已針對各種製程參數漂移及隨機掺雜濃度變動,在低汲極電 壓(Low drain bias)下,對各元件起始電壓的影響做一全面性探討,但對於 元件在高汲極電壓(High drain bias)下,製程參數漂移及隨機掺雜濃度變動 對元件起始電壓特性的影響則尚未探討,是未來可以繼續研究的部份。

而對於矽基底多重閘極金氧半場效電晶體(類型二),貫穿阻止植入 (punch through stopper implantation)對元件特性的影響亦未被探討。藉由 增加此一製程手續,應可降低漏電流,進而減小元件的短通道效應,得 到較佳的起始電壓抗擾度,是此類型元件可繼續深入探討的部分。

另外,隨著元件的尺寸微縮持續進行,量子效應(Quantum effect)對 元件特性所產生的影響,則需加以考量。

參考文獻

[1] G. Knoblinger et al., “Multi-Gate MOSFET Design,” ESSDRC, pp.65-68, Sept. 2006.

[2] O. Faynot et al., “Advanced SOI technologies: advantages and drawbacks,” International Workshop on Junction Technology, pp.200-203, May 2006.

[3] Nagumo, T and Hiramoto, T

, “

Design Guideline of Multi-Gate MOSFETs with Substrate-Bias Control,” IEEE Transactions on Electron Device, Vol.53, Issue 12, pp.3025-3031, Dec. 2006.

[4] A. V-Y Thean et al., “Performance and Variability Comparisons between Multi-Gate FETs and Planar SOI Transistors,” EDM, pp.1-4, Dec.2006.

[5] Aniket Breed and Kenneth P. Roenker, “Comparison of the scaling characteristics of nanoscale silicon N-channel multiple-gate MOSFETs,”

Circuit and System, Vol. 1, pp.603-606, Aug. 2005.

[6] S. Inaba et al., “FinFET: the prospective multi-gate device for future SoC applications,” ESSDRC, pp.49-52, Sept. 2006.

[7] Jong-Ho Lee et al., “Device Design Consideration for 50nm Dynamic Random Access Memory Using Bulk FinFET,” Japan Journal of Applied

Physics, Vol. 44, No. 4B, pp.2176-2179, 2005.

[8] Hey Jin Cho et al., “’The Vth Controllability of 5nm Body-Tied CMOS FinFET,” VLSI Technology, pp.116-117, April 2005.

[9] Lisa T. Su et al., “Deep-Submicrometer Channel Design in Silicon-on-Insulator (SOI) MOSFET’s,” IEEE Electron Device Letter, Vol.15, Issue 5, pp.183-185, May 1994.

[10] Jyi-Tsong Lin et al., “Recessed Multi-Gate SOI MOSFET in deep deca-nanometer regime,” IEEE International SOI Conference, pp.47-48,

Oct. 20001.

[11] Seung-Hwan Kim et al., “Bulk inversion in FinFETs and implied insights on effective gate width,” IEEE Transactions on Electron

Device, Vol.52, Issue 9, pp.1993-1997, Sept. 2005.

[12] V.P. Trivedi and J.G. Fossum, “Nanoscale FD/SOI CMOS: Thick or Thin BOX?,” IEEE Electron Device Letters Vol.26, No. 1, pp.26-28, Jan.

2005.

[13] Yu-Sheng Wu and Pin Su, “Investigation of Variability for Multi-Gate MOSFETs Using Analytical Solution of 3-D Poisson’s Equation” Silicon

Nanoelectronics Workshop, pp.87-88, June. 2007.

[14] Y. Taur and T.H. Ning, “Fundamentals of Modern VLSI Device,”

Cambridge University Press, 1997.

[15] James B. Kuo and Shih-Chia Lin, “LOW-VOLTAGE SOI CMOS VLSI DEVICES AND CIRCUIT,” WILEY Press, 2001.

[16] ISE TCAD Release 10.0 Manual.

A.1 Input deck of heavily doped FinFET (DEVISE)

(define Xcha (* 0.5 0.015)) (define Ycha (* 0.5 0.025)) (define Zcha 0.03)

(define Tgox 0.001) (define Tbox 0.1) (define bodydoping 6e18)

(define Xgox (+ Xcha Tgox)) (define Ygox Ycha) (define Zgox (+ Zcha Tgox))

(define Xsd Xcha) (define Ysd (+ Ycha 0.02)) (define Zsd Zcha)

(define Xbox (* 3 Xcha)) (define Ybox Ysd) (define Zbox (* -1 Tbox))

;---;

;--- Channel

(isegeo:create-cuboid (position 0 (* -1 Ycha) 0) (position Xcha Ycha Zcha) "Silicon" "channel" )

;--- Gate Oxide

(isegeo:set-default-boolean "BAB")

(isegeo:create-cuboid (position 0 (* -1 Ygox) 0) (position Xgox Ygox Zgox) "Oxide" "gate_oxide" )

;--- Poly Gate

(isegeo:create-cuboid (position 0 (* -1 Ygox) 0) (position (+ 0.001 Xgox) Ygox (+ 0.001 Zgox)) "PolySi" "Gate")

;--- contact gate

(define GateID (find-body-id (position 0 Ygox (* 0.5 (+ Zgox (+ 0.001 Zgox))) ) )) (isegeo:define-contact-set "gate" 4 (color:rgb 1 0 0 ) "##" )

(isegeo:set-current-contact-set "gate") (isegeo:set-contact-boundary-faces GateID) (isegeo:delete-region GateID )

;--- contact Source/Drain

(isegeo:create-cuboid (position 0 Ycha 0) (position Xsd Ysd Zsd) "Silicon" "drain_region" )

(isegeo:create-cuboid (position 0 (* -1 Ycha) 0) (position Xsd (* -1 Ysd) Zsd) "Silicon" "source_region" )

;--- BOX

(isegeo:create-cuboid (position 0 (* -1 Ybox) 0) (position Xbox Ybox Zbox) "Oxide" "BOX" )

;--- contact substrate

(isegeo:define-contact-set "substrate" 4 (color:rgb 1 0 0 ) "##" ) (isegeo:set-current-contact-set "substrate")

(isegeo:set-contact-faces (find-face-id (position (* 0.5 Xbox) 0 Zbox)))

;---;

;--- imprint for S/D

(isegeo:imprint-rectangular-wire (position 0 (+ 0.005 Ycha) Zcha) (position Xsd Ysd Zcha))

(isegeo:imprint-rectangular-wire (position 0 (* -1 (+ 0.005 Ycha)) Zcha) (position Xsd (* -1 Ysd) Zcha))

;---;

;--- contact drain

(isegeo:define-contact-set "drain" 4 (color:rgb 1 0 0 ) "##" ) (isegeo:set-current-contact-set "drain")

(isegeo:set-contact-faces (find-face-id (position (* 0.5 Xsd) (* 0.5 (+ Ysd (+ 0.005 Ycha))) Zsd)))

;--- contact source

(isegeo:define-contact-set "source" 4 (color:rgb 1 0 0 ) "##" ) (isegeo:set-current-contact-set "source")

(isegeo:set-contact-faces (find-face-id (position (* 0.5 Xsd) (* -1 (* 0.5 (+ Ysd (+ 0.005 Ycha)))) Zsd)))

;---;

;--- doping Si

(isedr:define-constant-profile "body_doping" "BoronActiveConcentration" bodydoping) (isedr:define-constant-profile-material "body_doping" "body_doping" "Silicon")

(isedr:define-refinement-window "drain_doping" "Cuboid" (position (* -1 Xsd) Ycha 0) (position Xsd Ysd Zsd)) (isedr:define-constant-profile "drain_doping" "ArsenicActiveConcentration" 2e20)

(isedr:define-constant-profile-placement "drain_doping" "drain_doping" "drain_doping")

;--- doping source

(isedr:define-refinement-window "source_doping" "Cuboid" (position (* -1 Xsd) (* -1 Ycha) 0) (position Xsd (* -1 Ysd) Zsd)) (isedr:define-constant-profile "source_doping" "ArsenicActiveConcentration" 2e20)

(isedr:define-constant-profile-placement "source_doping" "source_doping" "source_doping")

;--- mesh Si

(isedr:define-refinement-size "Si_Mesh" (/ Xsd 2.5) (/ Ysd 2.5) (/ Zsd 2.5) (/ Xsd 5) (/ Ysd 5) (/ Zsd 5)) (isedr:define-refinement-material "Si_Mesh" "Si_Mesh" "Silicon" )

(isedr:define-refinement-function "Si_Mesh" "DopingConcentration" "MaxTransDiff" 1)

;--- mesh main

(isedr:define-refinement-window "main_mesh" "Cuboid" (position 0 (* -1 (+ Ycha Tgox)) 0) (position Xcha (+ Ycha Tgox) Zgox)) (isedr:define-refinement-size "main_mesh" (/ Xsd 8) (/ Ysd 10) (/ Zsd 8) (/ Xsd 20) (/ Ysd 100) (/ Zsd 20) )

(isedr:define-refinement-placement "main_mesh" "main_mesh" "main_mesh" )

(isedr:define-refinement-function "main_mesh" "DopingConcentration" "MaxTransDiff" 1)

;--- mesh BOX

(isedr:define-refinement-window "BOX_mesh" "Cuboid" (position 0 (* -1 Ybox) 0) (position Xbox Ybox (* -1 Zcha))) (isedr:define-refinement-size "BOX_mesh" (/ Xbox 4) (/ Ybox 4) (/ Zcha 3) (/ Xbox 8) (/ Ybox 8) (/ Zcha 8) ) (isedr:define-refinement-placement "BOX_mesh" "BOX_mesh" "BOX_mesh" )

(isedr:define-refinement-function "BOX_mesh" "DopingConcentration" "MaxTransDiff" 1)

;--- mesh total

(isedr:define-refinement-window "total_mesh" "Cuboid" (position 0 (* -1 Ybox) 0) (position Xbox Ybox Zbox)) (isedr:define-refinement-size "total_mesh" (/ Xbox 3) (/ Ybox 3) (/ (* -1 Zbox) 3) (/ Xbox 5) (/ Ybox 5) (/ (* -1 Zbox) 5) ) (isedr:define-refinement-placement "total_mesh" "total_mesh" "total_mesh" )

(isedr:define-refinement-function "total_mesh" "DopingConcentration" "MaxTransDiff" 1)

;--- mesh topoxide

(isedr:define-refinement-window "topoxide_mesh" "Cuboid" (position 0 (* -1 Ygox) (- Zcha Tgox)) (position Xgox Ygox (+ Zcha Tgox)))

(isedr:define-refinement-size "topoxide_mesh" (/ Xsd 5) (/ Ysd 5) (/ Tgox 3) (/ Xsd 20) (/ Ysd 20) (/ Tgox 6) ) (isedr:define-refinement-placement "topoxide_mesh" "topoxide_mesh" "topoxide_mesh" )

(isedr:define-refinement-function "topoxide_mesh" "DopingConcentration" "MaxTransDiff" 1)

;--- mesh buriedoxide

(isedr:define-refinement-window "buriedoxide_mesh" "Cuboid" (position 0 (* -1 Ygox) (* -1 Tgox)) (position Xgox Ygox Tgox)) (isedr:define-refinement-size "buriedoxide_mesh" (/ Xsd 5) (/ Ysd 5) (/ Tgox 3) (/ Xsd 20) (/ Ysd 20) (/ Tgox 6) )

(isedr:define-refinement-placement "buriedoxide_mesh" "buriedoxide_mesh" "buriedoxide_mesh" ) (isedr:define-refinement-function "buriedoxide_mesh" "DopingConcentration" "MaxTransDiff" 1)

;--- mesh frontoxide

(isedr:define-refinement-window "frontoxide_mesh" "Cuboid" (position (- Xcha Tgox) (* -1 Ygox) 0) (position Xgox Ycha Zgox)) (isedr:define-refinement-size "frontoxide_mesh" (/ Tgox 3) (/ Ysd 5) (/ Zsd 5) (/ Tgox 6) (/ Ysd 20) (/ Zsd 20) )

(isedr:define-refinement-placement "frontoxide_mesh" "frontoxide_mesh" "frontoxide_mesh" ) (isedr:define-refinement-function "frontoxide_mesh" "DopingConcentration" "MaxTransDiff" 1)

;--- save BND and CMD

(ise:assign-material-and-region-names (part:entities (filter:type "solid?"))) (iseio:save-dfise-bnd (part:entities (filter:t pe "solid?")) "@boundary/o@") y (isedr:write-cmd-file "@commands/o@")

A.2 Input deck of heavily doped FinFET (DESSIS)

Electrode {

{ Name="gate" Voltage=-0.3 barrier=-0.55}

{ Name="substrate" Voltage=0}

{ Name="drain" Voltage=0.0}

{ Name="source" Voltage=0}

}

Physics {

EffectiveIntrinsicDensity(OldSlotboom)

Recombination(SRH(DopingDependence) Auger Avalanche(Eparallel)) }

Plot {

eDensity hDensity eCurrent hCurrent DisplacementCurrent

Potential SpaceCharge ElectricField hMobility eVelocity hVelocity

Doping DonorConcentration AcceptorConcentration }

Math { Extrapolate Derivatives RelErrControl Digits=5

ErRef(electron)=1.e10 ErRef(hole)=1.e10 Notdamped=50 Iterations=30 Newdiscretization Directcurrent Method=ParDiSo -VoronoiFaceBoxMethod NaturalBoxMethod }

Solve {

Coupled(iterations=150) { Poisson } Coupled { Poisson Electron } NewCurrentFile="n@node@_init"

Quasistationary(

InitialStep=1e-1 Increment=5 Minstep=1e-2 MaxStep=0.5 Goal{ name="drain" voltage=0.05 } ){

Coupled { Poisson Electron } }

Quasistationary ( DoZero

InitialStep=1e-1 Increment=5 Minstep=1e-2 MaxStep=0.5 Goal { Name="gate" Voltage=-0.3 } ) { Coupled { Poisson Electron} } #-ramp gate:

NewCurrentFile=""

Quasistationary ( DoZero

InitialStep=1e-2 Increment=1.5 Minstep=1e-5 MaxStep=0.01 Goal { Name="gate" Voltage=0.4 } )

{ Coupled {Poisson Electron} }

相關文件