• 沒有找到結果。

於本研究中,以水分解產氫,希冀以「氫」替代傳統石化燃料的再生能源。

研究主要分為製程與量測兩部分。製程上利用半導體技術,完成不同長度1 μm、

3 μm與12 μm之矽微米柱陣列,最大特點在於製程穩定性高。接著利用化學溶液 以浸泡方式還原銀粒子於微米柱上,呈皇冠狀。

量測上,由光吸收得知修飾銀粒子後,紫外光波段吸收強度大幅提升,可見 光與紅外光因矽微米柱受銀粒子遮蔽而吸收強度減小。而開路電壓隨銀粒子修飾 量增加而減小,電流最大值在修飾秒數為30秒,電壓-1 V時,電流值約42 mA/cm2。 其主要貢獻於共催化劑之效應與表面電漿共振效應增加光電流值。

本研究於未來可改善之方向,可能為調整硝酸銀與氫氟酸之濃度與浸泡時間,

或者於浸泡溶液時利用超音波震盪,減少積聚於矽微米柱陣列內之空氣,使銀粒 子粒徑一致且均勻分布於矽微米柱之表面。此外,也可修飾金 (Au) 或銅 (Au) 同 為產生表面電漿共振之金屬粒子減低開路電壓與增加光電流,增加產氫效率。

63

[5] A. Fujishima, K. Honda, ELECTROCHEMICAL PHOTOLYSIS OF WATER AT A SEMICONDUCTOR ELECTRODE, Nature, 238 (1972) 37-+.

[6] 劉怡君, 摻雜碳之 α-Fe2O3 薄膜合成及水分解應用,國立台北科技大學資源工 程研究所碩士論文 (2010)

[7] A. Kudo, Y. Miseki, Heterogeneous photocatalyst materials for water splitting, Chem. Soc. Rev., 38 (2009) 253-278.

[8] M.G. Roel van de Krol, Photoelectrochemical Hydrogen Production, Springer, Dordrecht, 2012.

[9] http://en.wikipedia.org/wiki/File:Solar_Spectrum.png

[10] V. Subramanian, E.E. Wolf, P.V. Kamat, Catalysis with TiO2/gold

nanocomposites. Effect of metal particle size on the Fermi level equilibration, J.

Am. Chem. Soc., 126 (2004) 4943-4950.

[11] K. Maeda, K. Domen, Solid Solution of GaN and ZnO as a Stable Photocatalyst for Overall Water Splitting under Visible Light, Chem. Mat., 22 (2010) 612-623.

[12] H.M. Chen, C.K. Chen, C.C. Lin, R.S. Liu, H. Yang, W.S. Chang, K.H. Chen, T.S. Chan, J.F. Lee, D.P. Tsai, Multi-Bandgap-Sensitized ZnO Nanorod

64

Photoelectrode Arrays for Water Splitting: An X-ray Absorption Spectroscopy Approach for the Electronic Evolution under Solar Illumination, J. Phys. Chem.

C, 115 (2011) 21971-21980.

[13] C. Liu, J.Y. Tang, H.M. Chen, B. Liu, P.D. Yang, A Fully Integrated Nanosystem of Semiconductor Nanowires for Direct Solar Water Splitting, Nano Lett., 13 (2013) 2989-2992.

[14] M.E. Stewart, C.R. Anderton, L.B. Thompson, J. Maria, S.K. Gray, J.A. Rogers, R.G. Nuzzo, Nanostructured plasmonic sensors, Chem. Rev., 108 (2008)

494-521.

[15] Y.K. Lee, C.H. Jung, J. Park, H. Seo, G.A. Somorjai, J.Y. Park, Surface Plasmon-Driven Hot Electron Flow Probed with Metal-Semiconductor Nanodiodes, Nano Lett., 11 (2011) 4251-4255.

[16] Z.W. Liu, W.B. Hou, P. Pavaskar, M. Aykol, S.B. Cronin, Plasmon Resonant Enhancement of Photocatalytic Water Splitting Under Visible Illumination, Nano Lett., 11 (2011) 1111-1116.

[17] E.L. Warren, J.R. McKone, H.A. Atwater, H.B. Gray, N.S. Lewis, Hydrogen-evolution characteristics of Ni-Mo-coated, radial junction,

n(+)p-silicon microwire array photocathodes, Energy Environ. Sci., 5 (2012) 9653-9661.

[18] M.T. Mayer, C. Du, D.W. Wang, Hematite/Si Nanowire Dual-Absorber System for Photoelectrochemical Water Splitting at Low Applied Potentials, J. Am.

Chem. Soc., 134 (2012) 12406-12409.

[19] Y.J. Hwang, C.H. Wu, C. Hahn, H.E. Jeong, P.D. Yang, Si/InGaN Core/Shell Hierarchical Nanowire Arrays and their Photoelectrochemical Properties, Nano Lett., 12 (2012) 1678-1682.

[20] S.W. Boettcher, J.M. Spurgeon, M.C. Putnam, E.L. Warren, D.B. Turner-Evans,

65

M.D. Kelzenberg, J.R. Maiolo, H.A. Atwater, N.S. Lewis, Energy-Conversion Properties of Vapor-Liquid-Solid-Grown Silicon Wire-Array Photocathodes, Science, 327 (2010) 185-187.

[21] M.C. Putnam, S.W. Boettcher, M.D. Kelzenberg, D.B. Turner-Evans, J.M.

Spurgeon, E.L. Warren, R.M. Briggs, N.S. Lewis, H.A. Atwater, Si microwire-array solar cells, Energy Environ. Sci., 3 (2010) 1037-1041.

[22] J.M. Spurgeon, S.W. Boettcher, M.D. Kelzenberg, B.S. Brunschwig, H.A.

Atwater, N.S. Lewis, Flexible, Polymer-Supported, Si Wire Array Photoelectrodes, Adv. Mater., 22 (2010) 3277-+.

[23] S.W. Boettcher, E.L. Warren, M.C. Putnam, E.A. Santori, D. Turner-Evans, M.D.

Kelzenberg, M.G. Walter, J.R. McKone, B.S. Brunschwig, H.A. Atwater, N.S.

Lewis, Photoelectrochemical Hydrogen Evolution Using Si Microwire Arrays, J.

Am. Chem. Soc., 133 (2011) 1216-1219.

[24] J.R. McKone, E.L. Warren, M.J. Bierman, S.W. Boettcher, B.S. Brunschwig, N.S.

Lewis, H.B. Gray, Evaluation of Pt, Ni, and Ni-Mo electrocatalysts for hydrogen evolution on crystalline Si electrodes, Energy Environ. Sci., 4 (2011) 3573-3583.

[25] N.C. Strandwitz, D.B. Turner-Evans, A.C. Tamboli, C.T. Chen, H.A. Atwater, N.S. Lewis, Photoelectrochemical Behavior of Planar and Microwire-Array Si|GaP Electrodes, Adv. Energy Mater., 2 (2012) 1109-1116.

[26] A. Kargar, K. Sun, Y. Jing, C.M. Choi, H.S. Jeong, Y.C. Zhou, K. Madsen, P.

Naughton, S.H. Jin, G.Y. Jung, D.L. Wang, Tailoring n-ZnO/p-Si Branched Nanowire Heterostructures for Selective Photoelectrochemical Water Oxidation or Reduction, Nano Lett., 13 (2013) 3017-3022.

[27] Z.Z. Xiong, M.J. Zheng, S.D. Liu, L. Ma, W.Z. Shen, Silicon nanowire array/Cu2O crystalline core-shell nanosystem for solar-driven photocatalytic water splitting, Nanotechnology, 24 (2013).

66

[28] A. Kargar, K. Sun, Y. Jing, C. Choi, H. Jeong, G.Y. Jung, S. Jin, D.L. Wang, 3D Branched Nanowire Photoelectrochemical Electrodes for Efficient Solar Water Splitting, ACS Nano, 7 (2013) 9407-9415.

[29] 陳悦芳,林欣瑜,陳郁文。2008。水分解製氫反應之光觸媒。中華民國發明 專利第 I293037 號。

[30] 陳悦芳,林欣瑜,陳郁文,陳陵援。2008。過渡金屬在銦鎢氧化物光觸媒之 製備方法其在水分解反應之應用。中華民國發明專利第 I296541 號。

[31] LIEJIN GUO, XIANGHUI ZHANG, DENGWEI JING. 2008. Ni doping Cd*.Zn*.*S micrometre ball photocatalyst and preparation method. CN patent No. 101157044.

[32] YING YU, LU REN, YURONG DENG, JIALIN LI. 2009. Aquatherm

preparation method of high effective catalyst (MIn)xCd2(1-x)S2 for the solar water analysing hydrogen production. CN patent No. 101337188

[33] 黃朝琴, 張文昇, 鄭名山, 陳佩君, 李岱洲, 吳錦貞, (2008), 光能轉換的觸 媒材料及其製備方法, 中華民國發明專利第 I374859 號.

[34] SMOLYAKOV GENNADY A, OSINSKI MAREK A. 2012. Efficient hydrogen production by photocatalytic water splitting using surface plasmons in hybrid nanoparticles. U.S. patent No. 20120145532

[35] CHAOSHENG LI, WENJUN LUO, ZHIGANG ZOU. 2010. BiVO4 nano photoelectrode and application thereof in hydrogen production from water splitting. CN patent No. 101775615.

[36] NOH TAE HOON, CHO IN SUN, LEE SANG WOOK, KIM DONG WOOK , YIM DONG KYUN, ROH HEE SUK, PARK SANG BACK, SEO SE WON , LEE CHAN WOO, HONG KUG SUN. 2012. Photocatalysts for water splitting

67

and synthesis methods thereof. KR Patent No. 20120011304.

[37] OH JIHUN, BRANZ HOWARD. 2012. Anti-reflective Nanoporous Silicon For Efficient Hydrogen Production. U.S. Patent No. 20120103825.

[38] NAKANISHI HARUYUKI, MINEGISHI TSUTOMU, DOMEN KAZUNARI, KUBOTA JUN, MIWADA CHIKA. 2012. Photocatalyst For Water Splitting Comprising Gallium Selenide And Photoelectrode For Water Splitting

Comprising The Same. WO Patent No. 2012121034.

[39] KIM TAE GON, KIM TAE HYUNG, IM SEOUNG JAE. 2012. Visible Light Sensitive Photocatalyst, Method Of Producing The Same, Electrochemical Water Splitting Cell, Water Splitting System, Organic Material Decomposition System Comprising The Same. KR Patent No. 20120138646.

[40] FUSHENG LIU, NAN LU, LIANLIAN LIU, TING FANG, TAO ZHU, LING LI, WENTAO WANG, HUA HUANG. 2012. Preparation Method For Porous Nano P-cus/n-cds Compound Semiconductor Photochemical Catalyst. CN Patent No.

102489318.

[41] YAOJUN ZHANG, LICAI LIU, BINGLI WANG, LULU NI, YACHAO WANG, QIAN CHAI, DONGSHENG JING, XIAOZE GU, PEIYAO LIU. 2012.

Steel-slag-base Cementing Material And Zinc Oxide Semiconductor Composite Catalyst And Application Thereof To Solar Photocatalytic Water Splitting To Produce Hydrogen. CN Patent No. 102688764.

[42] LIN PEIBIN, LI QIANG, YANG YU, SU JIACHUN, SHANGGUAN

WENFENG, SUN YANGZHOU. 2013. Catalyst Capable Of Responding To Visible Light And Being Used For Producing Hydrogen By Photocatalytic Water Splitting And Preparation Method Of Catalyst. CN Patent No. 102861597.

[43] 楊金成、吳政三、柯富祥,奈米通訊,8 卷 1 期,2001。

相關文件