• 沒有找到結果。

跳躍子突變技術挑選增加 mrkH 啟動子活性菌株

在圖十六(B)中可以發現 mrkH 啟動子活性並不高,推測可能有其他轉錄因 子抑制其活性,因此企圖利用跳躍子突變技術(圖十七 A)篩選出此抑制因子,首 在 LacZ 基因缺損株放入帶有 mrkH 啟動子的質體,再利用接合作用轉入 Tn5 跳 躍子,藉量測 LacZ 活性來篩選增加 mrkH 啟動子活性的突變株。經篩選約 10000 顆突變株,挑出 LacZ 活性較高的菌落 10 顆,重新培養滴在馬康基氏瓊脂上與 帶有 mrkH 啟動子質體的菌比較,卻沒有發現明顯變紅的菌落(圖十七 B),而利 用 X-gal 篩選也無明顯深藍的菌落(圖十七 C)。

20

21

22

過頭抑制 Fur 的表現,SoxRS 也可能在低鐵環境扮演抑制 Fur 的角色;在低含氧 量下,RcsB 可能與 RmpA2 結合活化 MrkA 表現,c-di-GMP 是否直接參與活化 mrkH 啟動子,MrkH 及 MrkI 的角色仍待釐清。

23

五、參考文獻

1. Colodner R, Raz R, Chazan B, Sakran W (2004) Susceptibility pattern of

extended-spectrum beta-lactamase producing bacteria isolated from inpatients to five antimicrobial drugs in a community hospital in Northern Israel. Int J Antimicrob Agents 24: 409-410.

2. Hirsch EB, Tam VH (2010) Detection and treatment options for Klebsiella pneumoniae carbapenemases (KPCs): an emerging cause of

multidrug-resistant infection. J Antimicrob Chemother 65: 1119-1125.

3. Nordmann P, Cuzon G, Naas T (2009) The real threat of Klebsiella pneumoniae carbapenemase-producing bacteria. Lancet Infect Dis 9: 228-236.

4. Kumarasamy KK, Toleman MA, Walsh TR, Bagaria J, Butt F, et al. (2010) Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: a molecular, biological, and epidemiological study. Lancet Infect Dis 10: 597-602.

5. Chen KY, Hsueh PR, Liaw YS, Yang PC, Luh KT (2000) A 10-year experience with bacteriology of acute thoracic empyema: emphasis on Klebsiella pneumoniae in patients with diabetes mellitus. Chest 117: 1685-1689.

6. Chuang YP, Fang CT, Lai SY, Chang SC, Wang JT (2006) Genetic determinants of capsular serotype K1 of Klebsiella pneumoniae causing primary pyogenic liver abscess. J Infect Dis 193: 645-654.

7. Keynan Y, Rubinstein E (2007) The changing face of Klebsiella pneumoniae infections in the community. Int J Antimicrob Agents 30: 385-389.

8. Tsay RW, Siu LK, Fung CP, Chang FY (2002) Characteristics of bacteremia between community-acquired and nosocomial Klebsiella pneumoniae infection: risk factor for mortality and the impact of capsular serotypes as a herald for community-acquired infection. Arch Intern Med 162: 1021-1027.

9. Yu WL, Ko WC, Cheng KC, Lee HC, Ke DS, et al. (2006) Association between rmpA and magA genes and clinical syndromes caused by Klebsiella pneumoniae in Taiwan. Clin Infect Dis 42: 1351-1358.

10. Fang CT, Chuang YP, Shun CT, Chang SC, Wang JT (2004) A novel virulence gene in Klebsiella pneumoniae strains causing primary liver abscess and septic metastatic complications. J Exp Med 199: 697-705.

11. Yu WL, Chan KS, Ko WC, Lee CC, Chuang YC (2007) Lower prevalence of diabetes mellitus in patients with Klebsiella pneumoniae primary liver abscess caused by isolates of K1/K2 than with non-K1/K2 capsular serotypes. Clin

24

Infect Dis 45: 1529-1530; author reply 1532-1523.

12. Amako K, Meno Y, Takade A (1988) Fine structures of the capsules of Klebsiella pneumoniae and Escherichia coli K1. J Bacteriol 170: 4960-4962.

13. Mizuta K, Ohta M, Mori M, Hasegawa T, Nakashima I, et al. (1983) Virulence for mice of Klebsiella strains belonging to the O1 group: relationship to their capsular (K) types. Infect Immun 40: 56-61.

14. Pan YJ, Fang HC, Yang HC, Lin TL, Hsieh PF, et al. (2008) Capsular

polysaccharide synthesis regions in Klebsiella pneumoniae serotype K57 and a new capsular serotype. J Clin Microbiol 46: 2231-2240.

15. Podschun R, Fischer A, Ullmann U (1992) Siderophore production of Klebsiella species isolated from different sources. Zentralbl Bakteriol 276: 481-486.

16. Lin CT, Wu CC, Chen YS, Lai YC, Chi C, et al. (2011) Fur regulation of the capsular polysaccharide biosynthesis and iron-acquisition systems in Klebsiella pneumoniae CG43. Microbiology 157: 419-429.

17. Williams P, Lambert PA, Brown MR, Jones RJ (1983) The role of the O and K antigens in determining the resistance of Klebsiella aerogenes to serum killing and phagocytosis. J Gen Microbiol 129: 2181-2191.

18. Lai YC, Peng HL, Chang HY (2003) RmpA2, an activator of capsule biosynthesis in Klebsiella pneumoniae CG43, regulates K2 cps gene expression at the transcriptional level. J Bacteriol 185: 788-800.

19. Chang HY, Lee JH, Deng WL, Fu TF, Peng HL (1996) Virulence and outer membrane properties of a galU mutant of Klebsiella pneumoniae CG43.

Microb Pathog 20: 255-261.

20. Cerwenka H (2010) Pyogenic liver abscess: differences in etiology and treatment in Southeast Asia and Central Europe. World J Gastroenterol 16: 2458-2462.

21. Lee CH, Hu TH, Liu JW (2005) Splenic abscess caused by Klebsiella pneumoniae and non-Klebsiella pneumoniae in Taiwan: emphasizing risk factors for acquisition of Klebsiella pneumoniae splenic abscess. Scand J Infect Dis 37:

905-909.

22. Sheu SJ, Kung YH, Wu TT, Chang FP, Horng YH (2011) Risk factors for

endogenous endophthalmitis secondary to klebsiella pneumoniae liver abscess:

20-year experience in Southern Taiwan. Retina 31: 2026-2031.

23. Tomas JM, Camprubi S, Merino S, Davey MR, Williams P (1991) Surface exposure of O1 serotype lipopolysaccharide in Klebsiella pneumoniae strains expressing different K antigens. Infect Immun 59: 2006-2011.

24. Podschun R, Ullmann U (1998) Klebsiella spp. as nosocomial pathogens:

epidemiology, taxonomy, typing methods, and pathogenicity factors. Clin Microbiol Rev 11: 589-603.

25

25. Sun WS, Syu WJ, Ho WL, Lin CN, Tsai SF, et al. (2014) SitA contributes to the virulence of Klebsiella pneumoniae in a mouse infection model. Microbes Infect 16: 161-170.

26. Nicolle LE (2005) Catheter-related urinary tract infection. Drugs Aging 22:

627-639.

27. Macleod SM, Stickler DJ (2007) Species interactions in mixed-community crystalline biofilms on urinary catheters. J Med Microbiol 56: 1549-1557.

28. Wang X, Lunsdorf H, Ehren I, Brauner A, Romling U (2010) Characteristics of biofilms from urinary tract catheters and presence of biofilm-related

components in Escherichia coli. Curr Microbiol 60: 446-453.

29. Duguid JP (1959) Fimbriae and adhesive properties in Klebsiella strains. J Gen Microbiol 21: 271-286.

30. Stahlhut SG, Struve C, Krogfelt KA (2012) Klebsiella pneumoniae type 3 fimbriae agglutinate yeast in a mannose-resistant manner. J Med Microbiol 61:

317-322.

31. Sebghati TA, Korhonen TK, Hornick DB, Clegg S (1998) Characterization of the type 3 fimbrial adhesins of Klebsiella strains. Infect Immun 66: 2887-2894.

32. Gerlach GF, Allen BL, Clegg S (1988) Molecular characterization of the type 3 (MR/K) fimbriae of Klebsiella pneumoniae. J Bacteriol 170: 3547-3553.

33. Chan CH, Chen FJ, Huang YJ, Chen SY, Liu KL, et al. (2012) Identification of protein domains on major pilin MrkA that affects the mechanical properties of Klebsiella pneumoniae type 3 fimbriae. Langmuir 28: 7428-7435.

34. Chen FJ, Chan CH, Huang YJ, Liu KL, Peng HL, et al. (2011) Structural and mechanical properties of Klebsiella pneumoniae type 3 Fimbriae. J Bacteriol 193: 1718-1725.

35. Langstraat J, Bohse M, Clegg S (2001) Type 3 fimbrial shaft (MrkA) of Klebsiella pneumoniae, but not the fimbrial adhesin (MrkD), facilitates biofilm formation.

Infect Immun 69: 5805-5812.

36. Jagnow J, Clegg S (2003) Klebsiella pneumoniae MrkD-mediated biofilm

formation on extracellular matrix- and collagen-coated surfaces. Microbiology 149: 2397-2405.

37. Huang YJ, Wu CC, Chen MC, Fung CP, Peng HL (2006) Characterization of the type 3 fimbriae with different MrkD adhesins: possible role of the MrkD containing an RGD motif. Biochem Biophys Res Commun 350: 537-542.

38. Schurtz TA, Hornick DB, Korhonen TK, Clegg S (1994) The type 3 fimbrial adhesin gene (mrkD) of Klebsiella species is not conserved among all fimbriate strains. Infect Immun 62: 4186-4191.

39. Tarkkanen AM, Virkola R, Clegg S, Korhonen TK (1997) Binding of the type 3

26

fimbriae of Klebsiella pneumoniae to human endothelial and urinary bladder cells. Infect Immun 65: 1546-1549.

40. Miettinen A, Westerlund B, Tarkkanen AM, Tornroth T, Ljungberg P, et al. (1993) Binding of bacterial adhesins to rat glomerular mesangium in vivo. Kidney Int 43: 592-600.

41. Tarkkanen AM, Allen BL, Westerlund B, Holthofer H, Kuusela P, et al. (1990) Type V collagen as the target for type-3 fimbriae, enterobacterial adherence organelles. Mol Microbiol 4: 1353-1361.

42. Huang YJ, Liao HW, Wu CC, Peng HL (2009) MrkF is a component of type 3 fimbriae in Klebsiella pneumoniae. Res Microbiol 160: 71-79.

43. Russell PW, Orndorff PE (1992) Lesions in two Escherichia coli type 1 pilus genes alter pilus number and length without affecting receptor binding. J Bacteriol 174: 5923-5935.

44. Mobley HL, Jarvis KG, Elwood JP, Whittle DI, Lockatell CV, et al. (1993) Isogenic P-fimbrial deletion mutants of pyelonephritogenic Escherichia coli:

the role of alpha Gal(1-4) beta Gal binding in virulence of a wild-type strain.

Mol Microbiol 10: 143-155.

45. Lund B, Lindberg F, Marklund BI, Normark S (1987) The PapG protein is the alpha-D-galactopyranosyl-(1----4)-beta-D-galactopyranose-binding adhesin of uropathogenic Escherichia coli. Proc Natl Acad Sci U S A 84: 5898-5902.

46. Gerlach GF, Allen BL, Clegg S (1989) Type 3 fimbriae among enterobacteria and the ability of spermidine to inhibit MR/K hemagglutination. Infect Immun 57:

219-224.

47. Ernst JF, Bennett RL, Rothfield LI (1978) Constitutive expression of the iron-enterochelin and ferrichrome uptake systems in a mutant strain of Salmonella typhimurium. J Bacteriol 135: 928-934.

48. Hantke K (1981) Regulation of ferric iron transport in Escherichia coli K12:

isolation of a constitutive mutant. Mol Gen Genet 182: 288-292.

49. Calderwood SB, Mekalanos JJ (1988) Confirmation of the Fur operator site by insertion of a synthetic oligonucleotide into an operon fusion plasmid. J Bacteriol 170: 1015-1017.

50. Coy M, Neilands JB (1991) Structural dynamics and functional domains of the fur protein. Biochemistry 30: 8201-8210.

51. Delany I, Rappuoli R, Scarlato V (2004) Fur functions as an activator and as a repressor of putative virulence genes in Neisseria meningitidis. Mol Microbiol 52: 1081-1090.

52. De Lorenzo V, Herrero M, Giovannini F, Neilands JB (1988) Fur (ferric uptake regulation) protein and CAP (catabolite-activator protein) modulate

27

transcription of fur gene in Escherichia coli. Eur J Biochem 173: 537-546.

53. Davis BM, Quinones M, Pratt J, Ding Y, Waldor MK (2005) Characterization of the small untranslated RNA RyhB and its regulon in Vibrio cholerae. J Bacteriol 187: 4005-4014.

54. Battistoni F, Platero R, Duran R, Cervenansky C, Battistoni J, et al. (2002) Identification of an iron-regulated, hemin-binding outer membrane protein in Sinorhizobium meliloti. Appl Environ Microbiol 68: 5877-5881.

55. Masse E, Vanderpool CK, Gottesman S (2005) Effect of RyhB small RNA on global iron use in Escherichia coli. J Bacteriol 187: 6962-6971.

56. McHugh JP, Rodriguez-Quinones F, Abdul-Tehrani H, Svistunenko DA, Poole RK, et al. (2003) Global iron-dependent gene regulation in Escherichia coli. A new mechanism for iron homeostasis. J Biol Chem 278: 29478-29486.

57. Morita T, Maki K, Aiba H (2005) RNase E-based ribonucleoprotein complexes:

mechanical basis of mRNA destabilization mediated by bacterial noncoding RNAs. Genes Dev 19: 2176-2186.

58. Morita T, Mochizuki Y, Aiba H (2006) Translational repression is sufficient for gene silencing by bacterial small noncoding RNAs in the absence of mRNA destruction. Proc Natl Acad Sci U S A 103: 4858-4863.

59. Oglesby AG, Murphy ER, Iyer VR, Payne SM (2005) Fur regulates acid resistance in Shigella flexneri via RyhB and ydeP. Mol Microbiol 58: 1354-1367.

60. Palyada K, Threadgill D, Stintzi A (2004) Iron acquisition and regulation in Campylobacter jejuni. J Bacteriol 186: 4714-4729.

61. Vasil ML, Ochsner UA (1999) The response of Pseudomonas aeruginosa to iron:

genetics, biochemistry and virulence. Mol Microbiol 34: 399-413.

62. Masse E, Salvail H, Desnoyers G, Arguin M (2007) Small RNAs controlling iron metabolism. Curr Opin Microbiol 10: 140-145.

63. Galperin MY, Higdon R, Kolker E (2010) Interplay of heritage and habitat in the distribution of bacterial signal transduction systems. Mol Biosyst 6: 721-728.

64. Stock AM, Robinson VL, Goudreau PN (2000) Two-component signal transduction. Annu Rev Biochem 69: 183-215.

65. Mascher T, Helmann JD, Unden G (2006) Stimulus perception in bacterial signal-transducing histidine kinases. Microbiol Mol Biol Rev 70: 910-938.

66. Stock JB, Ninfa AJ, Stock AM (1989) Protein phosphorylation and regulation of adaptive responses in bacteria. Microbiol Rev 53: 450-490.

67. Alex LA, Simon MI (1994) Protein histidine kinases and signal transduction in prokaryotes and eukaryotes. Trends Genet 10: 133-138.

68. Trisler P, Gottesman S (1984) lon transcriptional regulation of genes necessary for capsular polysaccharide synthesis in Escherichia coli K-12. J Bacteriol 160:

28

184-191.

69. Gottesman S, Trisler P, Torres-Cabassa A (1985) Regulation of capsular

polysaccharide synthesis in Escherichia coli K-12: characterization of three regulatory genes. J Bacteriol 162: 1111-1119.

70. Brill JA, Quinlan-Walshe C, Gottesman S (1988) Fine-structure mapping and identification of two regulators of capsule synthesis in Escherichia coli K-12.

J Bacteriol 170: 2599-2611.

71. Stout V, Gottesman S (1990) RcsB and RcsC: a two-component regulator of capsule synthesis in Escherichia coli. J Bacteriol 172: 659-669.

72. Majdalani N, Heck M, Stout V, Gottesman S (2005) Role of RcsF in signaling to the Rcs phosphorelay pathway in Escherichia coli. J Bacteriol 187:

6770-6778.

73. Pruss BM, Besemann C, Denton A, Wolfe AJ (2006) A complex transcription network controls the early stages of biofilm development by Escherichia coli.

J Bacteriol 188: 3731-3739.

74. Francez-Charlot A, Laugel B, Van Gemert A, Dubarry N, Wiorowski F, et al.

(2003) RcsCDB His-Asp phosphorelay system negatively regulates the flhDC operon in Escherichia coli. Mol Microbiol 49: 823-832.

75. Davalos-Garcia M, Conter A, Toesca I, Gutierrez C, Cam K (2001) Regulation of osmC gene expression by the two-component system rcsB-rcsC in Escherichia coli. J Bacteriol 183: 5870-5876.

76. Schwan WR, Shibata S, Aizawa S, Wolfe AJ (2007) The two-component response regulator RcsB regulates type 1 piliation in Escherichia coli. J Bacteriol 189:

7159-7163.

77. Carballes F, Bertrand C, Bouche JP, Cam K (1999) Regulation of Escherichia coli cell division genes ftsA and ftsZ by the two-component system rcsC-rcsB. Mol Microbiol 34: 442-450.

78. Garcia-Calderon CB, Casadesus J, Ramos-Morales F (2007) Rcs and PhoPQ regulatory overlap in the control of Salmonella enterica virulence. J Bacteriol 189: 6635-6644.

79. Wang Q, Zhao Y, McClelland M, Harshey RM (2007) The RcsCDB signaling system and swarming motility in Salmonella enterica serovar typhimurium:

dual regulation of flagellar and SPI-2 virulence genes. J Bacteriol 189:

8447-8457.

80. Virlogeux I, Waxin H, Ecobichon C, Lee JO, Popoff MY (1996) Characterization of the rcsA and rcsB genes from Salmonella typhi: rcsB through tviA is involved in regulation of Vi antigen synthesis. J Bacteriol 178: 1691-1698.

81. Nassif X, Honore N, Vasselon T, Cole ST, Sansonetti PJ (1989) Positive control of

29

colanic acid synthesis in Escherichia coli by rmpA and rmpB, two virulence-plasmid genes of Klebsiella pneumoniae. Mol Microbiol 3:

1349-1359.

82. Romling U, Simm R (2009) Prevailing concepts of c-di-GMP signaling. Contrib Microbiol 16: 161-181.

83. Ross P, Weinhouse H, Aloni Y, Michaeli D, Weinberger-Ohana P, et al. (1987) Regulation of cellulose synthesis in Acetobacter xylinum by cyclic diguanylic acid. Nature 325: 279-281.

84. D'Argenio DA, Miller SI (2004) Cyclic di-GMP as a bacterial second messenger.

Microbiology 150: 2497-2502.

85. Romling U, Amikam D (2006) Cyclic di-GMP as a second messenger. Curr Opin Microbiol 9: 218-228.

86. Romling U, Galperin MY, Gomelsky M (2013) Cyclic di-GMP: the first 25 years of a universal bacterial second messenger. Microbiol Mol Biol Rev 77: 1-52.

87. Mendez-Ortiz MM, Hyodo M, Hayakawa Y, Membrillo-Hernandez J (2006) Genome-wide transcriptional profile of Escherichia coli in response to high levels of the second messenger 3',5'-cyclic diguanylic acid. J Biol Chem 281:

8090-8099.

88. Romling U, Gomelsky M, Galperin MY (2005) C-di-GMP: the dawning of a novel bacterial signalling system. Mol Microbiol 57: 629-639.

89. Chan C, Paul R, Samoray D, Amiot NC, Giese B, et al. (2004) Structural basis of activity and allosteric control of diguanylate cyclase. Proc Natl Acad Sci U S A 101: 17084-17089.

90. Simm R, Morr M, Kader A, Nimtz M, Romling U (2004) GGDEF and EAL domains inversely regulate cyclic di-GMP levels and transition from sessility to motility. Mol Microbiol 53: 1123-1134.

91. Ryan RP, Fouhy Y, Lucey JF, Dow JM (2006) Cyclic di-GMP signaling in bacteria:

recent advances and new puzzles. J Bacteriol 188: 8327-8334.

92. Kong IC (2010) Application of stimulating agents on the immobilized bioluminescence strain Pseudomonas putida mt-2 KG1206, preserved by deep-freezing, for the convenient biomonitoring. J Environ Sci (China) 22:

1475-1480.

93. Benach J, Swaminathan SS, Tamayo R, Handelman SK, Folta-Stogniew E, et al.

(2007) The structural basis of cyclic diguanylate signal transduction by PilZ domains. EMBO J 26: 5153-5166.

94. Christen M, Christen B, Allan MG, Folcher M, Jeno P, et al. (2007) DgrA is a member of a new family of cyclic diguanosine monophosphate receptors and controls flagellar motor function in Caulobacter crescentus. Proc Natl Acad

30

Sci U S A 104: 4112-4117.

95. Hickman JW, Harwood CS (2008) Identification of FleQ from Pseudomonas aeruginosa as a c-di-GMP-responsive transcription factor. Mol Microbiol 69:

376-389.

96. Lee VT, Matewish JM, Kessler JL, Hyodo M, Hayakawa Y, et al. (2007) A cyclic-di-GMP receptor required for bacterial exopolysaccharide production.

Mol Microbiol 65: 1474-1484.

97. Johnson JG, Murphy CN, Sippy J, Johnson TJ, Clegg S (2011) Type 3 fimbriae and biofilm formation are regulated by the transcriptional regulators MrkHI in Klebsiella pneumoniae. J Bacteriol 193: 3453-3460.

98. Tamayo R, Pratt JT, Camilli A (2007) Roles of cyclic diguanylate in the regulation of bacterial pathogenesis. Annu Rev Microbiol 61: 131-148.

99. McDonough KA, Rodriguez A (2012) The myriad roles of cyclic AMP in microbial pathogens: from signal to sword. Nat Rev Microbiol 10: 27-38.

100. Johnson JG, Clegg S (2010) Role of MrkJ, a phosphodiesterase, in type 3 fimbrial expression and biofilm formation in Klebsiella pneumoniae. J Bacteriol 192: 3944-3950.

101. Wilksch JJ, Yang J, Clements A, Gabbe JL, Short KR, et al. (2011) MrkH, a novel c-di-GMP-dependent transcriptional activator, controls Klebsiella pneumoniae biofilm formation by regulating type 3 fimbriae expression. PLoS Pathog 7: e1002204.

102. Yang J, Wilksch JJ, Tan JW, Hocking DM, Webb CT, et al. (2013)

Transcriptional activation of the mrkA promoter of the Klebsiella pneumoniae type 3 fimbrial operon by the c-di-GMP-dependent MrkH protein. PLoS One 8:

e79038.

103. Hennequin C, Forestier C (2009) oxyR, a LysR-type regulator involved in Klebsiella pneumoniae mucosal and abiotic colonization. Infect Immun 77:

5449-5457.

104. Wu CC, Lin CT, Cheng WY, Huang CJ, Wang ZC, et al. (2012) Fur-dependent MrkHI regulation of type 3 fimbriae in Klebsiella pneumoniae CG43.

Microbiology 158: 1045-1056.

105. Zheng M, Doan B, Schneider TD, Storz G (1999) OxyR and SoxRS regulation of fur. J Bacteriol 181: 4639-4643.

106. Carpenter BM, Whitmire JM, Merrell DS (2009) This is not your mother's repressor: the complex role of fur in pathogenesis. Infect Immun 77:

2590-2601.

107. Vecerek B, Moll I, Blasi U (2007) Control of Fur synthesis by the non-coding RNA RyhB and iron-responsive decoding. EMBO J 26: 965-975.

31

108. Peterson CN, Carabetta VJ, Chowdhury T, Silhavy TJ (2006) LrhA regulates rpoS translation in response to the Rcs phosphorelay system in Escherichia coli. J Bacteriol 188: 3175-3181.

32

一、本研究所使用的菌株

細菌菌株 基因型或相關特性 來源或參考文獻

Escherichia coli

JM109 recA1 glnV44 endA1 thi-1 relA1 gyrA96 mcrB+

Laboratory stock Δ(lac-proAB) e14-[F' traD36 proAB+ lac1q

lacZ

ΔM15]hsdR17(rKmK+)

S17-1 λpir hsdR-M+ recA pro thi Tpr

Smr(RP4-2-Tc::Mu; Km::Tn7)( λpir)

Klebsiella pneumonia

CG43S3 Clinical isolate of K2 serotype, Smr Laboratory stock Δfur CG43S3 Δfur, Smr Laboratory stock ΔrcsB CG43S3 ΔrcsB, Smr Laboratory stock ΔryhB CG43S3 ΔryhB, Smr Laboratory stock ΔfurΔryhB CG43S3 ΔfurΔryhB, Smr Laboratory stock ΔfurΔrcsB CG43S3 ΔfurΔrcsB, Smr Laboratory stock ΔmrkA CG43S3 ΔmrkA , Smr Laboratory stock ΔmrkH CG43S3 ΔmrkH, Smr Laboratory stock ΔrmpA CG43S3ΔrmpA Smr Laboratory stock ΔrmpA2 CG43S3ΔrmpA2 Smr Laboratory stock ΔfurΔrmpA CG43S3ΔfurΔrmpA Smr Laboratory stock ΔfurΔrmpA2 CG43S3ΔfurΔrmpA2 Smr Laboratory stock ΔfimA CG43S3ΔfimA Smr Laboratory stock Δhfq CG43S3Δhfq Smr Laboratory stock ΔcpxRA CG43S3ΔcpxRA Smr Laboratory stock ΔlacZ CG43S3 ΔlacZ, Smr Laboratory stock ΔlacZΔfur CG43S3 ΔlacZΔfur, Smr Laboratory stock ΔlacZΔmrkH CG43S3 ΔlacZΔmrkH, Smr Laboratory stock ΔlacZΔfurΔryhB CG43S3ΔlacZΔfurΔryhB Smr Laboratory stock ΔsoxRS CG43S3 ΔsoxRS, Smr Laboratory stock ΔmrkI CG43S3 ΔmrkI, Smr Laboratory stock ΔlacZΔmrkI CG43S3 ΔlacZΔmrkI, Smr Laboratory stock ΔlacZΔrcsB CG43S3 ΔlacZΔrcsB, Smr Laboratory stock

33

表 二、本研究所使用和建構的質體

質體 基因型或相關特性

pRK415 broad-host-range IncP cloning vector, mob+, Tcr pLacZ15 promoter selection vector, lacZ+, Cmr

pETQ33 Protein overexpression vector, IPTG inducible, Kmr pmrkA-P1

(PL-mrkA)

Cmr, 551-bp fragment of the upstream region of mrkA cloned into placZ15

pYdeH (pAW47) Kmr, 894-bp fragment encoding YdeH, from E. coli W3110, cloned into pETQ

pYdeH*

(pAW71) Kmr, 894-bp fragment encoding YdeHAADEF cloned into pETQ pfur Cmr,placZ15 carrying the fur promoter region

pmrkH Cmr,407-bp fragment of the upstream region of mrkH cloned into placZ15

pRK415-ydeh Tcr,894-bp fragment encoding YdeH, from E. coli W3110 pUT mini-Tn5 pUT containing luxCDABE cassette cloned into of mini-Tn5

transposon upstream of Kmr gene

34

(A)

(B)

(C)

(D)

(E)

GAPDH

35

圖 一、在不同培養液之條件下 small RNA RyhB 對第三型纖毛 MrkA 蛋白的生 成影響

所有菌株皆以 37℃、16 小時搖晃培養,之後回收菌液以加熱破菌,並且定量 50 g/100 l。(A) LB 培養液;(B) LB 加入 Deferoxamine; (C) LB 加入 2, . 2-dipyridyl (Dip); (D) M9 培養液; (E) DMEM 培養液。

36

圖 二、small RNA RyhB 對 mrkA 啟動子活性的影響

菌株先在 LB 培養液培養 37℃、16 小時,之後 40 倍稀釋到 M9 培養液中至 OD600 0.8 再進行啟動子活性實驗

37

圖 三、ryhB 基因缺損對 fur 基因缺損株生物膜生成的影響

圖 三、ryhB 基因缺損對 fur 基因缺損株生物膜生成的影響

相關文件