• 沒有找到結果。

雙面粗化之矽基板 LED

在文檔中 AlGaInP發光二極體特性之提升 (頁 106-114)

五、 結論

5.2 表面粗化之 AlGaInP LED 結論

5.2.3 雙面粗化之矽基板 LED

1. 只有 P-side=7µm 的 LED 元件經過雙面粗化後亮度有提昇,具體 的原因還有待研究。

2. 經過 N-side 粗化之後,LED 驅動電壓隨著蝕刻時間增加而上升。

六、 未來之工作

1. 使用更厚鑽石膜的鑽石晶圓作為轉移基板,應能更有效 率的降低熱對元件的影響,使得 LED 元件能夠在更高的 功率下驅動。

2. 改善 ITO/In 介面的機械強度,並將其用於晶圓接合方面。

3. 可嘗試製作大尺寸的 LED 元件,這樣在使用散熱基板時,

會有更明顯的效益。

4. 本論文所使用的電極為田字型,日後可朝改善電流分散 效應的增進去設計不同的電極形狀。

5. 表面粗化的圖形陣列可朝更小尺寸的蝕刻圖形作改進。

參考文獻

[1] Wright, A. F., and Nelson, J. S. Appl. Phys. Lett. 66, pp.3051, 1995.

[2] 史光國 , 工業材料 148 期 , pp.149 , 1999.

[3] K. H. Kish, J.G.Yu, C. P. Kuo, R. M. Flectcher, T. D.

Osentowski, L. J. Stinson, and M. G. Craford, Appl. Phys.

Letter., 58, pp.1010, 1991.

[4] W. C. Peng, Y. S. Wu, “High-power AlGaInP light-emitting diodes with metal substrates fabricated by wafer

bonding" Appl. Phys. Lett., 84, pp.11, 2004.

[5] 彭顯智 , “不同旋轉角度之砷化鎵晶圓接合", 國立交通大 學 ,碩士論文 , 民國 93 年 7 月.

[6] 劉柏均 , “三五族化合物半導體晶圓接合之基本研究及應用" , 國立交通大學 , 博士論文 , 民國 94 年 7 月.

[7] 李天錫等編著 , “晶圓接合技術及其應用" , 工業材料雜誌 , 170 期, 146-157 頁 , 民國 90 年 2 月.

[8] T. Suga et al. “A new wafer-bonder of ultra-high precision using surface activated bonding(SAB) concept",

Electronic Components and Technology Conference, 2001.

[9] 盧昶鳴 ,“藉由晶圓接合與雷射剝離技術的搭配將氮化鎵薄膜 整合在銅或矽基板上" , 國立交通大學, 碩士論文,民國 91 年 6 月.

[10] K. T. Wan, et al. “Pressurized internal lenticular cracks at healed mica interface" J. Mater. Res., 8, pp.

1128-1136, 1993.

[11] Q. T. Tong and U. Gosele, “Semiconductor wafer bonding recent developments" Mater. Chem. And Phys., 37, pp.

101-127, 1994.

[12] Kettel, Introduction to Solid State Physics, Ch4-5.

[13] D. A. Vanderwater, I. H. Tan, G. E. Hler, D. C. Defevere, and F. A. Kish, “Light-Brightness AlGaInP Light-Emitting Diodes Proceedings of The IEEE, Vol.85, No.11,

pp.1752-1764 , November 1997.

[14] D. A. Vanderwater, I. H. Tan, G. E. Hler, D. C. Defevere, and F. A. Kish, “Light-Brightness AlGaInP Light-Emitting Diodes Proceedings of The IEEE, Vol.85, No.11,pp.1756 November 1997.

[15] Z. Huang, C. C. Lin, and D. G. Deppe, pontaneous Lifetime

and Quantum Efficiency in Light Emitting Diode Affected by a Close Metal Mirror. IEEE Journal of Quantum

Electronics, Vol.29. No.12, pp.2940-2950, 1993.

[16] J. L. Vossen, Transparent Conducting Films, Physics of Thin Film, pp.1-64, 9(1977).

[17] A. Zakauskas, M. S. Shur and R. Caska, “Introduction to Solid-State Lighting" John Wiley and Sons, 2002.

[18] X. A. Cao, et al. “Optimization of current spreading metal layer for GaN/InGaN-based light emitting diodes"

Solid-State Electronics, Vol.46, pp. 1235-1239, 2002.

[19] June-O Song, et al. “Improvement of the light output of InGaN-Based light-emitting diodes using Cu-doped indium oxide/indium tin oxide p-type electrodes," Appl. Phys.

Lett. Vol.86, pp.213505(1)-213505(3), 2005.

[20] S. S. Schad et al. “Extraction Efficiency of GaN-based LEDs" Phys. Stat. Sol.(a) Vol.188, pp.127, 2001.

[21] J. J. Wierer et al. “High-power AlGaInN flip-chip light-emitting diodes," Appl. Phys. Lett. Vol.78, No.22, pp.3379-3381, 2001.

[22] C. Huh et al. “Improved light-output and electrical performance of InGaN-based light-emitting diodes by microroughening of the p-GaN surface," J. Appl. Phys.

Vol.93, No.11, pp.9383-9385, 2003.

[23] T. Fujii et al. “Increase in the extraction efficiency of GaN-based light-emitting diodes via surface

roughening," Appl. Phys. Lett. Vol.84, No.6, pp.855-857, 2004.

[24] T. Gessmann et al. “Omnidirectional Reflective Contacts for Light-Emitting Diodes,"IEEE electron device letters, Vol.24, No.10, pp.683-685, 2003.

[25] R. H. Horng et al. “Characterization of Large-Area AlGaInP/Mirror/Si Light-Emitting Diodes Fabricated by Wafer Bonding ," Jpn, J. Appl. Phys., Vol.43, No.5A, pp.2510-2514, 2004.

[26] 余彬海, 王圭浩 “Junction Temperature and Thermal

Resistance Restrict the Developing of High-power LED,"

Chinese Journal of Luminescence, Vol.26, No.6,pp.761-766, 2005.

[27] K. R. Krames et al. “High-Brightness AlGaInP

light-emitting diodes," Proc. SPIE, Vol. 3938, No.2, pp.321-332, 2000.

[28] D. S. Wuu et al. “Vertical-conducting p-side-up

GaN/mirror/Si light-emitting diodes by laser lift-off and wafer-transfer techniques," Phys. Stat. sol.(a) Vol.201, No.12, pp.2699, 2004.

[29] R. H. Horng et al. “High-Power GaN Light-Emitting Diodes with patterned copper substrates by electroplating,"

Phys. Stat. Sol.(a), Vol.201, No.12, pp.2786-2790 , 2004 .

[30] June-O Song et al. “Ohmic and degradation mechanisms of Ag contacts on p-type GaN." Appl. Phys. Lett. 86, pp.

062104, 2005.

[31] Ja-Yeon Kim et al. “Thermally stable and highly reflective AgAl alloy for enhancing light extraction efficiency in GaN light-emitting diodes." Appl. Phys.

Lett. 88 ,pp.043507, 2006.

[32] 吳騏廷, “Enhancement of the Performance of AlGaInP & GaN

Light-Emitting Diodes" 國立交通大學, 碩士論文. 民國 96 年 7 月.

[33] G. B. Stringfellow and M. George Craford, “High brightness light emitting diodes." Academic Press, Boston, pp.216, 1997.

[34] Ja-Yeon Kim et al. “Enhanced light extraction from GaN-based green light-emitting diode with photonic crystal" Appl. Phys. Lett. 91, pp.181109, 2007

[35] Ming-Kwei Lee et al. “Single-step fabrication of Fresnel microlens array on sapphire substrate of flip-chip gallium nitride light emitting diode by focused ion beam"

Appl. Phys. Lett. 91, pp.051111, 2007.

[36] Toshio Kambayash et al. “Chemical etching of InP and GaInAs for fabricating laser diodes and integrated optical circuits" Jpn, J. Appl. Phys., Vol.19 No.1, pp.79-85, 1980.

[37] J. R. Flemish et al. “Selective wet etching of GaInP, GaAs, and InP in solutions of HCl, CH3COOH, and H2O2" J.

Electrochem. Soc., Vol.140, No.3, pp.844-847, 1993.

[38] Hyung Gu KIM et al. “Fabrication of Mesa-Shaped InGaN/GaN Light-Emitting Diode with Periodic Deflectors by

Selective Metal Organic Chemical Vapor Deposition" Jpn, J. Appl. Phys., Vol.46, No.40, pp.L970–L972, 2007.

[39] C. H. Kuo et al. “Nitride-Based Near-Ultraviolet Mesh MQW Light-Emitting Diodes" IEEE Photonics Technology

Letters, Vol.19, No.23, pp.1901-1903, 2007.

在文檔中 AlGaInP發光二極體特性之提升 (頁 106-114)

相關文件