• 沒有找到結果。

第二章 文獻回顧

2.4 電紡絲法

電紡絲法是一個很容易將材料尺寸縮小到奈米等級的方法,在經 過修飾改良可以得到一個具有高表面積的材料。

圖.2-15 電紡絲示意圖

電紡絲法是利用直流高壓電使高分子溶液或熔體帶有電荷,當 高分子溶液藉由注射式針筒由針管末端流出時,會因為高電荷將高分 子溶液噴射出來,噴射後會形成奈米尺寸的纖維,並在接地端得收集 器上聚集。

當高分子溶液到達針管末端時,會因為液體表面張力形成液滴狀,

此時高壓的電場會使液體表面充滿電荷,相同電荷產生排斥力相反於 表面張力,當隨著電場強度逐漸增強,針管末端的液滴會因電荷影響 向前延伸,而形成圓錐狀,此稱為泰勒圓錐(Taylor Cone)。再增加電

26

Fibers Set-up Morphology Advantages Disadvantages

Randomly

oriented

A plate collector

Simple Non-uniform film

thickness

Drum collector, rotating at a

low speed

Uniform thickness A motor is required

to keep the collector

rotating

Aligned

Drum collector, rotating at a

high speed

Long aligned fibers are

possible

High rotating speed;

difficult to obtain

thick films

Disk collector, rotating at a high

speed

Long aligned fibers are

possible

Small area and

difficult to obtain

thick films

27

Wire drum collector, rotating at

a low speed

Do not need a high

rotating speed

Difficult to obtain

thick films

Two parallel plate collector

Simple approach Length of fiber is

restricted by the gap

distance; difficult to

obtain thick films

Core/shell

structure

Dual nozzle spinning with two

different polymer solution

Core–shell structured

fiber

Outer and inner

solutions may diffuse and mix

together

Coaxial spinning with mineral

oil inside and polymer solution

outside

Diffusion of inside

solution can be

avoided

Require additional

process to remove oil

由文獻得知目前電紡絲法可以做為二次電池材料的構型分別如 下圖.2-16,通過纏繞靜電紡絲和熱處理,具有可控相位 1D 奈米纖維

(例如聚合物,金屬和陶瓷)

,形態(例如多孔的,空心的,並且核-殼)和組合物(例如,金屬/金屬氧化物,碳/金屬或金屬氧化物的複 合材料)可以容易地獲得。這意味著,與(i)大的表面積和高的比

28

Precursors Chemical structure Electrospinning condition

Functionalities Advantages Disadvantages

PAN 4–10 wt.% in DMF, 10–30

kV

Carbon source for

CNFs and their

hybrids

Carbon source for

CNFs

High carbon

yield (60% at

1000oC)

Low spinnability

29

Lignin

-

20–35 wt.% in DMF/water,

6–26 kV

Carbon source for

CNFs

Large surface

area

Large diameter; low

carbon yield of

20–40%

PI

PMDA/ODA type

10–20 wt.% in N-methyl,

pyrrolidone/THF/methanol/

DMAc, 8–25 kV

Carbon source for

CNFs, separator for

LIB

acetone, 15–20 kV

Separator and gel

electrolyte for LIB

High mechanical

ethanol/DMF, 10–25 kV

Carbon source for

metal oxide/CNF

composites and

template for neat

metal oxide fibers

Soluble in

various solvent

Low carbon yield of

~15%

PVA 10 wt.% in water, 8–35 kV Carbon source for

metal oxide/CNF

composites

Water soluble Low carbon yield of

3–10%

PS 8–10 wt.% in DMF, 10–

20 kV

Scaffold for neat

metal oxide fibers

and sacrificial

phase for voids

Compatible with

other host

polymer, such as

PAN

Difficult to be fully

removed, requiring

1000oC

PMMA 5–35 wt.% in DMF/THF/

chloroform, 15–25 kV

Scaffold for neat

metal oxide fibers

and sacrificial

phase for voids

Easy to be

decomposed at

~450oC

Poor compatibility

with host polymer,

beads are easy to

30

圖.2-17 碳纖維修飾孔洞(a)多孔碳纖維(b)介孔通道與微孔的碳纖維(c) 有序的介孔碳纖維(d)層次結構碳纖維

84

經過以上整理鋰氧電池的碳基材,需要高孔洞囤積放電產物與氮 摻雜的碳基材有助於 ORR 作為結合,電紡絲法中的膠體溶液前驅物 高分子聚丙烯腈(PAN)在經過兩階段煅燒時會有環化反應

85

,形成氮 摻雜的石墨如圖.2-18 和圖.2-19;利用兩種高分子熔點不同使纖維在 經過煅燒後,低熔點的高分子熔化使纖維產生孔洞形成 a 型的多孔纖 維,最高比表面積可到 940 m

2

/g

86

31

圖.2-18 煅燒過程中 LiFePO

4

與 PAN 反應機制圖(A)兩階段煅燒示意圖 (B)預煅燒過程中 PAN 環化(C)高溫煅燒後 PAN 石墨化

85

圖.2-19 PAN 石墨化反應機制

87-88

32

由文獻得到,使用XPS分析PAN經過環化再石墨化結構如圖.2-20,

氮摻雜的形式有pyridinic (B.E.= ~398.5 eV)、quaternary (B.E.= ~401.1 eV)和nitrogen oxides (B.E.= ~402.2 eV)三種

89

圖.2-20 PAN 石墨化後 XPS 分析材料結構

89

33

MW=1.5×10

4

Aldrich

Poly(methyl methacrylate) (PMMA)

(C

5

O

2

H

8

)

x

MW=1.2×10

5

Aldrich

N,N-Dimethylformamide (DMF)

C

3

H

7

NO

anhydrous:99.8% w/w Aldrich

Iron(II) phthalocyanine (FePc)

C

32

H

16

FeN

8

>95.0% Aldrich

Sodium nitrite NaNO

2

>98.5% TCI

4-Aminopyridine (4-AP)

C

5

H

6

N

2

>99.0% TCI

相關文件