• 沒有找到結果。

1. Kakar, S. S. (1998) Assignment of the human tumor transforming gene TUTR1 to chromosome band 5q35.1 by fluorescence in situ hybridization. Cytogenet.

Cell Genet., 83, 93-95.

2. Lodish, H., Berk, A. (1999) Molecular Cell Biology, 4 Editon, W. H. Freeman, PP. 496.

3. Michael, B. K., Christine, E. C. and Christopher, J. L. (1995) P53, cell cycle control and apoptosis: Implications for cancer. Cancer and Metastasis Reviews, 14, 3-15.

4. Chang, C. C., Yeh, X. C., Lee, H. T., Lin, P. Y. and Kan, L. S. (2004)

Reversible Folding of Lysozyme by a Quasi-static Process: A First-Order-Like State Transition. Physical Review E, 70, 011904.

5. Chang, C. C., Cheng, M. S., Su, Y. C., and Kan, L. S. (2002) A first-order like state transition for recombinant protein folding. J. Biomol. Struct. Dyn., 21, 247-255.

6. Liu, Y. L., Lee, H. T., Chang, C. C., and Kan, L. S. (2003) Reversible folding of cysteine-rich metallothionein by an over-critical reaction path. Biochem.

Biophys. Res. Commun., 306, 59-63.

7. Chang, C. C., Tsai, C. T. and Chang, C. Y. (2002) Structural restoration of inactive recombinant fish growth hormones by chemical chaperonin and solvent restraint approaches. Protein Eng., 15, 437-441.

8. Chang, C. C., Su, Y. C., Cheng, M. S. and Kan, L. S. (2002) Protein folding by quasi-static-like process-a first order state transition. Physical Review E, 66, 021903.

9. Ackerson, B. J. and Pusey, P. N. (1988) Shear-Induced Order in Suspensions of Hard Spheres. Phys. Rev. Lett., 61, 1033-1036.

10. Lau, A.W.C., Lin, K. H., and Yodh, A. G. (2002) Entropic interactions in suspensions of semiflexible rods: Short-range effects of flexibility. Physical Review E, 66, 020401.

11. Boris, B., Julian, B. C. (1996) Protein refolding at high concentration using size-exclusion chromatography. Biotechnol. Bioeng., 50, 15-23.

12. Maeda, Y., Koga, H., Yamada, H., Ueda, T., and Imoto, T. (1995) Effective renaturation of reduced lysozyme by gentle removal of urea. Protein Eng., 8, 201-205.

13. Chang, C. C., Lin, P. Y., Yeh, X. C., Deng, K. H., Ho, Y. P. and Kan, L. S.(2005) Protein folding stabilizing time measurement: a direct folding process and three-dimensional random walk simulation. Biochem. Biophys. Res. Commun.

328, 845-850.

14. Chang, C. C., Cheng, M. S., Su, Y. C., and Kan, L. S. (2003) A first-order-like state transition for recombinant protein folding. J. Biomol. Struct. Dyn., 21, 247-255.

15. Lengauer, C., Kinzler, K. W. and Vogelstein, B. (1998) Genetic instabilities in human cancers. Nature, 396, 643-649.

16. Lodish, H., Berk, A. (2003) Molecular Cell Biology , 5 Editon, W. H. Freeman, PP. 935.

17. Evan, G. I., Vouaden, K. H. (2001) Proliferation, cell cycle and apoptosis in cancer. Nature, 411, 342-348.

18. Hunter, T., Pines, J. (1994) Cyclins and cancer Ⅱ: Cyclin D and CDK inhibitors come of age. Cell, 79, 573-582.

19. Kurt, W. K., (1999) Molecular Interaction Map of the Mammalian Cell Cycle Control and DNA Repair Systems. Molecular Biology of the Cell, 8,

2703-2734.

20. Nakayama, K. I., et al. (2001) Regulation of the cell cycle at the G1-S transition by proteolysis of cyclin E and p27Kip1. Biochem. Biophys. Res.

Commun., 282, 853-860.

21. Lodish, H., Berk, A. (1999) Molecular Cell Biology, 4 Editon, W. H. Freeman, P.P. 532.

22. Yang, R., Müller, C., Huynh, V., Fung, Y. K., Yee, A. S., Koeffler, H. P. (1999) Functions of cyclin A1 in the cell cycle and its interactions with transcription factor E2F-1 and the Rb family of proteins. Mol Cell Biol., 19, 2400-2407.

23. Lodish, H., Berk, A. (1999) Molecular Cell Biology, 4 Editon, W. H. Freeman, P.P. 527.

24. Zou, H., McGarry, T. J., Bernal, T., Kirschner, M. W. (1999 ) Identification of a vertebrate sister-chromatid separation inhibitor involved in transformation and tumorigenesis. Science, 285, 418-422.

25. Pei, L. and Melmed, S. (1997) Isolation and characterization of a pituitary tumor-transforming gene (PTTG). Mol. Endocrinol., 11, 433-441.

26. Zhang, X., Horwitz, G. A., Prezant, T. R., et al. (1999) Structure, expression, and function of human pituitary tumor-transforming gene (PTTG). Mol. Endocrinol., 13, 156-166.

27. Kakar, S. S. (1999) Molecular cloning, genomic organization, and identification of the promoter for the human pituitary tumor transforming gene (PTTG). Gene, 40, 317-324.

28. Yu, R., Melmed, S. (2001) Oncogene activation in pituitary tumors. Brain Pathol., 11, 328-341.

29. Puri, R., Tousson, A., Chen, L., and Kakar, S. (2001) Molecular cloning of

pituitary transforming gene 1 from ovarian tumors and its expression in tumors.

Cancer Lett., 163, 131–139.

30. Saez, C., Pereda, T., Borrero, J. J., et al. (2002) Expression of hPTTG protooncogene in lymphoid neoplasias. Oncogene, 21, 8173-8177.

31. Solbach, C., Roller, M., Fellbaum, C., Nicoletti, M., Kaufmann, M. (2004).

PTTG mRNA expression in primary breast cancer: a prognostic marker for lymph node invasion and tumor recurrence.Breast, 13, 80-81.

32. Heaney, A. P., Singson, R, McCabe, C. J., Nelson, V., Nakashima, M., and Melmed, S. (2000) Expression of pituitary-tumour transforming gene in colorectal tumours. Lancet., 355, 716-719.

33. Zhang, X., Horwitz, G. A., Heaney, A. P., et al. (1999). Pituitary tumor

transforming gene (PTTG) expression in pituitary adenomas. J. Clin. Endocrinol Metab., 84, 761-767.

34. Heaney, A. P., Nelson, V., Fernando, M., Horwitz, G. (2001) Transforming events in thyroid tumorigenesis and their association with follicular lesions. J.

Clin. Endocrinol Metab., 86, 5025-5032.

35. Boelaert, K., McCabe, C. J., Tannahill, L. A., Gittoes, N. J., et al. (2003) Pituitary tumor transforming gene and fibroblast growth factor-2 expression:

potential prognostic indicators in differentiated thyroid cancer. J. Clin.

Endocrinol Metab., 88, 2341-2347.

36. Ishikawa, H., Heaney, A. P., Yu, R., Horwitz, G. A., and Melmed, S. (2001) Human pituitary tumor-transforming gene induces angiogenesis. J. Clin.

Endocrinol. Metab., 86, 867-874.

37. Pei, L. (2001) Identification of c-myc as a down-stream target for pituitary tumor-transforming gene. J. Biol. Chem., 276, 8484-8491.

38. Chen, L., Puri, R., Lefkowitz, E., and Kakar, S. (2000) Identification of the human pituitary tumor transforming gene (hPTTG) family: Molecular structure, expression and chromosomal localization. Gene, 248, 41–50.

39. Peters, J. M. (2002) The Anaphase-Promoting Complex: Proteolysis in Mitosis and Beyond. Molecular Cell, 9, 931-943.

40. Romero, F., Multon, M. C., Ramos-Morales, F., Dominguez, A., Bernal, J. A., Pintor-Toro, J. A., Tortolero, M. (2001) Human securin, hPTTG, is associated with Ku heterodimer, the regulatory subunit of the DNA-dependent protein kinase. Nucleic. Acids Res., 29,1300-1307.

41. Jallepalli, P., Waizenegger, I., Bunz, F., et al. (2001). Securin is required for chromosomal stability in human cells. Cell, 105, 445-457.

42. Yu, R., Ren, S. G., Horwitz, G. A., Wang, Z., Melmed, S. (2000) Pituitary tumor transforming gene (PTTG) regulates placental JEG-3 cell division and survival:

evidence from live cell imaging. Mol. Endocrinol., 14,1137-1146.

43. Yu, R., Heaney, A.P., Lu, W., Chen, J., Melmed, S. (2000) Pituitary tumor transforming gene causes aneuploidy and p53-dependent and p53-independent apoptosis. J. Biol. Chem., 275, 36502-36505.

44. Wu, X., Lieber, M. R. (1996) Protein-protein and protein-DNA interaction regions within the DNA end-binding protein Ku70-Ku86. Mol. Cell Biol., 16, 5186-5193.

45. Koike, M., Awaji, T., Kataoka, M., et al. (1999) Differential subcellular

localization of DNA-dependent protein kinase components Ku and DNA-PKcs during mitosis. J. Cell Sci., 112, 4031-4039.

46. Ramsden, D. A., Gellert, M. (1998) Ku protein stimulates DNA end joining by mammalian DNA ligases: a direct role for Ku in repair of DNA double-strand breaks. Embo. J., 17, 609-614.

47. Gottlieb, T. M., Jackson, S. P. (1993) The DNA-dependent protein kinase:

requirement for DNA ends and association with Ku antigen. Cell, 72, 131-142.

48. Romero, F., Multon, M.C., Ramos-Morales, F., et al. (2001) Human securin, hPTTG, is associated with Ku heterodimer, the regulatory subunit of the DNA-dependent protein kinase. Nucleic. Acids Res., 29, 1300-1307.

49. Susan, H., Michael, B., Zehavit, G. and Ygal, H. (2003) Apoptosis – the p53 network. Journal of Cell Science, 116, 4077-4085.

50. Nagata, S. and Golstein, P. (1995). The Fas death factor. Science, 267, 1449-1456

51. Wu, G. S., Burns, T. F., McDonald, E. R., et al. (1997) KILLER/DR5 is a DNA damage-inducible p53-regulated death receptorgene. Nat. Genet. 17, 141-143.

52. Nagata S. (1999) Fas ligand-induced apoptosis. Annu Rev Genet 33, 29-55.

53. Beni, B. W. and Douglas, R. G. (1999) Suicidal Tendencies: Apoptotic Cell Death by Caspase Family Proteinases. J. Biol. Chem., 274, 20049-20052.

54. Adams, J. M. and Cory, S. (2002) Apoptosomes: engines for caspase activation.

Curr. Opin. Cell Biol., 14, 715-720.

55. Bouillet, P. and Straser, A. (2002) BH3-only proteins – evolutionarily conserved pro-apoptotic Bcl-2 family members essential for initiatin programmed cell death.

J. Cell Sci., 115, 1567-1574.

56. Muller, M., Wilder, S., Bannasch, D., Israeli, D., Lehlbach, K., Li-Weber, M., Friedman, S. L., Galle, P. R., Stremmel, W., Oren, M. et al. (1998) p53 activates the CD95 (APO-1/Fas) gene in response to DNA damage by anticancer drugs. J.

Exp. Med., 188, 2033-2045.

57. Bennett, M., Macdonald, K., Chan, S.W., Luzio, J. P., Simari, R. and Weissberg, P. (1998). Cell surface trafficking of Fas: a rapid mechanism of p53-mediated

apoptosis. Science, 282, 290-293.

58. Thornborrow, E. C., Patel, S., Mastropietro, A. E., Schwartzfarb, E. M. and Manfredi, J. J. (2002) A conserved intronic response element mediates direct p53-dependent transcriptional activation of both the human and murine bax genes. Oncogene., 21, 990-999.

59. Yu, J., Zhang, L., Hwang, P., Kinzler, K. W. and Vogelstein, B. (2001) PUMA induces the rapid apoptosis of colorectal cancer cells. Mol. Cell, 7, 673-682.

60. Yu, R., Lu, W., Chen, J., McCabe, C. J., Medmed, S. (2003). Overexpressed pituitary tumor transforming gene causes aneuploidy in live human cells.

Endocrinology, 144, 4991-4998.

61. Bernal, J. A., Luna, R., Espina, A., et al. (2002) Human securin interacts with p53 and modulates p53-mediated transcriptional activity and apoptosis. Nat.

Genet., 32, 306-311.

62. Zhou, Y., Mehta, K. R., Choi, A. P., Scolavino, S., and Zhang, X. (2003) DNA damage-induced inhibition of securin expression is mediated by p53. J. Biol.

Chem, 278, 462-470.

63. Pei, L. (2001) Identification of c-myc as a down-stream target for pituitary tumor-transforming gene. J. Biol. Chem., 276, 8484-8491.

64. Henriksson, M., Luscher, B. (1996) Proteins of the Myc network: essential regulators of cell growth and differentiation. Adv. Cancer Res., 68, 109-82.

65. Hamid, T. and Kakar, S. S. (2004) PTTG/securin activates expression of p53 and modulates its function. Mol. Cancer, 3, 18-32.

66. Cohen-Fix, A., Peters, J. M., Kirschner, M. and Koshland, D. (1996) Anaphase initiation in Saccharomyces cerevisiae is controlled by the APC-dependent degradation of the anaphase inhibitor Pds1p. Genes Dev., 15, 3081-3093.

67. Funabiki, H., Yamano, H., Nagao, K., et al. (1997) Fission yeast Cut2 required for anaphase has two destruction boxes. EMBO J., 19, 5977-5987.

68. Zur, A, Brandeis, M. (2001) Securin degradation is mediated by fzy and fzr, and is required for complete chromatid separation but not for cytokinesis. Embo J., 20,792-801

69. Pei, L. (2000) Activation of mitogen-activated protein kinase cascade regulates pituitary tumor-transforming gene transactivation function. J. Biol. Chem., 275, 31191-31198

70. Wang, Z., Melmed, S. (2000) Pituitary tumor transforming gene (PTTG) transforming and transactivation activity. J. Biol. Chem., 275, 7459-7461.

71. Funabiki, H., Kumada, K. & Yanagida, M. (1996b) Fission yeast Cut1 and Cut2 are essential for sister chromatid separation, concentrate along the metaphase spindle and form large complexes. EMBO J., 15, 6617-6628.

72. Kumada, K., Nakamura, T., Nagao, K., et al. (1998) Cut1 is loaded onto the spindle by binding to Cut2 and promotes anaphase spindle movement upon Cut2 proteolysis. Curr. Biol., 8, 633-641.

73. Kendrew, J. C., Bodo, G., Dintzis, H. M., Parrish, R. G., et al. (1958). A

threedimensional model of the myoglobin molecule obtained by X-ray analysis.

Nature, 181, 662-666.

74. Wright, P. E. and Dyson, H. J. (1999) Intrinsically Unstructured Proteins:

Re-assessing the Protein Structure-Function Paradigm. J. Mol. Biol., 293, 321-331.

75. BoÈsch, C., Bundi, A., Oppliger, M. and WuÈthrich, K. (1978). 1H

nuclear-magnetic-resonance studies of the molecular conformation of monomeric glucagon in aqueous solution. Eur. J. Biochem., 91: 209-214.

76. Tan, R., Frankel, A. D. (1994). Costabilization of peptide and RNA structure in an HIV Rev peptide-RRE complex. Biochemistry, 33, 14579-14585.

77. Battiste, J. L., Mao, H. Y., Rao, N. S., et al. (1996) α-Helix-RNA major groove recognition in an HIV-1 Rev peptide RRE RNA complex. Science, 273,

1547-1551.

78. Puglisi, J. D., Chen, L., Blanchard, S. and Frankel, A. D. (1995). Solution structure of a bovine immunodeficiency virus Tat-TAR peptide-RNA complex.

Scienc., 270, 1200-1203.

79. Ye, S., Kumar, R. A., and Patel, D. J. (1995) Molecular recognition in the bovine immunodeficiency virus Tat peptide-TAR RNA complex. Chem. Biol., 2,

827-840.

80. Mogridge, J., Legault, P., Li, J., Van, O., et al. (1998) Independent ligandinduced folding of the RNA-binding domain and two functionally distinct antitermination regions in the phage lambda N protein. Mol. Cell, 1, 265-275.

81. Yonath, A. and Franceschi, F. (1997) New RNA recognition features revealed in ancient ribosomal proteins. Nature Struct. Biol., 4, 3-5.

82. Markus, M. A., Hinck, A. P., Huang, S. R., et al. (1997). High resolution solution structure of ribosomal protein L11-C76, a helical protein with a ¯exible loop that becomes structured upon binding to RNA. Nature Struct. Biol., 4, 70-77.

83. Hershey, P. E., McWhirter, S. M., Gross, J. D., et al. (1999) The cap-binding protein eIF4E promotes folding of a functional domain of yeast translation initiation factor eIF4G1. J. Biol. Chem., 274, 21297-21304.

84. Fletcher, C. M., McGuire, A. M., Gingras, A. C., et al. (1998). 4E binding proteins inhibit the translation factor eIF4E without folded structure.

Biochemistry, 37: 9-15.

85. Kriwacki, R. W., Hengst, L., Tennant, L., et al. (1996) Structural studies of p21Waf1/Cip1/Sdi1 in the free and Cdk2-bound state: conformational disorder

mediates binding diversity. Proc. Natl. Acad. Sci., 93, 11504-11509.

86. Chang, C. C., Lin, C. S., Chen, M. C., Liu, Y. C., Huang, Y. F., Lin, P. Y., Chen Y. F,Chang, C. S., Kan, L. S.(2006) Folding and Structural Characterization of Recombinant Cyclin-dependent Kinase Inhibitor p21(Cip1, Waf1, Sdi1). Biophysical Reviews and Letters, 1, 45-56.

87. Pavletich, N. P. (1999) Mechanisms of cyclin-dependent kinase regulation:

structures of Cdks, their cyclin activators, and Cip and INK4 inhibitors. J. Mol.

Biol., 287, 821-828.

88. Johnson, D. G. and Walker, C. L. (1999) Cyclins and cell cycle checkpoints.

Annu. Rev. Pharmacol. Toxicol., 39, 295-312.

89. Peter, E. W., Dyson, H. J. (1999) Intrinsically Unstructured Proteins:

Re-assessing theProtein Structure-Function Paradigm. J. Mol. Biol., 293, 321-331.

90. Spolar, R. S. & Record, M. T. (1994). Coupling of local folding to site-specific binding of proteins to DNA. Science, 263, 777-784.

91. Sanchez, P. N., Veprintsev, D. B., Fersht, A. R. (2005) Human full-length Securin is a natively unfolded protein, Protein Sci., Jun, 14,1410-1418, 92. Wright, P. E. and Dyson, H. J. (1999). Intrinsically unstructured proteins:

Reassessing the protein structure–function paradigm. J. Mol. Biol., 293, 321–331.

93. Dunker, A. K., Brown, C. J., Lawson, J. D. (2002). Intrinsic disorder and protein function. Biochemistry, 41, 6573–6582.

94. Bret, A. S. Protein stability and folding: Theory and practice. Humana Press.

Humana Press,1st edition.

95. Lowe, G. (1970). The structure and mechanism of action of papain. Philos. Trans.

R. Soc. Lond B. Biol. Sci., 257, 237-248.

96. Arakawa, T., Timasheff, S. N. (1984) Protein stabilization and destabilization by. guanidinium salts. Biochemistry, 23, 5924–5929.

97. Baum, J., Dobson, C. M., Evans, P. A., Hanley, C. (1989) Characterization of a partly folded protein by NMR methods: studies on the molten globule state of guinea pig alpha-lactalbumin. Biochemistry, 28, 7-13.

98. Maeda, Y., Koga, H., Yamada, H., Ueda, T., et al. (1995) Effective renaturation of reduced lysozyme by gentle removal of urea. Protein Eng., 8, 201-205.

99. Chang, C. T., Wu, C. S., Yang, J. T. (1978) Circular dichroic analysis of protein conformation: inclusion of the beta-turns. Anal. Biochem., 91,13-31

100. Leffingwell, C. J., (2003) Chirality and Bioactivity I. Pharmacology. Leffingwell Reports, 3, 1-27.

101. Boelens, M. H., Boelens, H., van Gemert, L. J.. (1993) Sensory properties of optical isomers. Perfumer and Flavorist, 18, 1-15.

102. Lakowicz, J. R. (1983) Principles of Fluorescence Spectroscopy, Plenum Press,

New York.

103. Privalov, P. L., Khechinashvili, N. N. (1974) A thermodynamic approach to the problem of stabilization of globular protein structure: a calorimetric study. J.

Mol. Biol., 86, 665-684.

104. Yadav, S., Ahmad, F. (2000) A new method for the determination of stability parameters of proteins from their heat-induced denaturation curves. Anal.

Biochem., 283, 207-213

105. Sreerama, N., Woody, R. W. (1993) A self-consistent method for the analysis of protein secondary structure from circular dichroism. Anal. Biochem., 209, 32-44.

106. Bryngelson, J. D., Wolynes P. G. (1987) Spin glasses and the statistical mechanics of protein folding. Proc. Natl. Acad. Sci., 84, 7524-7528.

107. Linding, R., Jensen, L. J., Diella, F., Bork, P.,Gibson, T. J. and Russell, R. B.

(2003) Protein disorder prediction: implications for structural proteomics Structure. Structure, 11, 1453-1459.

108. Martin, L. S., James, M. F.,M., Rachel, A. B., and et al.(2000) p53-Mediated DNA Repair Responses to UV Radiation: Studies of Mouse Cells Lacking p53, p21, and/or gadd45 Genes. Mol. Cell. Biol., 20, 3705–3714.

109. Ute, M. M., Oleksi, P. (2003) The MDM2-p53 Interaction. Molecular Cancer Research, l, 1001–1008.

附錄

圖 1: 質體 pET200 securin 架構圖。

本實驗是以pET200 為主要的表現質體,其上接有 securin 的基因。本質體是用 T7 promoter 來負責基因的調控,其後有 RBS (ribosomal binding site)、AUG (轉譯起始密碼)

EK (內切脢的辨識序列)。

Table 1: 蛋白質復性緩衝液配方。

Tris-base

(mM) pH Urea (M)

DTT (mM)

Mannitol (%)

Pefabloc.

(mM) Denature

Buffer 10 11 4.5 100 0.1 0.5

Folding

Buffer 1 10 11 2 0.1 0.1 0.5

Folding

Buffer 2 10 11 1 0.1 0.1 0.5

Folding

Buffer 3 10 8.8 - 0.1 0.1 0.5

Folding

Buffer 4 10 8.8 - 0.1 0.1 0.5

Folding

Buffer 5 10 8.8 - 0.1 - 0.5

Table 2: Hpttg家族蛋白質序列比對38

Table中為securin家族成員在蛋白質序列上的比較38,分別是PTTG 1、PTTG 2及 PTTG 3。Securin、PTTG 2和PTTG 3它們的胺基酸序列有將近80%的相似度,PTTG 2 不論是在癌症細胞株或是正常的細胞中都有表現,而PTTG 3則是只能在癌症細胞株中發

現。到目前為止,PTTG 2及PTTG 3的功能依舊不是非常的清楚。

相關文件