• 沒有找到結果。

1. Alexander, C., and E. T. Rietschel. 2001. Bacterial lipopolysaccharides and innate immunity. J Endotoxin Res 7:167-202.

2. Bader, M. W., W. W. Navarre, W. Shiau, H. Nikaido, J. G. Frye, M.

McClelland, F. C. Fang, and S. I. Miller. 2003. Regulation of Salmonella typhimurium virulence gene expression by cationic antimicrobial peptides.

Mol Microbiol 50:219-30.

3. Bader, M. W., S. Sanowar, M. E. Daley, A. R. Schneider, U. Cho, W. Xu, R. E. Klevit, H. Le Moual, and S. I. Miller. 2005. Recognition of antimicrobial peptides by a bacterial sensor kinase. Cell 122:461-72.

4. Barry, G. F. 1988. A broad-host-range shuttle system for gene insertion into the chromosomes of gram-negative bacteria. Gene 71:75-84.

5. Bearson, B. L., L. Wilson, and J. W. Foster. 1998. A low pH-inducible, PhoPQ-dependent acid tolerance response protects Salmonella typhimurium against inorganic acid stress. J Bacteriol 180:2409-17.

6. Bergen, P. J., J. Li, C. R. Rayner, and R. L. Nation. 2006. Colistin methanesulfonate is an inactive prodrug of colistin against Pseudomonas aeruginosa. Antimicrob Agents Chemother 50:1953-8.

7. Bijlsma, J. J., and E. A. Groisman. 2003. Making informed decisions:

regulatory interactions between two-component systems. Trends Microbiol 11:359-66.

8. Breazeale, S. D., A. A. Ribeiro, and C. R. Raetz. 2003. Origin of lipid A species modified with 4-amino-4-deoxy-L-arabinose in polymyxin-resistant mutants of Escherichia coli. An aminotransferase (ArnB) that generates UDP-4-deoxyl-L-arabinose. J Biol Chem 278:24731-9.

9. Chamnongpol, S., W. Dodson, M. J. Cromie, Z. L. Harris, and E. A.

Groisman. 2002. Fe(III)-mediated cellular toxicity. Mol Microbiol 45:711-9.

10. Chang, C., S. F. Kwok, A. B. Bleecker, and E. M. Meyerowitz. 1993.

Arabidopsis ethylene-response gene ETR1: similarity of product to two-component regulators. Science 262:539-44.

11. Chang, F. Y., and M. Y. Chou. 1995. Comparison of pyogenic liver abscesses caused by Klebsiella pneumoniae and non-K. pneumoniae pathogens. J Formos Med Assoc 94:232-7.

12. de Lorenzo, V., and K. N. Timmis. 1994. Analysis and construction of stable phenotypes in gram-negative bacteria with Tn5- and Tn10-derived minitransposons. Methods Enzymol 235:386-405.

13. Erridge, C., E. Bennett-Guerrero, and I. R. Poxton. 2002. Structure and function of lipopolysaccharides. Microbes Infect 4:837-51.

14. Evans, M. E., D. J. Feola, and R. P. Rapp. 1999. Polymyxin B sulfate and colistin: old antibiotics for emerging multiresistant gram-negative bacteria.

Ann Pharmacother 33:960-7.

15. Fabret, C., V. A. Feher, and J. A. Hoch. 1999. Two-component signal transduction in Bacillus subtilis: how one organism sees its world. J Bacteriol 181:1975-83.

16. Falagas, M. E., and S. K. Kasiakou. 2006. Toxicity of polymyxins: a systematic review of the evidence from old and recent studies. Crit Care 10:R27.

17. Garcia Vescovi, E., F. C. Soncini, and E. A. Groisman. 1996. Mg2+ as an extracellular signal: environmental regulation of Salmonella virulence. Cell 84:165-74.

18. Grangeasse, C., B. Obadia, I. Mijakovic, J. Deutscher, A. J. Cozzone, and P. Doublet. 2003. Autophosphorylation of the Escherichia coli protein kinase Wzc regulates tyrosine phosphorylation of Ugd, a UDP-glucose dehydrogenase. J Biol Chem 278:39323-9.

19. Groisman, E. A. 2001. The pleiotropic two-component regulatory system PhoP-PhoQ. J Bacteriol 183:1835-42.

20. Gunn, J. S. 2008. The Salmonella PmrAB regulon: lipopolysaccharide modifications, antimicrobial peptide resistance and more. Trends Microbiol 16:284-90.

21. Gunn, J. S., and S. I. Miller. 1996. PhoP-PhoQ activates transcription of pmrAB, encoding a two-component regulatory system involved in Salmonella typhimurium antimicrobial peptide resistance. J Bacteriol 178:6857-64.

22. Gunn, J. S., S. S. Ryan, J. C. Van Velkinburgh, R. K. Ernst, and S. I.

Miller. 2000. Genetic and functional analysis of a PmrA-PmrB-regulated locus necessary for lipopolysaccharide modification, antimicrobial peptide resistance, and oral virulence of Salmonella enterica serovar Typhimurium.

Infect Immun 68:6139-46.

23. Hagiwara, D., M. Sugiura, T. Oshima, H. Mori, H. Aiba, T. Yamashino, and T. Mizuno. 2003. Genome-wide analyses revealing a signaling network of the RcsC-YojN-RcsB phosphorelay system in Escherichia coli. J Bacteriol 185:5735-46.

24. Hancock, R. E. 1997. Peptide antibiotics. Lancet 349:418-22.

25. Hermsen, E. D., C. J. Sullivan, and J. C. Rotschafer. 2003. Polymyxins:

pharmacology, pharmacokinetics, pharmacodynamics, and clinical applications. Infect Dis Clin North Am 17:545-62.

26. Hsing, W., and T. J. Silhavy. 1997. Function of conserved histidine-243 in phosphatase activity of EnvZ, the sensor for porin osmoregulation in Escherichia coli. J Bacteriol 179:3729-35.

27. Hsueh, P. R., C. Y. Liu, and K. T. Luh. 2002. Current status of antimicrobial resistance in Taiwan. Emerg Infect Dis 8:132-7.

28. Joseph, S., and D. W. Russell. 2001. Molecular Cloning: a laboratory manual—3rd edition. Cold Spring Harbor Laboratory Press.

29. Kang, J. W., A. Van Schepdael, J. A. Orwa, E. Roets, and J.

Hoogmartens. 2000. Analysis of polymyxin B sulfate by capillary zone electrophoresis with cyclodextrin as additive. Method development and validation. J Chromatogr A 879:211-8.

30. Kier, L. D., R. M. Weppelman, and B. N. Ames. 1979. Regulation of nonspecific acid phosphatase in Salmonella: phoN and phoP genes. J Bacteriol 138:155-61.

31. Lacour, S., E. Bechet, A. J. Cozzone, I. Mijakovic, and C. Grangeasse.

2008. Tyrosine phosphorylation of the UDP-glucose dehydrogenase of Escherichia coli is at the crossroads of colanic acid synthesis and polymyxin resistance. PLoS ONE 3:e3053.

32. Lan, C. K., P. R. Hsueh, W. W. Wong, C. P. Fung, Y. T. Lau, J. Y.

Yeung, G. T. Young, and C. C. Su. 2003. Association of antibiotic

utilization measures and reduced incidence of infections with extended-spectrum beta-lactamase-producing organisms. J Microbiol Immunol Infect 36:182-6.

33. Li, J., R. L. Nation, J. D. Turnidge, R. W. Milne, K. Coulthard, C. R.

Rayner, and D. L. Paterson. 2006. Colistin: the re-emerging antibiotic for multidrug-resistant Gram-negative bacterial infections. Lancet Infect Dis 6:589-601.

34. Lin, C. T., T. Y. Huang, W. C. Liang, and H. L. Peng. 2006. Homologous response regulators KvgA, KvhA and KvhR regulate the synthesis of capsular polysaccharide in Klebsiella pneumoniae CG43 in a coordinated manner. J Biochem 140:429-38.

35. Mendez-Samperio, P. 2008. Role of antimicrobial peptides in host defense against mycobacterial infections. Peptides 29:1836-41.

36. Miller, J. H. 1972. Experiments in molecular genetics. Cold Spring Harbor Laboratory Press.

37. Mitrophanov, A. Y., M. W. Jewett, T. J. Hadley, and E. A. Groisman.

2008. Evolution and dynamics of regulatory architectures controlling polymyxin B resistance in enteric bacteria. PLoS Genet 4:e1000233.

38. Mouslim, C., and E. A. Groisman. 2003. Control of the Salmonella ugd gene by three two-component regulatory systems. Mol Microbiol 47:335-44.

39. Mouslim, C., T. Latifi, and E. A. Groisman. 2003. Signal-dependent requirement for the co-activator protein RcsA in transcription of the RcsB-regulated ugd gene. J Biol Chem 278:50588-95.

40. Nishino, K., F. F. Hsu, J. Turk, M. J. Cromie, M. M. Wosten, and E. A.

Groisman. 2006. Identification of the lipopolysaccharide modifications controlled by the Salmonella PmrA/PmrB system mediating resistance to Fe(III) and Al(III). Mol Microbiol 61:645-54.

41. Ohl, M. E., and S. I. Miller. 2001. Salmonella: a model for bacterial pathogenesis. Annu Rev Med 52:259-74.

42. Orwa, J. A., C. Govaerts, R. Busson, E. Roets, A. Van Schepdael, and J.

Hoogmartens. 2001. Isolation and structural characterization of polymyxin B components. J Chromatogr A 912:369-73.

43. Peng, H. L., P. Y. Wang, J. L. Wu, C. T. Chiu, and H. Y. Chang. 1991.

Molecular epidemiology of Klebsiella pneumoniae. Zhonghua Min Guo Wei Sheng Wu Ji Mian Yi Xue Za Zhi 24:264-71.

44. Pennetier, C., L. Dominguez-Ramirez, and J. Plumbridge. 2008.

Different regions of Mlc and NagC, homologous transcriptional repressors controlling expression of the glucose and N-acetylglucosamine phosphotransferase systems in Escherichia coli, are required for inducer signal recognition. Mol Microbiol 67:364-77.

45. Perez, J. C., and E. A. Groisman. 2007. Acid pH activation of the PmrA/PmrB two-component regulatory system of Salmonella enterica. Mol Microbiol 63:283-93.

46. Perraud, A. L., V. Weiss, and R. Gross. 1999. Signalling pathways in two-component phosphorelay systems. Trends Microbiol 7:115-20.

47. Podschun, R., and U. Ullmann. 1998. Klebsiella spp. as nosocomial pathogens: epidemiology, taxonomy, typing methods, and pathogenicity factors. Clin Microbiol Rev 11:589-603.

48. Scarlato, V., B. Arico, M. Domenighini, and R. Rappuoli. 1993.

Environmental regulation of virulence factors in Bordetella species.

Bioessays 15:99-104.

49. Skorupski, K., and R. K. Taylor. 1996. Positive selection vectors for allelic exchange. Gene 169:47-52.

50. Soncini, F. C., E. Garcia Vescovi, F. Solomon, and E. A. Groisman. 1996.

Molecular basis of the magnesium deprivation response in Salmonella typhimurium: identification of PhoP-regulated genes. J Bacteriol 178:5092-9.

51. Soncini, F. C., E. G. Vescovi, and E. A. Groisman. 1995. Transcriptional autoregulation of the Salmonella typhimurium phoPQ operon. J Bacteriol 177:4364-71.

52. Stock, J. B., A. M. Stock, and J. M. Mottonen. 1990. Signal transduction in bacteria. Nature 344:395-400.

53. Swain, P., S. K. Nayak, P. K. Nanda, and S. Dash. 2008. Biological effects of bacterial lipopolysaccharide (endotoxin) in fish: a review. Fish Shellfish Immunol 25:191-201.

54. Tamayo, R., S. S. Ryan, A. J. McCoy, and J. S. Gunn. 2002. Identification and genetic characterization of PmrA-regulated genes and genes involved in polymyxin B resistance in Salmonella enterica serovar Typhimurium. Infect Immun 70:6770-8.

55. Wehland, M., and F. Bernhard. 2000. The RcsAB box. Characterization of a new operator essential for the regulation of exopolysaccharide biosynthesis in enteric bacteria. J Biol Chem 275:7013-20.

56. Winfield, M. D., and E. A. Groisman. 2004. Phenotypic differences between Salmonella and Escherichia coli resulting from the disparate regulation of homologous genes. Proc Natl Acad Sci USA 101:17162-7.

57. Winfield, M. D., T. Latifi, and E. A. Groisman. 2005. Transcriptional regulation of the 4-amino-4-deoxy-L-arabinose biosynthetic genes in Yersinia pestis. J Biol Chem 280:14765-72.

58. Winson, M. K., S. Swift, P. J. Hill, C. M. Sims, G. Griesmayr, B. W.

Bycroft, P. Williams, and G. S. Stewart. 1998. Engineering the luxCDABE

genes from Photorhabdus luminescens to provide a bioluminescent reporter for constitutive and promoter probe plasmids and mini-Tn5 constructs.

FEMS Microbiol Lett 163:193-202.

59. Wosten, M. M., L. F. Kox, S. Chamnongpol, F. C. Soncini, and E. A.

Groisman. 2000. A signal transduction system that responds to extracellular iron. Cell 103:113-25.

60. Yan, A., Z. Guan, and C. R. Raetz. 2007. An undecaprenyl phosphate-aminoarabinose flippase required for polymyxin resistance in Escherichia coli. J Biol Chem 282:36077-89.

61. Zavascki, A. P., L. Z. Goldani, J. Li, and R. L. Nation. 2007. Polymyxin B for the treatment of multidrug-resistant pathogens: a critical review. J Antimicrob Chemother 60:1206-15.

62. Zhao, Y., R. Jansen, W. Gaastra, G. Arkesteijn, B. A. van der Zeijst, and J. P. van Putten. 2002. Identification of genes affecting Salmonella enterica serovar enteritidis infection of chicken macrophages. Infect Immun 70:5319-21.

63. Zhou, Z., A. A. Ribeiro, S. Lin, R. J. Cotter, S. I. Miller, and C. R. Raetz.

2001. Lipid A modifications in polymyxin-resistant Salmonella typhimurium:

PMRA-dependent 4-amino-4-deoxy-L-arabinose, and phosphoethanolamine incorporation. J Biol Chem 276:43111-21.

表一、本實驗所使用的菌株基因型

Strain Genotype or relevant property Reference or source

E.coli:

RecA1 supE44 endA1 hsdR17 gyrA96 rolA1 thiΔ(lac-proAB) Tpr Smr recA, thi, pro, hsdRM [RP4-2-Tc::Mu:Kmr Tn7]( pir )

K2 serotype rspL mutant,Smr

lacZ mutant in CG43S3

pmrA mutant in CG43S3-Z01 phoP mutant in CG43S3-Z01 rcsB mutant in CG43S3-Z01 ugd mutant in CG43S3 pmrH mutant in CG43S3 pmrF mutant in CG43S3 pmrA mutant in CG43S3 phoP mutant in CG43S3 pmrD mutant in CG43S3 pmrA/phoP mutant in CG43S3

Laboratory stock

CG43S3wza/pmrF CG43S3wza/pmrA CG43S3wza/phoP

wza and pmrF mutant in CG43S3 wza and pmrA mutant in CG43S3 wza and phoP mutant in CG43S3

This study This study This study

表二、本實驗所使用的質體構築表

Plasmid Relevant characteristic Reference or source

yT&A

PCR cloning vector, Apr

A derivative of pYC016, containing a promoterless lacZ from K.pneumoniae CG43S3 as the reporter, Cmr

Suicide vector, rspL, Apr, Kmr

Broad-host-range IncP cloning vector, Tcr

946-bp and 984-bp PCR product of the region upstream and downstream of pmrH cloned into yT&A

XbaI/SacI digested fragment of pYTHm034 cloned into pKAS46

1034-bp and 1037-bp PCR product of the region upstream and downstream of pmrF cloned into yT&A

EcoRI/XbaI digested fragment of pYTFm034 cloned into pKAS46

A 2.0-kb fragment containing a 500-bp deletion in wza locus cloned into pKAS46, A 2.0-kb fragment containing a 700-bp deletion in phoP locus cloned into pKAS46

Yeastern Biotech Co.

(34)

pHY025

A 2.0-kb fragment containing a 660-bp deletion in pmrA locus cloned into pKAS46 A 2.0-kb fragment containing a 500-bp deletion in pmrD locus cloned into pKAS46 A 2.0-kb fragment containing a 1100-bp deletion in ugd locus cloned into pKAS46 1277-bp PCR product carrying pmrF cloned into yT&A

HindIII/BamHI digested fragment of pFcYT cloned into pRK415 1105-bp PCR product carrying pmrA cloned into yT&A

HindIII/XbaI digested fragment of pAcYT cloned into pRK415 900-bp PCR product carrying phoP cloned into yT&A

BamHI/EcoRI digested fragment of pPcYT cloned into pRK415

BamHI/BglII digested fragment of 253-bp PCR product amplified by primer sets ugd03/ugd04 cloned into the BamHI site of pLacZ15

BamHI/BglII digested fragment of 477-bp PCR product amplified by primer sets pmrHp01/pmrHp02 cloned into the BamHI site of pLacZ15

1181-bp PCR product carrying rcsB cloned into pRK415

A 400-bp PCR product of cps porf16-17 promoter region cloned into yT&A A BglII fragment of porf162Ycloned into the BamHI site of pLacZ15

Laboratory stock

表三、本實驗所使用的引子序列

a,restriction enzyme site Primer Sequence

5’-CAA,TTG,GAT,CaCA,GGG,CTG,TAC-3’

5’-GAG,CCA,TGGa,TCT,ATT,CCG,TG-3’

5’-TGA,TTC,AGC,AGT,AGT,TCG,CCA,GCC-3’

5’-CGC,TCG,CCG,TTC,GGA,TCCa,TG-3’

5’-GCA,ACG,GTA,CCaT,TCA,TCA,GCG,C-3’

5'-GAT,GGA,AAA,GCT,GAA,GGC,GAT,GG-3' 5'-CAG,CGA,TATa,CAT,ACC,CGG,CGT,C-3' 5’-GCA,GGA,TCCa,ATA,ATG,GAA,GC-3’

5’-CGA,GAT,CTaA,GGG,CCA,CCA,C-3’

5’-TCT,GGA,TCCa,TGG,TCA,TTA,ATT,GCC,CGG,C-3’

5’-CTT,AGA,TCTa,CGC,TCA,TCA,TCA,TCC,TGT,TC-3’

5’-TTT,CTA,TGG,GCA,GAT,GGT,TG-3’

5’-GCT,GAC,TAT,CGG,GAA,GCA,TC-3’

圖一、不同菌種間 pmr 操縱子上游序列比較分析

比較克雷白氏菌、大腸桿菌、沙門氏菌及鼠疫桿菌間的 pmr 操縱子上游序 列,並標示-10 box 和-35 box,PhoP 結合位以空心方塊表示,PmrA 結合位以 實心方塊表示。

(A)

(B)

圖二、PCR 分析確認 pmrH 突變株

(A)pmrH 及上下游基因組成示意圖。引子 pmrH01/pmrH02 是用來確 pmrH 基因缺損。(B)利用引子 pmrH01/pmrH02 進行 PCR 分析確認 pmrH 基因缺 損。質體 pKAHm034 包含 pmrH 基因上下游序列以進行同源互換產生 pmrH 突變株。M:DNA 大小標準溶液,lane 1:K. pneumoniae CG43S3,lane 2:

pKAHm034,lane 3:K. pneumoniae CG43S3pmrH。

1.0 3.0 2.5 2.0

2 3

1.5

1 2 3

kb

M

(A)

(B)

圖三、PCR 分析確認 pmrF 突變株

(A)pmrF 及上下游基因組成示意圖。引子 pmrF01/pmrF02 是用來確認 pmrF 基因缺損。(B)利用引子 pmrF01/pmrF02 進行 PCR 分析確認 pmrF 基因缺 損。質體 pKAFm034 包含 pmrF 基因上下游序列以進行同源互換產生 pmrF 突變株。M:DNA 大小標準溶液,lane 1:K. pneumoniae CG43S3,lane 2:

pKAFm034,lane 3:K. pneumoniae CG43S3pmrF。

3.0 2.5 2.0

1 2 3

1.5 1.0 kb

M

圖四、K. pneumoniae CG43S3、CG43S3pmrH和CG43S3pmrF 生長曲線圖

將隔夜培養的菌液以1:100 比例更新培養於 LB、LB+1 mM Fe3+及LB+10 mM Mg2+離子,在 37℃下振 盪培養,每隔1 小時量測 OD600的吸光值。

(A)

(B)

圖五、pmrH、pmrF 和 ugd 基因缺損株(A)以及 pmrF 互補株(B)對多黏 菌素的抗性分析

隔夜培養的菌液以 1:200 的比例重新培養於含 1 mM Fe3+的 LB 培養液,在 37℃下振盪培養 3-4 小時。將菌液稀釋成 1-3 × 103 CFU/ml,加入多黏菌素使 最後濃度為 2 units/ml,在 37℃下振盪培養 1 小時後直接塗盤於 LB 培養基使 其長出單一菌落。存活率的計算是以多黏菌素作用後長出來的總菌數除以原 始下反應未和多黏菌數作用的總菌數的百分比。質體 pFcRK 為 pRK415 包含 pmrF 完整基因及其核醣體結合位序列。

(A)

(B)

圖六、pmrA、phoP 和 pmrD 基因缺損株以及互補株對多黏菌素的抗性分析 野生株和 pmrA、phoP 及 pmrD 基因缺損株(A)以及 pmrAphoP 和 pmrD 互補株(B)在濃度 4 units/ml 的多黏菌素環境下的存活率。質體 pAcRK、

pPcRK 及 pHY212 分別為 pRK415 包含 pmrA、phoP 或 pmrD 完整基因及其核 醣體結合位序列。

圖七、pmrA/phoP基因缺損的pmrA或phoP互補株對多黏菌素的抗性分析 pmrA/phoP 突變株、pmrA/phoP 基因缺損的 pmrA 或 phoP 互補株在濃度 4 units/ml 的多黏菌素環境下的存活率。

(A)

(B) (C)

圖八、pmr 操縱子的基因組成示意圖和 PpmrH::lacZ 的活性測試

(A)利用 VectorNTI 軟體 (Invitrogen Vector NTI™ Advance)分析 pmr 操縱 子的基因組成,並標示 PpmrH::lacZ(pHY072)的建構方式。(B)隔夜培養 的菌液重新培養於LB、LB+1 mM Fe3+及 LB+10 mM Mg2+ 中 3-4 小時,並 測試 PpmrH::lacZ 的活性。(C)隔夜培養的菌液重新培養於 LB 培養液 3-4 小 時,並測量在野生株、pmrA 或 phoP 突變株中的 PpmrH 活性。

(A)

(B)

圖九、pmrF、pmrA 和 phoP 基因缺損株(A)及互補株(B)在 THP-1 細胞 株內的存活率測試

將 m.o.i=30 的細菌加到已接種在 24 孔培養盤的細胞中,並培養在不含胎牛 血清及抗生素的 RPMI 1640 液培養 2 小時,加入 gentamicin 抗生素作用 1 小 時,之後分別在 0、4、8 小時加入 0.1% 的 Triton X-100 作用 10 分鐘,將菌 液系列稀釋(1/100X)後直接塗盤於 LB 培養基使其長出單一菌落。回收率 的計算是以經細胞吞噬後回收的總菌數除以下反應的總菌數的百分比。

圖十、pmrF、pmrA 和 phoP 基因缺損株在 RAW264.7 細胞株內的存活率測

wza 野生株、pmrF、phoP 及 pmrA 突變株在受 RAW264.7 細胞株吞噬後 0、

4、8 小時的回收率。

圖十一、Pugd-1::lacZ 的活性測試

隔夜培養的菌液重新培養於 LB 培養液 3-4 小時,並測量在野生株、phoPpmrA 或 rcsB 突變株中的 Pugd-1活性。

(A)

(B)

(C)

圖十二、RT-PCR 分析確認 manC-manB-ugd 操縱子和 Pugd-2::lacZ 的活性測

A ) ugd 及 上 下 游 基 因 組 成 示 意 圖 。 a 、 b 和 c 分 別 為 利 用 引 子 Rorf1601/Rorf1602、Rorf1701/Rorf1702 和 Rugd01/Rugd02 進行 PCR 所增殖

出 gnd-manC、manC-manB 和 manB-ugd 基因間的片段大小。Pugd-1::lacZ 和

Pugd-2::lacZ 分別表示兩個所建構的 ugd 啟動子部位。(B)RT-PCR 分析

manC、manB 和 ugd 基因間的區域,PCR 增殖的片段 a、b 和 c 分別為 1-3 行

(431 bp)、4-6 行(443 bp)和 7-9 行(510 bp)。第 1、4 和 7 行為 genomic DNA 的 PCR 產物,當做正對照組。第 2、5 和 8 行為 RNA 的 PCR 產物,當作負對照組。第 3、6 和 9 行為 cDNA 的 PCR 產物。(C)隔夜培 養的菌液重新培養於 LB 培養液 3-4 小時,並測量在野生株、phoP、pmrA 或 rcsB 突變株中的 Pugd-2活性。

圖十三、rcsB 基因缺損株對多黏菌素的抗性分析

野生株、rcsB 突變株及 rcsB 互補株在濃度 2、4 units/ml 的多黏菌素環境下的 存活率。質體 pHY123 為 pRK415 包含 rcsB 完整基因及其核醣體結合位序

野生株、rcsB 突變株及 rcsB 互補株在濃度 2、4 units/ml 的多黏菌素環境下的 存活率。質體 pHY123 為 pRK415 包含 rcsB 完整基因及其核醣體結合位序

相關文件