• 沒有找到結果。

In basic investigation of this study, we compounded a novel drug combination of thermogelling hydrogel carboplatin to satisfy the unmet clinical need for glioma treatment.

Through the comprehensive biomaterial, cell, and animal experiment design, we significantly demonstrated that thermogelling hydrogel carboplatin simplified the drug delivery method

42

and frequency without compromising the synergistic effect with RT, which makes intraoperative single drug injection followed by RT a feasible and potential clinical treatment.

We chose carboplatin with well-established CCRT effects and hydrogel with well-accepted biocompatible features as a novel drug delivery combination, which helps accelerate the application process for further clinical trials. The impact of our study results is that we significantly demonstrated intratumoral injection of hydrogel carboplatin with RT as an effective, convenient, and safe treatment combination for malignant gliomas which is potential for clinical application.

43

Figure 1. The clinical and basic research perspectives of our glioblastoma study. We

proposed a comprehensive study, including imaging analysis and drug delivery investigation, to satisfy the clinical unmet needs for glioblastoma treatment.

44

Figure 2. The correlation between tumor location with edema and tumor migration.

The interactions between the anatomical factor subventricular zone (red line) and corpus callosum (green line) the pathophysiological factor preoperative edema (blue color wash) and the associated clinical impacts, including tumor migration ability and directions (black line with arrow) [64].

45

Figure 3. The rationale and purpose in the current basic study: by comparing the

characteristics of the intratumoral delivery modalities and drugs for malignant gliomas to propose a novel combination to satisfy the unmet clinical need [59].

46

Figure 4. The method of evaluating the preoperative edema extent in our clinical study.

(A) Select the image section that presents the maximum diameter of preoperative tumor. (B) Create a 2-cm expansion of tumor edge along SVZ (the lateral wall of lateral ventricles) or CC if these structures are invaded. Otherwise, draw tangential lines to the tumor edge and then use their normal lines to expand a 2-cm margin of the tumor edge. (C) Use the 2-cm expansion margin of tumor edge as a reference boundary to evaluate the PE extent. (D) Apply the 2-cm expansion margin of the preoperative tumor edge on the similar image sections after CCRT to evaluate the PD extent [64].

47

Figure 5. The definitions of edema extent and progression patterns. (A) Illustrations of

(A1) EPE (PE ≥ 2 cm from the tumor margin) combined with (A2) sSVZCC invasion to evaluate the rates of EPD (continuous or discrete progression of tumors spreading along the

48

PE areas and > 2 cm from the tumor margin), (A3) SVZEPD, and CCEPD after CCRT. (B) Illustrations of (B1) EPE− and (B2) sSVZCC+/− invasion to evaluate the rate of (B3) EPD after CCRT. (C) Illustrations of (C1) EPE+ and (C2) sSVZCC+/− invasion to evaluate the rates of (C3) EPD, SVZEPD, and CCEPD [64].

Figure 6. The workflow of our basic study design: biomaterial, in vitro, and in vivo

investigations [59].

49

Figure 7. Drug preparation: the procedures of (A) oxi-HA/ADH hydrogel and (B)

hydrogel carboplatin preparation. (Figures courtesy of Xue-Shi Lai, MSc.)

50

Figure 8. The treatment regimens and evaluation protocol of our mice study: (A)

low-dose carboplatin (first-stage experiment) and (B) high-low-dose carboplatin (second-stage experiment) [59].

15 µg/g 3 µg/g

51

Figure 9. Kaplan-Meier’s estimates of (A1) OS and (A2) PFS for patients with and

without EPE, (B1) OS and (B2) PFS for patients with and without sSVZCC invasion [64].

52

Figure 10. MRI demonstration of patients with different tumor locations. Distinct

progression patterns after CCRT in 4 patients categorized according to the different combinations of the SVZ and CC invasion. (A1, A2) The patient with synchronous left occipital horn of the SVZ (red dashed lines) and left posterior CC (green dashed lines) invasion exhibited distant progression to the left cerebellum (blue arrow). (A3) Other

53

progression (blue arrow) developed in the preoperative edematous areas (blue dashed lines), which migrated across the posterior CC to the contralateral hemisphere (yellow dashed arrows). (B1, B2) The patient with synchronous left frontal horn of the SVZ (red dashed lines) and left anterior CC (green dashed lines) invasion showed progression in the tumor bed of the left anterior CC (red arrows) and the distant area at the left posterior CC along the occipital horn (blue arrows). (C) The patient with left temporal horn of the SVZ (red dashed lines) but without CC invasion exhibited progression involving the tumor bed only (red arrow). (D) The patient with neither SVZ nor CC invasion showed progression involving the tumor bed only (red arrow) [23].

54

55

Figure 11. MRI demonstration of patients with different edema extents and tumor locations. Distinct progression patterns after CCRT in five patients categorized according to

the different combinations of EPE and sSVZCC invasion. A patient with (A1,2) EPE−/sSVZCC− before surgery presented with (A3) local progression without EPD. Another patient with (B1,2) EPE−/sSVZCC+ before surgery presented with (B3) local progression without EPD. Panels C1,2 demonstrate a patient with EPE+/sSVZCC− before surgery, who presented with (C3) local progression with EPD. Panels D1,2 show a patient with EPE+/sSVZCC+ and CCEPE before surgery, who presented with (D3) local progression with EPD along the CC. Panels E1,2 describe a patient with EPE+/sSVZCC+ and SVZEPE before surgery, who presented with (E3) local progression with EPD along the SVZ [64].

Figure 12. Illustrations of by FTIR analysis: (A1) the spectrum peak at 1730 cm-1 of

oxi-HA disappeared after mixing oxi-oxi-HA with ADH and the appearance of a new forming peak at 1528 cm-1 of oxi-HA/ADH and (A2) the appearance of a new forming peak at 545 cm-1 of oxi-HA/ADH hydrogel carboplatin [59].

56

Figure 13. The rheological properties of HA/ADH: (A1) the gelation of

HA/ADH started at temperature higher than 27.6 °C and (A2) the gelling time of oxi-HA/ADH from liquid state to gel state were 17 seconds at 37 °C (body temperature) [59].

Figure 14. Degradation properties of oxi-HA/ADH hydrogel: At 72 and 120 h,

degradation percentages for oxi-HA/ADH (Figure 4C) were 5.2% and 18.2%, respectively [59].

57

Figure 15. Drug release profile: The ICP-MS result demonstrates two phases of the

carboplatin release from hydrogel, including a burst release of 63.7% during the first 24 h, followed by a steady release of 16.6% over the 24 to 96 h [59].

Figure 16. Biocompatibility of oxi-HA/ADH: (A) The WST-1 analysis demonstrated the

cell viability of 3T3 cells cultured in oxi-HA/ADH hydrogel extraction medium was not significantly different compared with those in the control and negative control groups (p = 0.644). (B) The LDH assay indicated the cytotoxicity oxi-HA/ADH is not significantly different from the negative control group (p = 0.173) [59].

58

Figure 17. The LIVE/DEAD staining: Nearly all the 3T3 cells were viable in the

oxi-HA/ADH hydrogel after 3 days’ cultivation [59].

Figure 18. The IC

50

test of carboplatin: The in vitro concentrations of carboplatin to inhibit

50% ALCS1C1 cells to proliferation was 44.4 and 18.5 µg/mL after 1-day and 3-day treatment, respectively [59].

59

Figure 19. The BLIs evolution of the first-stage in vivo experiment. Comparing with the

sham group, the BLIs demonstrate the relatively delayed tumor progression in all treatment groups [59].

60

Figure 20. The tumor volume evolution of the first-stage in vivo experiment.

On day 24, the tumor volume analysis (excepting sham group) by one-way ANOVA showed no difference of tumor progression for RT with and without low-dose carboplatin (p = 0.787) [59].

61

Figure 21. The BLIs evolution of the second-stage in vivo experiment. The BLIs

demonstrate the tumor nearly complete response in HCR and ACR groups, while tumor progression in other treatment groups [59].

Figure 22. The bioluminescence signal of the second-stage in vivo experiment [59].

62

Figure 23. The tumor volume evolution of the second-stage in vivo experiment. In ACR

and HCR groups, the tumor volume curves demonstrate good tumor control without difference (p = 0.904) [59].

Figure 24. The survival curves of the second-stage in vivo experiment: The HCR and

ACR groups had 104-day survival rates of 50% and 66.7% without significant difference (p

= 0.648) [59].

63

Figure 25. The gross and histopathological findings of the second-stage in vivo

experiment: (A) The blue area illustrated the diameters of dye distribution 1 day and 3 days

after oxi-HA/ADH hydrogel dye injection were 7 and 9 mm, respectively. (B1) The H&E stain of tumor receiving RT showed both cell death (yellow rectangular area at 100× and yellow arrow at 400×) and tumor cell proliferation (red rectangular area at 100× and red arrow at 400×). The H&E stain of tumor receiving either aqueous carboplatin with RT (B2) or hydrogel carboplatin with RT (B3) showed prominent cell death. Contrastingly, H&E stain of tumor cell growth under no treatment (C1) and injection of hydrogel (C2), aqueous carboplatin (C3), and hydrogel carboplatin (C4) all showed tumor cell proliferation only [59].

64

Figure 26. The weight change and skin reaction of mice in the second-stage in vivo

experiment: (A) Mice weight change in the second-stage experiment. (B) No skin ulcer after

treatment of RT with high-dose (C1) hydrogel carboplatin or (C2) aqueous carboplatin [59].

65

Figure 27. The proposed personalized glioblastoma treatment strategies [59].

66

Figure 28. Progression patterns and sSVZCC invasion. The comprehensive progression

conditions for sSVZCC invasion patients (C1) after CCRT. (C2) The progression sites analysis classified by the anatomical structures. (C3) The progression patterns analysis based on the progressive tumor locations corresponding to the tumor bed and preoperative edematous areas. Abbreviations: C, corpus callosum; D, distant; E, edema; H, bilateral hemispheres; L, local; V, ventricles [23]

67

TABLES

68

69

70

71

72

73

REFERENCES

[1] Q.T. Ostrom, L. Bauchet, F.G. Davis, I. Deltour, J.L. Fisher, C.E. Langer, M. Pekmezci, J.A. Schwartzbaum, M.C. Turner, K.M. Walsh, M.R. Wrensch, J.S. Barnholtz-Sloan, The epidemiology of glioma in adults: a "state of the science" review, Neuro Oncol 16(7) (2014) 896-913.

[2] Cancer Registry Annual Report 2014, Health Promotion Administration, Ministry of Health and Welfare, Taiwan, 2016, p. 93.

[3] Cancer Registry Annual Report 2013, Health Promotion Administration, Ministry of Health and Welfare, Taiwan, 2015, p. 93.

[4] Cancer Registry Annual Report 2012, Health Promotion Administration, Ministry of Health and Welfare, Taiwan, 2014, p. 93.

[5] P.Y. Wen, S. Kesari, Malignant gliomas in adults, N Engl J Med 359(5) (2008) 492-507.

[6] S. Cha, Update on brain tumor imaging: from anatomy to physiology, AJNR Am J Neuroradiol 27(3) (2006) 475-87.

[7] J. Li, M. Wang, M. Won, E.G. Shaw, C. Coughlin, W.J. Curran, Jr., M.P. Mehta, Validation and simplification of the Radiation Therapy Oncology Group recursive partitioning analysis classification for glioblastoma, International journal of radiation oncology, biology, physics 81(3) (2011) 623-30.

[8] R.O. Mirimanoff, T. Gorlia, W. Mason, M.J. Van den Bent, R.D. Kortmann, B. Fisher, M. Reni, A.A. Brandes, J. Curschmann, S. Villa, G. Cairncross, A. Allgeier, D. Lacombe, R.

Stupp, Radiotherapy and temozolomide for newly diagnosed glioblastoma: recursive partitioning analysis of the EORTC 26981/22981-NCIC CE3 phase III randomized trial,

74

Journal of clinical oncology : official journal of the American Society of Clinical Oncology 24(16) (2006) 2563-9.

[9] H.K. Liang, C.W. Wang, H.M. Tseng, C.Y. Huang, K.H. Lan, Y.H. Chen, S.L. You, J.C.

Cheng, A.L. Cheng, S.H. Kuo, Preoperative prognostic neurologic index for glioblastoma patients receiving tumor resection, Annals of surgical oncology 21(12) (2014) 3992-8.

[10] M.E. Hegi, A.C. Diserens, T. Gorlia, M.F. Hamou, N. de Tribolet, M. Weller, J.M. Kros, J.A. Hainfellner, W. Mason, L. Mariani, J.E. Bromberg, P. Hau, R.O. Mirimanoff, J.G.

Cairncross, R.C. Janzer, R. Stupp, MGMT gene silencing and benefit from temozolomide in glioblastoma, The New England journal of medicine 352(10) (2005) 997-1003.

[11] S.E. Combs, S. Rieken, W. Wick, A. Abdollahi, A. von Deimling, J. Debus, C. Hartmann, Prognostic significance of IDH-1 and MGMT in patients with glioblastoma: one step forward, and one step back?, Radiat Oncol 6 (2011) 115.

[12] M.D. Walker, S.B. Green, D.P. Byar, E. Alexander, Jr., U. Batzdorf, W.H. Brooks, W.E.

Hunt, C.S. MacCarty, M.S. Mahaley, Jr., J. Mealey, Jr., G. Owens, J. Ransohoff, 2nd, J.T.

Robertson, W.R. Shapiro, K.R. Smith, Jr., C.B. Wilson, T.A. Strike, Randomized comparisons of radiotherapy and nitrosoureas for the treatment of malignant glioma after surgery, N Engl J Med 303(23) (1980) 1323-9.

[13] H. Athanassiou, M. Synodinou, E. Maragoudakis, M. Paraskevaidis, C. Verigos, D.

Misailidou, D. Antonadou, G. Saris, K. Beroukas, P. Karageorgis, Randomized phase II study of temozolomide and radiotherapy compared with radiotherapy alone in newly diagnosed glioblastoma multiforme, J Clin Oncol 23(10) (2005) 2372-7.

[14] R. Stupp, P.Y. Dietrich, S. Ostermann Kraljevic, A. Pica, I. Maillard, P. Maeder, R.

Meuli, R. Janzer, G. Pizzolato, R. Miralbell, F. Porchet, L. Regli, N. de Tribolet, R.O.

75

Mirimanoff, S. Leyvraz, Promising survival for patients with newly diagnosed glioblastoma multiforme treated with concomitant radiation plus temozolomide followed by adjuvant temozolomide, J Clin Oncol 20(5) (2002) 1375-82.

[15] R. Stupp, W.P. Mason, M.J. van den Bent, M. Weller, B. Fisher, M.J. Taphoorn, K.

Belanger, A.A. Brandes, C. Marosi, U. Bogdahn, J. Curschmann, R.C. Janzer, S.K. Ludwin, T. Gorlia, A. Allgeier, D. Lacombe, J.G. Cairncross, E. Eisenhauer, R.O. Mirimanoff, R.

European Organisation for, T. Treatment of Cancer Brain, G. Radiotherapy, G. National Cancer Institute of Canada Clinical Trials, Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma, The New England journal of medicine 352(10) (2005) 987-96.

[16] A.A. Brandes, A. Tosoni, E. Franceschi, G. Sotti, G. Frezza, P. Amista, L. Morandi, F.

Spagnolli, M. Ermani, Recurrence pattern after temozolomide concomitant with and adjuvant to radiotherapy in newly diagnosed patients with glioblastoma: correlation With MGMT promoter methylation status, J Clin Oncol 27(8) (2009) 1275-9.

[17] M.W. McDonald, H.K. Shu, W.J. Curran, Jr., I.R. Crocker, Pattern of failure after limited margin radiotherapy and temozolomide for glioblastoma, Int J Radiat Oncol Biol Phys 79(1) (2011) 130-6.

[18] B.J. Gebhardt, M.C. Dobelbower, W.H. Ennis, A.K. Bag, J.M. Markert, J.B. Fiveash, Patterns of failure for glioblastoma multiforme following limited-margin radiation and concurrent temozolomide, Radiat Oncol 9 (2014) 130.

[19] A. Lattermann, M. Baumann, M. Krause, Clinical trials for personalized glioblastoma radiotherapy: Markers for efficacy and late toxicity but often delayed treatment - Does that matter?, Radiother Oncol 118(1) (2016) 211-3.

76

[20] M. Niyazi, M. Brada, A.J. Chalmers, S.E. Combs, S.C. Erridge, A. Fiorentino, A.L.

Grosu, F.J. Lagerwaard, G. Minniti, R.O. Mirimanoff, U. Ricardi, S.C. Short, D.C. Weber, C. Belka, ESTRO-ACROP guideline "target delineation of glioblastomas", Radiother Oncol 118(1) (2016) 35-42.

[21] E.P. Jansen, L.G. Dewit, M. van Herk, H. Bartelink, Target volumes in radiotherapy for high-grade malignant glioma of the brain, Radiother Oncol 56(2) (2000) 151-6.

[22] L. Chen, K.L. Chaichana, L. Kleinberg, X. Ye, A. Quinones-Hinojosa, K. Redmond, Glioblastoma recurrence patterns near neural stem cell regions, Radiother Oncol 116(2) (2015) 294-300.

[23] T.H. Liang, S.H. Kuo, C.W. Wang, W.Y. Chen, C.Y. Hsu, S.F. Lai, H.M. Tseng, S.L.

You, C.M. Chen, W.Y. Tseng, Adverse prognosis and distinct progression patterns after concurrent chemoradiotherapy for glioblastoma with synchronous subventricular zone and corpus callosum invasion, Radiother Oncol 118(1) (2016) 16-23.

[24] S. Adeberg, L. Konig, T. Bostel, S. Harrabi, T. Welzel, J. Debus, S.E. Combs, Glioblastoma recurrence patterns after radiation therapy with regard to the subventricular zone, Int J Radiat Oncol Biol Phys 90(4) (2014) 886-93.

[25] N.F. Jafri, J.L. Clarke, V. Weinberg, I.J. Barani, S. Cha, Relationship of glioblastoma multiforme to the subventricular zone is associated with survival, Neuro Oncol 15(1) (2013) 91-6.

[26] S. Adeberg, T. Bostel, L. Konig, T. Welzel, J. Debus, S.E. Combs, A comparison of long-term survivors and short-term survivors with glioblastoma, subventricular zone involvement: a predictive factor for survival?, Radiat Oncol 9 (2014) 95.

77

[27] A.M. Mistry, A.T. Hale, L.B. Chambless, K.D. Weaver, R.C. Thompson, R.A. Ihrie, Influence of glioblastoma contact with the lateral ventricle on survival: a meta-analysis, J Neurooncol (2016).

[28] D.A. Lim, S. Cha, M.C. Mayo, M.H. Chen, E. Keles, S. VandenBerg, M.S. Berger, Relationship of glioblastoma multiforme to neural stem cell regions predicts invasive and multifocal tumor phenotype, Neuro Oncol 9(4) (2007) 424-9.

[29] K.J. Steltzer, K.I. Sauve, A.M. Spence, T.W. Griffin, M.S. Berger, Corpus callosum involvement as a prognostic factor for patients with high-grade astrocytoma, International journal of radiation oncology, biology, physics 38(1) (1997) 27-30.

[30] K. Dziurzynski, D. Blas-Boria, D. Suki, D.P. Cahill, S.S. Prabhu, V. Puduvalli, N.

Levine, Butterfly glioblastomas: a retrospective review and qualitative assessment of outcomes, Journal of neuro-oncology 109(3) (2012) 555-63.

[31] K.L. Chaichana, I. Jusue-Torres, A.M. Lemos, A. Gokaslan, E.E. Cabrera-Aldana, A.

Ashary, A. Olivi, A. Quinones-Hinojosa, The butterfly effect on glioblastoma: is volumetric extent of resection more effective than biopsy for these tumors?, Journal of neuro-oncology 120(3) (2014) 625-34.

[32] C.X. Wu, G.S. Lin, Z.X. Lin, J.D. Zhang, S.Y. Liu, C.F. Zhou, Peritumoral edema shown by MRI predicts poor clinical outcome in glioblastoma, World J Surg Oncol 13 (2015) 97.

[33] A.I. Mehta, A. Linninger, M.S. Lesniak, H.H. Engelhard, Current status of intratumoral therapy for glioblastoma, J Neurooncol 125(1) (2015) 1-7.

[34] W.K. Xing, C. Shao, Z.Y. Qi, C. Yang, Z. Wang, The role of Gliadel wafers in the treatment of newly diagnosed GBM: a meta-analysis, Drug Des Devel Ther 9 (2015) 3341-8.

78

[35] L.S. Ashby, K.A. Smith, B. Stea, Gliadel wafer implantation combined with standard radiotherapy and concurrent followed by adjuvant temozolomide for treatment of newly diagnosed high-grade glioma: a systematic literature review, World J Surg Oncol 14(1) (2016) 225.

[36] A. Quinones-Hinojosa, N. Sanai, M. Soriano-Navarro, O. Gonzalez-Perez, Z. Mirzadeh, S. Gil-Perotin, R. Romero-Rodriguez, M.S. Berger, J.M. Garcia-Verdugo, A. Alvarez-Buylla, Cellular composition and cytoarchitecture of the adult human subventricular zone: a niche of neural stem cells, J Comp Neurol 494(3) (2006) 415-34.

[37] F. Doetsch, A. Alvarez-Buylla, Network of tangential pathways for neuronal migration in adult mammalian brain, Proceedings of the National Academy of Sciences of the United States of America 93(25) (1996) 14895-900.

[38] G. Kempermann, Why new neurons? Possible functions for adult hippocampal neurogenesis, The Journal of neuroscience : the official journal of the Society for Neuroscience 22(3) (2002) 635-8.

[39] J. Kiernan, R. Rajakumar, Barr's the human nervous system: an anatomical viewpoint, Lippincott Williams & Wilkins2013.

[40] H. Wolburg, S. Noell, P. Fallier-Becker, A.F. Mack, K. Wolburg-Buchholz, The disturbed blood-brain barrier in human glioblastoma, Mol Aspects Med 33(5-6) (2012) 579-89.

[41] A.B. Fleming, W.M. Saltzman, Pharmacokinetics of the carmustine implant, Clin Pharmacokinet 41(6) (2002) 403-19.

79

[42] C. Bastiancich, P. Danhier, V. Preat, F. Danhier, Anticancer drug-loaded hydrogels as drug delivery systems for the local treatment of glioblastoma, J Control Release 243 (2016) 29-42.

[43] D. Fortin, P.A. Morin, F. Belzile, D. Mathieu, F.M. Pare, Intra-arterial carboplatin as a salvage strategy in the treatment of recurrent glioblastoma multiforme, J Neurooncol 119(2) (2014) 397-403.

[44] M. Ronghe, D. Hargrave, U. Bartels, U. Tabori, S. Vaidya, C. Chandler, A. Kulkarni, E.

Bouffet, Vincristine and carboplatin chemotherapy for unresectable and/or recurrent low-grade astrocytoma of the brainstem, Pediatr Blood Cancer 55(3) (2010) 471-7.

[45] M. Roskies, E. Kay-Rivest, M.A. Mascarella, K. Sultanem, A. Mlynarek, M. Hier, Survival outcomes in patients with oropharyngeal cancer treated with carboplatin/paclitaxel and concurrent radiotherapy, J Otolaryngol Head Neck Surg 45(1) (2016) 50.

[46] D. Wang, S.J. Lippard, Cellular processing of platinum anticancer drugs, Nat Rev Drug Discov 4(4) (2005) 307-20.

[47] M. Rezaee, D.J. Hunting, L. Sanche, New insights into the mechanism underlying the synergistic action of ionizing radiation with platinum chemotherapeutic drugs: the role of low-energy electrons, Int J Radiat Oncol Biol Phys 87(4) (2013) 847-53.

[48] L. Bobyk, M. Edouard, P. Deman, J. Rousseau, J.F. Adam, J.L. Ravanat, F. Esteve, J.

Balosso, R.F. Barth, H. Elleaume, Intracerebral delivery of carboplatin in combination with either 6 MV photons or monoenergetic synchrotron X-rays are equally efficacious for treatment of the F98 rat glioma, J Exp Clin Cancer Res 31 (2012) 78.

80

[49] M. Shi, D. Fortin, L. Sanche, B. Paquette, Convection-enhancement delivery of platinum-based drugs and Lipoplatin(TM) to optimize the concomitant effect with radiotherapy in F98 glioma rat model, Invest New Drugs 33(3) (2015) 555-63.

[50] W. Yang, T. Huo, R.F. Barth, N. Gupta, M. Weldon, J.C. Grecula, B.D. Ross, B.A. Hoff, T.C. Chou, J. Rousseau, H. Elleaume, Convection enhanced delivery of carboplatin in combination with radiotherapy for the treatment of brain tumors, J Neurooncol 101(3) (2011) 379-90.

[51] W. Yang, R.F. Barth, T. Huo, R.J. Nakkula, M. Weldon, N. Gupta, L. Agius, J.C.

Grecula, Radiation therapy combined with intracerebral administration of carboplatin for the treatment of brain tumors, Radiat Oncol 9 (2014) 25.

[52] T. Shahar, Z. Ram, A.A. Kanner, Convection-enhanced delivery catheter placements for high-grade gliomas: complications and pitfalls, J Neurooncol 107(2) (2012) 373-8.

[53] M.L. Brady, R. Raghavan, W. Block, B. Grabow, C. Ross, K. Kubota, A.L. Alexander, M.E. Emborg, The Relation between Catheter Occlusion and Backflow during Intraparenchymal Cerebral Infusions, Stereotact Funct Neurosurg 93(2) (2015) 102-109.

[54] W.Y. Su, Y.C. Chen, F.H. Lin, Injectable oxidized hyaluronic acid/adipic acid dihydrazide hydrogel for nucleus pulposus regeneration, Acta Biomater 6(8) (2010) 3044-55.

[55] E.J. Cho, B. Sun, K.O. Doh, E.M. Wilson, S. Torregrosa-Allen, B.D. Elzey, Y. Yeo, Intraperitoneal delivery of platinum with in-situ crosslinkable hyaluronic acid gel for local therapy of ovarian cancer, Biomaterials 37 (2015) 312-9.

[56] X. Wang, J. Wang, W. Wu, H. Li, Vaginal delivery of carboplatin-loaded thermosensitive hydrogel to prevent local cervical cancer recurrence in mice, Drug Deliv 23(9) (2016) 3544-3551.

81

[57] J.Y. Fang, J.P. Chen, Y.L. Leu, J.W. Hu, The delivery of platinum drugs from thermosensitive hydrogels containing different ratios of chitosan, Drug Deliv 15(4) (2008) 235-43.

[58] J.P. Chen, Y.L. Leu, C.L. Fang, C.H. Chen, J.Y. Fang, Thermosensitive hydrogels composed of hyaluronic acid and gelatin as carriers for the intravesical administration of cisplatin, J Pharm Sci 100(2) (2011) 655-66.

[59] H.T. Liang, X.S. Lai, M.F. Wei, S.H. Lu, W.F. Wen, S.H. Kuo, C.M. Chen, W.I. Tseng, F.H. Lin, Intratumoral injection of thermogelling and sustained-release carboplatin-loaded hydrogel simplifies the administration and remains the synergistic effect with radiotherapy for mice gliomas, Biomaterials 151 (2018) 38-52.

[60] M.D. Walker, E. Alexander Jr, W.E. Hunt, C.S. MacCarty, M.S. Mahaley Jr, J. Mealey Jr, H.A. Norrell, G. Owens, J. Ransohoff, C.B. Wilson, Evaluation of BCNU and/or radiotherapy in the treatment of anaplastic gliomas: a cooperative clinical trial, Journal of neurosurgery 49(3) (1978) 333-343.

[61] K.L. Chaichana, J.C. Martinez-Gutierrez, R. De la Garza-Ramos, J.D. Weingart, A.

Olivi, G.L. Gallia, M. Lim, H. Brem, A. Quinones-Hinojosa, Factors associated with survival for patients with glioblastoma with poor pre-operative functional status, J Clin Neurosci 20(6) (2013) 818-23.

[62] P. Linhares, B. Carvalho, R. Figueiredo, R.M. Reis, R. Vaz, Early Pseudoprogression following Chemoradiotherapy in Glioblastoma Patients: The Value of RANO Evaluation, J Oncol 2013 (2013) 690585.

[63] P.Y. Wen, D.R. Macdonald, D.A. Reardon, T.F. Cloughesy, A.G. Sorensen, E. Galanis, J. DeGroot, W. Wick, M.R. Gilbert, A.B. Lassman, Updated response assessment criteria for

82

high-grade gliomas: response assessment in neuro-oncology working group, Journal of Clinical Oncology 28(11) (2010) 1963-1972.

[64] H.T. Liang, W.Y. Chen, S.F. Lai, M.Y. Su, S.L. You, L.H. Chen, H.M. Tseng, C.M.

Chen, S.H. Kuo, W.I. Tseng, The extent of edema and tumor synchronous invasion into the subventricular zone and corpus callosum classify outcomes and radiotherapy strategies of glioblastomas, Radiother Oncol (2017).

[65] S. Raysi Dehcordi, D. De Paulis, S. Marzi, A. Ricci, A. Cimini, M.G. Cifone, R.J. Galzio, Survival prognostic factors in patients with glioblastoma: our experience, J Neurosurg Sci 56(3) (2012) 239-45.

[66] G. Bajaj, M.R. Kim, S.I. Mohammed, Y. Yeo, Hyaluronic acid-based hydrogel for regional delivery of paclitaxel to intraperitoneal tumors, J Control Release 158(3) (2012) 386-92.

[67] W.Y. Su, K.H. Chen, Y.C. Chen, Y.H. Lee, C.L. Tseng, F.H. Lin, An injectable oxidated hyaluronic acid/adipic acid dihydrazide hydrogel as a vitreous substitute, J Biomater Sci Polym Ed 22(13) (2011) 1777-97.

[68] W. Shen, J. Luan, L. Cao, J. Sun, L. Yu, J. Ding, Thermogelling polymer-platinum(IV) conjugates for long-term delivery of cisplatin, Biomacromolecules 16(1) (2015) 105-15.

[69] Biological evaluation of medical devices. Part 5. Test for cytotoxicity: in vitro methods., in: I.S. Organization (Ed.) ISO 10993-5, 2009.

[70] T. Fourniols, L.D. Randolph, A. Staub, K. Vanvarenberg, J.G. Leprince, V. Preat, A.

des Rieux, F. Danhier, Temozolomide-loaded photopolymerizable PEG-DMA-based hydrogel for the treatment of glioblastoma, J Control Release 210 (2015) 95-104.

83

[71] C. Bastiancich, K. Vanvarenberg, B. Ucakar, M. Pitorre, G. Bastiat, F. Lagarce, V. Preat, F. Danhier, Lauroyl-gemcitabine-loaded lipid nanocapsule hydrogel for the treatment of glioblastoma, J Control Release 225 (2016) 283-93.

[72] T. Arai, O. Benny, T. Joki, L.G. Menon, M. Machluf, T. Abe, R.S. Carroll, P.M. Black, Novel local drug delivery system using thermoreversible gel in combination with polymeric microspheres or liposomes, Anticancer research 30(4) (2010) 1057-1064.

[73] S.C. Wang, J.H. Hong, C. Hsueh, C.S. Chiang, Tumor-secreted SDF-1 promotes glioma invasiveness and TAM tropism toward hypoxia in a murine astrocytoma model, Lab Invest 92(1) (2012) 151-62.

[74] P.S. Jiang, C.F. Yu, C.Y. Yen, C.W. Woo, S.H. Lo, Y.K. Huang, J.H. Hong, C.S. Chiang, Irradiation Enhances the Ability of Monocytes as Nanoparticle Carrier for Cancer Therapy, PLoS One 10(9) (2015) e0139043.

[75] E.S. Lee, H.J. Im, H.S. Kim, H. Youn, H.J. Lee, S.U. Kim, D.W. Hwang, D.S. Lee, In vivo brain delivery of v-myc overproduced human neural stem cells via the intranasal pathway: tumor characteristics in the lung of a nude mouse, Mol Imaging 13 (2014).

[76] W.L. Wang, S.Y. Sheu, Y.S. Chen, S.T. Kao, Y.T. Fu, T.F. Kuo, K.Y. Chen, C.H. Yao, Enhanced Bone Tissue Regeneration by Porous Gelatin Composites Loaded with the Chinese Herbal Decoction Danggui Buxue Tang, PLoS One 10(6) (2015) e0131999.

[77] C.H. Chou, C.M. Teng, K.Y. Tzen, Y.C. Chang, J.H. Chen, J.C. Cheng, MMP-9 from sublethally irradiated tumor promotes Lewis lung carcinoma cell invasiveness and pulmonary metastasis, Oncogene 31(4) (2012) 458-68.

84

[78] T.M. Krupka, B.D. Weinberg, H. Wu, N.P. Ziats, A.A. Exner, Effect of intratumoral injection of carboplatin combined with pluronic P85 or L61 on experimental colorectal carcinoma in rats, Exp Biol Med (Maywood) 232(7) (2007) 950-7.

[79] M.M. Tomayko, C.P. Reynolds, Determination of subcutaneous tumor size in athymic (nude) mice, Cancer chemotherapy and pharmacology 24(3) (1989) 148-154.

[80] Y. Inoue, S. Kiryu, M. Watanabe, A. Tojo, K. Ohtomo, Timing of imaging after d-luciferin injection affects the longitudinal assessment of tumor growth using in vivo bioluminescence imaging, Int J Biomed Imaging 2010 (2010) 471408.

[81] K. Suchowski, T. Poschinger, A. Rehemtulla, M. Sturzl, W. Scheuer, Noninvasive Bioluminescence Imaging of AKT Kinase Activity in Subcutaneous and Orthotopic NSCLC Xenografts: Correlation of AKT Activity with Tumor Growth Kinetics, Neoplasia 19(4) (2017) 310-320.

[82] Z.H. Siddik, M. Jones, F.E. Boxall, K.R. Harrap, Comparative distribution and excretion of carboplatin and cisplatin in mice, Cancer Chemother Pharmacol 21(1) (1988) 19-24.

[83] R. Wysokiński, J. Kuduk-Jaworska, D. Michalska, Electronic structure, Raman and infrared spectra, and vibrational assignment of carboplatin. Density functional theory studies, Journal of Molecular Structure: THEOCHEM 758(2) (2006) 169-179.

[84] S.H. Poulsen, T. Urup, K. Grunnet, I.J. Christensen, V.A. Larsen, M.L. Jensen, P.M. Af Rosenschold, H.S. Poulsen, I. Law, The prognostic value of FET PET at radiotherapy planning in newly diagnosed glioblastoma, Eur J Nucl Med Mol Imaging (2016).

[85] M. Harat, B. Malkowski, R. Makarewicz, Pre-irradiation tumour volumes defined by MRI and dual time-point FET-PET for the prediction of glioblastoma multiforme recurrence:

A prospective study, Radiother Oncol 120(2) (2016) 241-7.

85

[86] K. Reddy, L.E. Gaspar, B.D. Kavanagh, C. Chen, Hypofractionated intensity-modulated radiotherapy with temozolomide chemotherapy may alter the patterns of failure in patients with glioblastoma multiforme, J Med Imaging Radiat Oncol 58(6) (2014) 714-21.

[87] T. Iuchi, K. Hatano, T. Kodama, T. Sakaida, S. Yokoi, K. Kawasaki, Y. Hasegawa, R.

Hara, Phase 2 trial of hypofractionated high-dose intensity modulated radiation therapy with concurrent and adjuvant temozolomide for newly diagnosed glioblastoma, Int J Radiat Oncol Biol Phys 88(4) (2014) 793-800.

[88] M. Farzin, M. Molls, S. Astner, I.C. Rondak, M. Oechsner, Simultaneous integrated vs.

sequential boost in VMAT radiotherapy of high-grade gliomas, Strahlenther Onkol 191(12) (2015) 945-52.

[89] G. Truc, V. Bernier, C. Mirjolet, C. Dalban, F. Mazoyer, F. Bonnetain, N. Blanchard, E.

Lagneau, P. Maingon, G. Noel, A phase I dose escalation study using simultaneous integrated-boost IMRT with temozolomide in patients with unifocal glioblastoma, Cancer

Lagneau, P. Maingon, G. Noel, A phase I dose escalation study using simultaneous integrated-boost IMRT with temozolomide in patients with unifocal glioblastoma, Cancer