• 沒有找到結果。

A novel approach is developed based on simulated annealing (SA) integrated with aquifer drawdown models to identify aquifer parameters of leaky and unconfined aquifer systems. In the leaky aquifer system, Hantush and Jacob’s analytical model [1955] is chosen to combine with SA to optimally determine the aquifer transmissivity T, storage coefficient S, and leakage coefficient L. Except these three parameters, Neuman and Witherspoon’s model [1969] is used to estimate the additional parameter ψ which describes the effect of the aquitard storage. Three sets of drawdown data given by Cooper [1963] and the drawdown data given by Sridharan [1987] were chosen for data analyses. The aquifer parameters obtained from SA suitably agree with those obtained from NLN or EKF coupled with Hantush and Jacob’s model or Neuman and Witherspoon’s model when analyzing those available drawdown data.

Likewise, the Neuman solution [1975] can also be employed with SA to estimate the horizontal and vertical hydraulic conductivities Kr and Kz, storage coefficient S, and specific yield Sy for an unconfined aquifer if the assumptions of Neuman model are satisfied. Two sets of pumping test data in the confined aquifers and one set in the unconfined aquifer are utilized to demonstrate the application of the proposed method in parameter identification.

The results show that the present method can determine the aquifer parameters with very good

accuracy. The identified results and related estimated errors indicate that the proposed method is superior to the graphical methods and gives results with the same degree of accuracy when compared with those of NLN and EKF.

The analyzed results based on SA with various control parameters are compared and discussed. The results indicate that the temperature reduction factor does not seem to affect the results of the parameter estimation. In addition, the estimated results are almost identical for various initial guesses which is different from several orders of magnitude. This fact shows that SA has a wide range of initial guess values and is a significant advantage over the NLN and EKF approaches. These analyses demonstrate that the proposed method is robust and reliable even if the user is not experienced in using SA.

The sensitivity analysis is used to investigate the influence period of aquifer parameters in both leaky and unconfined aquifers. The influences of parameters L and Sy on the drawdown are shown to have time lag in response to pumping in the leaky and unconfined aquifers, respectively. An on-line parameter estimation model is applied to estimate the parameters based on the data obtained from hypothetical and field pumping tests for both leaky and unconfined aquifers. The results indicate that the on-line estimation can be terminated when the estimated parameters are stabilized and their corresponding normalized sensitivities start to response to the pumping. In the hypothetical cases, the termination time of the on-line estimation is consistent with the influence period of the parameter which has

longest time lag from the beginning of the pumping. This fact indicates that the on-line estimation can be terminated if all identified parameters tend to be stabilized, i.e., the drawdown already reacts to the affect of aquifer parameters. In the field cases, the results indicate that the on-line parameter estimation model can save 90% pumping time in the leaky aquifer and 77% pumping time in the unconfined aquifer. Note that the small fluctuation in the estimated parameters at the late period of pumping and a longer on-line estimation time than that of the hypothetical case occur. These results may be mainly caused by aquifer heterogeneity and/or measurement errors in the observed drawdown data. Finally, different values of the specific yield and distance between pumping well and observation well do not significantly affect the influence period of specific yield during the pumping. These results may provide a useful reference for on-line aquifer parameter estimation.

REFERENCES

Batu, V. Aquifer Hydraulics. John Wiley & Sons, New York, 1998.

Boulton, NS. Unsteady radial flow to a pumped well allowing for delayed yield from storage.

Int. Ass. Sci. Hydrol., Publ., 37, 472-477, 1954.

Boulton, NS. Analysis of data from non-equilibrium pumping tests allowing for delayed yield from storage. Proc. Inst. Civil Eng., 26, 469-482, 1963.

Chander, S, Kapoor, PN, Goyal, SK. Analysis of pumping test data using Marquardt algorithm.

Ground Water, 19(3), 275-278, 1981.

Chang, YC, Yeh, HD, Huang, YC. Parameter identification in multi-layer aquifer systems using Simulated Annealing. Hydrogeology Journal, 2007. (accepted)

Charbeneau, RJ. Groundwater Hydraulics and Pollutant Transport. Prentice Hall, Upper Saddle River, NJ, 2000.

Cooley, RL, Case, CM. Effect of a water-table aquitard on drawdown in an underlying pumped aquifer. Water Resources Research, 9(2), 434-447, 1973.

Cooper, HH Jr. Type curves for nonsteady redial flow in an infinite leaky artesian aquifer, in Bentall, Ray, complier, Short-cuts and special problems in aquifer tests. U.S. Geol.

Survey Water-supply Paper 1545-C, 1963.

Cukier, RI, Fortuin, CM, Shuler, KE, Petschek, AG, Shaibly, JH. Study of the Sensitivity of Coupled Reaction System to Uncertainties in Rate Coefficients: I. theory. J. Chem. Phys., 59(8), 3873-3878, 1973

Cukier, RI, Fortuin, CM, Shuler, KE, Petschek, AG, Shaibly, JH. Study of the Sensitivity of Coupled Reaction System to Uncertainties in Rate Coefficients: III Analysis of the approximations. J. Chem. Phys., 63(3), 1140-1149, 1975

Cukier, RI, Fortuin, CM, Shuler, KE, Petschek, AG, Shaibly, JH. Nonlinear Sensitivity Analysis of Multiparameter Mode Systems. Journal of Computational Physics, 26(1), 1-42, 1978.

Cunha, MDC, Sousa, J. Water distribution network design optimization: simulated annealing approach. Journal of Water Resources Planning and Management, ASCE, 125(4), 215-221, 1999.

Dawson, KJ, Istok, JD. Aquifer Testing: Design and Analysis of Pumping and Slug Tests.

Lewis Publishers: Michigan, 1991.

Dougherty, DE, Marryott, RA. Optimal groundwater management 1: Simulated Annealing.

Water Resources Research, 27 (10), 2493-2508, 1991.

Duffield, GM. AQTESOLV for Windows. HydroSOLVE, Inc., Reston, VA, 2002

Goffe, WL, Ferrier, G.D, Rogers, J. Global optimization of statistical functions with simulated annealing. Journal of Econometrics. 60:65-100, 1994.

Gooseff, MN, Bencala, KE, Scott, DT, Runkel, RL, Mcknight, DM. Sensitivity analysis of conservative and reactive stream transient storage models applied to field data from multiple-reach experiments. Advances in Water Resources, 28, 479-492, 2005.

Hantush, MS, Jacob, CE. Non-steady radial flow in an infinite leaky aquifer. Trans. Amer.

Geophys Union, 36, 95-100, 1955.

Hantush, MS. Modification of the theory of leaky aquifers. Journal of Geophysical Research, 65(11), 3713-3724, 1960.

Huang, WC. A numerical method for determining parameters of unconfined aquifer. MS Thesis, National Chiao Tung University, Hsinchu, Taiwan, 1996.

Jiao, JJ, Rushton, KR. Sensitivity of drawdown to parameters and its influence on parameter estimation for pumping tests in large-diameter wells. Ground Water, 33(5), 794-800, 1995.

Kabala, ZJ, Milly, PCD. Sensitivity analysis of flow in unsaturated heterogeneous porous-media - theory, numerical-model, and its verification. Water Resource Research, 26(4), 593-610, 1990.

Kabala, ZJ. Sensitivity analysis of a pumping test on a well with wellbore storage and skin.

Kabala, ZJ, El-Sayegh, HK, and Gavin, HP. Sensitivity analysis of a no-crossflow model for the transient flowmeter test. Stochastic Environmental Research and Risk Assessment 16(6), 399-424, 2002.

Kirkpatrick, S, Gelatt, CD Jr, Vecchi, MP. Optimization by simulated annealing. Science.

220(4598), 671-680, 1983.

Kuo, SF, Liu, CW, Merkley, GP. Application of the simulated annealing method to agricultural water resource management, Journal of agricultural Engineering Research, 80(1), 109-124, 2001.

Leng, CH, Yeh, HD. Aquifer parameter identification using the extended Kalman filter. Water Resources Research, 39(3), 1062, doi:10.1029/2001WR000840, 2003.

Lin, YC, Yeh, HD. THM species forecast using optimization method: genetic algorithm and simulated annealing. Journal of Computing in Civil Engineering, ASCE. 19, 248-257, 2005

Lohman, SW. Ground-water hydraulics. U. S. Geological Survey professional paper 708, 1972.

Mania, J, Sucche M. Automatic Analysis of Pumping Test Data-Application to the Boulton and Hantush Hypothesis. Journal of Hydrology, 37,185-194, 1978.

Marryott, RA, Dougherty DE, Stollar RL.Optimal groundwater management 2. Application of simulated annealing to a field-scale contamination site. Water Resources Research, 29 (4), 847-860. 1993.

McCuen, RH. Statistical Methods for Engineers. Prentice Hall, Englewood Cliffs, New Jersey, 1985.

McElwee, CD. Theis parameter evaluation from pumping tests by sensitivity analysis. Ground Water, 18(1), 56-60, 1980.

Metropolis, N, Rosenbluth, AW, Rosenbluth, MN, Teller, AH, Teller, E. Equation of state calculations by fast computing machines. Journal of Chemical Physics. 21(6):1087-1092, 1953

Moench, AF. Combining the Neuman and Boulton models for flow to a well in an unconfined aquifer. Ground Water, 33, 378-384, 1995

Moench, AF. Flow to a well of finite diameter in a homogenous anisotropic water table aquifer. Water Resources Research, 33, 1397- 1407, 1997.

Moench, AF, Garabedian, SP, and LeBlanc, DL. Estimation of Hydraulic Parameters from an Unconfined Aquifer Test Conducted in a Glacial Outwash Deposit, Cape Cod, Massachusetts. USGS Open-File Report: 00-485, 2000.

Neuman, SP, Witherspoon PA. Theory of flow in a confined two aquifer system. Water Resources Research, 5(4), 803-816, 1969.

Neuman, SP. Theory of flow in unconfined aquifers considering delayed response of the water table. Water Resources Research, 8, 1031-1044, 1972.

Neuman, SP. Effects of partial penetration on flow in unconfined aquifers considering delayed aquifer response. Water Resources Research, 10, 303-312, 1974

Neuman, SP. Analysis of pumping test data from anisotropic unconfined aquifers considering delayed gravity response. Water Resource. Research, 11, 329-342, 1975.

Ochs, M, Lothenbach, B, Shibata, M, Sato, H, Yui, M. Sensitivity analysis of radionuclide migration in compacted bentonite: a mechanistic model approach, Journal of Contaminant Hydrology. 61, 313–328, 2003.

Pham, DT, Karaboga, D. Intelligent Optimisation Techniques. Springer: Great Britain, 2000.

Prickett, TA. Type-curve solution to aquifer tests under water-table conditions. Ground Water, 3, 5-14, 1965.

Saleem, ZA. A computer method for pumping-test analysis. Ground Water, 8(5), 21-24, 1970.

Schawartz, FW, Zhang, H. Fundamentals of ground water. John Wiley & Sons, New York, 2003.

Schibly, JH, Shuler, KE. Study of the Sensitivity of Coupled Reaction System to Uncertainties in Rate Coefficients: II. Applications. Journal of Chemical Physics., 59(8), 3879-3888,

Shih, DC, Lin, CF, Wang, IS. Contaminant transport in fractured media: analytical solution and sensitivity study considering pulse, Dirac delta and sinusoid input source, Hydrological processes, 16, 3265-3278, 2002.

Sridharan, K, Ramaswamy, R, Rao, NSL. Identification of Parameters in Unconfined Aquifers.

Journal of Hydrology, 79, 73-81, 1985.

Sridharan, K, Ramaswamy, R, Rao, NSL. Identification of parameters in semiconfined aquifers. Journal of Hydrology, 93, 163-173, 1987.

Tsai, FTC, Sun, NZ, Yeh, WWG. Global-local optimization for parameter structure identification in three-dimensional groundwater modeling. Water Resources Research 39, doi: 10.1029/2001WR001135, 2003

Tung, CP, Tang, CC, Lin, YP. Improving groundwater-flow modeling using optimal zoning methods. Environmental Geology. 44, 627-638, 2003

Vachaud, G, Chen, T. Sensitivity of a large-scale hydrologic model to quality of input data obtained at different scales. Journal of Hydrology 264, 101-112, 2002.

Yeh, HD. Theis' solution by nonlinear least-squares and finite-difference Newton's method.

Ground Water, 25, 710-715, 1987.

Yeh, HD, Han, HY. Numerical identification of parameters in leaky aquifers. Ground Water, 27(5), 655-663, 1989.

Yeh, HD and Huang, YC. Parameter estimation for leaky aquifers using the extended Kalman filter, and considering model and data measurement uncertainties, Journal of Hydrology, 302(1-4), 28-45, 2005.

Zheng, C, Wang, P. Parameter structure identification using tabu search and simulated annealing. Advances in Water Resources, 19(4), 215-224, 1996.

Table 1 Time-drawdown data of three observations wells [Cooper, 1963, p. 31]

Drawdown at observation well (m)

time(min) 1 2 3

0.2 0.536 0.003 0.000

0.5 0.838 0.043 0.000

1 1.094 0.137 0.006

2 1.298 0.284 0.043

5 1.609 0.536 0.168

10 1.798 0.713 0.302

20 1.972 0.869 0.445

50 2.109 1.009 0.594

100 2.167 1.067 0.640

200 2.195 1.070 0.643

500 2.198 1.073 0.643

1000 2.198 1.073 0.643

Table 2 Time-drawdown data [Sridharan, 1987, p. 170]

time(min) Drawdown(m)

5 0.30

28 0.95

41 1.10

60 1.25

75 1.34

250 1.75

500 1.90

700 1.95

970 1.98

1000 1.99

1200 1.99

Note: Q = 136.26 m /3 day, r = 29.00 m

Table 3 Comparison of results from three-parameter model when using SA, EKF, and NLN to analyze Cooper’s data [Cooper, 1963]

Estimated parameters Errors

Observation

well T (m2/day) S (×104) L ME (×104) SEE (×103) SA

1 1239.4 0.98 0.05 3.50 13.30

2 1243.4 0.97 0.25 -0.39 5.73

3 1221.2 1.01 0.51 -1.54 3.43

EKF

1 1257.9 0.91 0.05 -6.53 19.90

2 1311.4 0.93 0.23 37.20 8.62

3 1228.0 1.00 0.51 -2.44 4.09

NLN

1 1239.1 0.98 0.05 -1.10 13.30

2 1242.1 0.98 0.25 4.98 5.69

3 1215.2 0.97 0.51 -1.90 3.72

Table 4 The estimated parameters and estimated errors when using SA, EKF, and NLN to analyze Sridharan’s data [Sridharan et al., 1987]

Estimated parameters Errors

Method

T (m2/day) S (×104) L Ψ (×104) ME (×103)

SEE (×102)

SA 23.4 1.64 0.13 9.04 -1.81 1.02

EKF 22.6 1.73 0.14 3.16 1.49 1.36

NLN 23.3 1.65 0.13 7.04 -1.78 1.00

Table 5 Comparison of results when applying graphical methods, NLN, EKF, and SA methods to analyze the pumping test data obtained from an unconfined aquifer

Estimated parameters Errors

Method Kr×10-3 (m/s)

Kz×10-5 (m/s)

S×10-3 Sy×10-2 ME×10-3 (m)

SEE×10-3 (m) Graphical methods

Neuman type curve 2.40 1.62 1.46 5.73 32.90 34.59 Neuman semilograithmic 2.40 1.62 1.87 2.13 14.23 14.96

Computer methods

NLN 2.22 1.68 1.31 3.85 0.28 8.06

EKF 2.25 1.56 0.97 4.10 1.68 8.36

SA 2.23 1.67 1.31 3.83 0.31 8.06

Table 6 Estimated parameters using different temperature reduction factor

Estimated parameters

Temperature reduction factor Rt

T (m2/day) S (×104) L Ψ (×104)

0.90 23.36 1.64 0.13 9.06

0.80 23.35 1.64 0.13 9.58

0.75 23.36 1.64 0.13 9.04

0.70 23.35 1.64 0.13 8.60

0.60 23.35 1.64 0.13 9.57

0.50 23.34 1.65 0.13 9.59

0.30 23.35 1.64 0.13 9.58

Mean 23.35 1.64×104 0.13 9.29

Standard deviation 6.90×10-3 3.78×10-7 0.00 3.93×10-5

Table 7 Comparison of the results in leaky aquifer considering storage effect when using different initial guesses

Initial guess Estimated parameters T

Table 8 The synthetic drawdown data for the leaky aquifer No Time (min) Drawdown (m)

1 0.017 0.013 2 0.050 0.099 3 0.100 0.203 4 0.250 0.380 5 0.750 0.621 6 1.000 0.687 7 1.500 0.781 8 2.000 0.847 9 2.500 0.899 10 3.500 0.977 11 4.500 1.035 12 5.000 1.059 13 10.000 1.215 14 20.000 1.365 15 50.000 1.539 16 100.000 1.640 17 200.000 1.702 18 500.000 1.728 19 700.000 1.730 20 1000.000 1.730 Q = 3000 m3/day, r = 30 m

Table 9 The synthetic drawdown data set 1 for the unconfined aquifer

Table 10 The synthetic drawdown data set 2 for the unconfined aquifer

Table 11 Number of observations used in the synthetic data analysis and the estimated parameters for a leaky aquifer

Estimated parameters Number of

observations Time (min)

T (m2/day) S×10-4 L×10-2

3 0.10 1000.53 1.00 1.12

4 0.25 1000.32 1.00 2.52

5 0.75 1000.52 1.00 2.74

6 1.00 999.93 1.00 3.06

7 1.50 1000.02 1.00 3.00

8 2.00 999.96 1.00 3.03

9 2.50 999.98 1.00 3.01

10 3.50 999.99 1.00 3.00

11 4.50 999.99 1.00 3.01

12 5.00 999.95 1.00 3.01

13 10.00 1000.06 1.00 3.00

14 20.00 1000.02 1.00 3.00

15 50.00 1000.01 1.00 3.00

16 100.00 1000.02 1.00 3.00

17 200.00 1000.02 1.00 3.00

18 500.00 1000.04 1.00 3.00

19 700.00 1000.06 1.00 3.00

20 1000.00 1000.05 1.00 3.00

20 0.10 1000.83 1.00 1.25

Target values: T = 1000 (m2/day), S = 10-4, and L = 3×10-2

Table 12 The field time-drawdown data and the estimated parameters for a leaky aquifer using different number of observations

Number of Observations Time (min) Drawdown (m)

1 0.2 0.536

Estimated results using on-line PEM Estimated values Number of Observations

T (m2/day) S×104 L×102

Table 13 Number of observations used in the data analysis and the estimated parameters based on the synthetic data set 1

Estimated parameters

Number of

observations Time (s)

Kr (m/s)×103 Kz (m/s)×104 S×104 Sy×101

4 4 0.997 1.006 1.000 0.612

5 5 1.000 0.999 1.000 0.616

6 6 1.000 0.999 1.000 1.190

7 7 0.997 1.010 1.000 0.444

8 8 1.000 0.998 1.000 1.570

9 9 0.999 1.000 1.000 0.933

10 10 1.000 1.000 1.000 0.972

11 11 0.998 1.000 1.000 0.712

12 12 1.000 0.995 1.000 2.010

13 13 1.000 0.997 1.000 1.140

14 14 1.000 0.998 1.000 1.220

15 15 0.998 0.998 1.000 0.816

16 30 1.000 1.000 1.000 1.040

17 44 0.998 0.997 1.000 0.987

18 58 1.000 1.000 1.000 1.010

19 74 1.000 1.000 1.000 0.993

20 87 1.000 1.000 1.000 1.000

Target Values: Kr = 1×103(m/s), Kz =1×104(m/s), S = 1×104, and Sy = 1×101

Table 14 Number of observations used in the data analysis and the estimated parameters based on the synthetic data set 2

Estimated parameters

Table 15 The estimated parameters for an unconfined aquifer (Cape Cod site) using different

(a)

(b)

Figure 1 The sketch of the pumping tests of (a) leaky aquifer and (b) unconfined aquifer

Figure 2 Flowchart of the SA

Initialize

Figure 3 The flowchart of the identification procedure (a) conventional method, (b) present method

0.1 1 10 100 1000 Time(min)

0 0.5 1 1.5 2 2.5

Drawdown(m)

Estimated Drawdown for Well 1 Pumping Test Data for Well 1 Estimated Drawdown for Well 2 Pumping Test Data for Well 2 Estimated Drawdown for Well 3 Pumping Test Data for Well 3

Figure 4 The estimated drawdowns and the pumping test data for the observation wells in the leaky aquifer without considering storage effect

1 10 100 1000 10000 Time(min)

0 0.4 0.8 1.2 1.6 2

Drawdown(m)

Estimated Drawdown Pumping Test Data

Figure 5 The estimated drawdowns and the pumping test data for the observation wells in the leaky aquifer with considering storage effect

1 10 100 1000 10000 100000 1000000 Time (s)

0 0.1 0.2 0.3 0.4 0.5 0.6

Drawdown (m)

Estimated Drawdown Pumping Test Data

Figure 6 The estimated drawdown and the pumping test data obtained from an unconfined aquifer using SA

0.01 0.1 1 10 100 1000 Time (min)

0 0.4 0.8 1.2

Normalized sensitivity Si,t (m)

T S L

Drawdown data

0 0.4 0.8 1.2

Drawdwon(m)

Figure 7 The time-drawdown data and the normalized sensitivities of the leaky aquifer parameters

1 10 100 1000 10000 100000 1000000 Time(s)

0 0.4 0.8 1.2 1.6

Normalized sensitivity Si,t

Kr Kz S Sy

Drawdown data

0 0.4 0.8 1.2 1.6 2

Drawdown(m)

Figure 8 The time-drawdown data and the normalized sensitivities of the unconfined aquifer parameters (Neuman’s model)

0.1 1 10 100 1000 10000 100000 1000000 Time (s)

0 0.2 0.4 0.6

Normalized sensitivity si, t (m)

Kr

Kz S Sy

rw

Drawdown data

0 0.2 0.4 0.6 0.8

Drawdown(m)

0.1 1 10 100 1000 10000 100000 1000000

0 0.04 0.08 0.12 0.16

Figure 9 The normalized sensitivities of the unconfined aquifer parameters (Moench’s model)

0.01 0.1 1 10 100 1000 Time (min)

0.008 0.012 0.016 0.02 0.024 0.028 0.032

L

Figure 10 The estimated L versus time in the leaky aquifer case

0 50 100 150 200 250 Time (s)

0.04 0.08 0.12 0.16 0.2 0.24

Sy

Figure 11 The estimated Sy versus time using the synthetic data set 1

0 50 100 150 200 250 Time (s)

0 0.1 0.2 0.3

Sy

Figure 12 The estimated Sy versus time using the synthetic data set 2

0 1000 2000 3000 4000 5000 Time (min)

0 0.1 0.2 0.3

Sy

0.1 1 10 100 1000 10000

Time (min) 0

0.1 0.2 0.3

Sy

Figure 13 The estimated Sy versus time in the field unconfined aquifer

1 10 100 1000 10000 100000 1000000 Time (s)

0 0.1 0.2 0.3

Sensitivity coefficicent of Sy

r = 10 m Sy = 0.01 Sy = 0.1 Sy = 0.3

Figure 14 The normalized sensitivity of Sy for Sy = 0.01, 0.1, or 0.3 and r = 10 m

1 10 100 1000 10000 100000 1000000 Time (s)

0 0.1 0.2 0.3

Sensitivity coefficicent of Sy

Sy = 0.1 r = 10 m r = 30 m r = 50 m

Figure 15 The normalized sensitivity of Sy for Sy = 0.1 and r = 10, 30, or 50 m

VITA (個人簡歷)

姓 名 黃彥禎 性 別 男

生 日 民國66 年 12 月 25 日

1996-2000 學士,台灣大學造船與海洋工程學系 2000-2002 碩士,交通大學環境工程研究所 2002-2007 交通大學環境工程研究所博士班 學經歷

2006-2007 Visiting Scholar, Center for Research in Water Resources, The University of Texas at Austin, USA

行動電話 0933863499

通訊電話 03-5712121#55528

通訊地址 300 新竹市綠水路 56 號 9 樓之 1

E-mail boyz.ev89g@nctu.edu.tw

PUBLICATION LIST

(A) Journal Papers

1. Yeh, HD, Huang, YC, 2005, Parameter estimation for leaky aquifers using the extended Kalman filter, and considering model and data measurement uncertainties, Journal of Hydrology, 302(1-4), 28-45.

2. Yeh, HD, Huang, YC, 2005, Comment on “Application of BEM with extended Kalman filter to parameter identification of an elastic plate under dynamic loading” by Tanaka, M., T. Matsumoto, and H. Yamamura. Engineering Analysis with Boundary Elements, 29(1) 93-94.

3. Yeh, HD, Lin, YC, Huang, YC, 2007, Parameter Identification for Leaky Aquifers Using Heuristic Approaches, Hydrological processes, 21, 862-872, doi:10.1002/hyp.6274.

4. Huang, YC, Yeh, HD, 2007, The Use of Sensitivity Analysis in On-line Aquifer Parameter Estimation, Journal of Hydrology, 335 (3-4), 406 – 418

doi:10.1016/j.jhydrol.2006.12.007.

5. Huang, YC, Yeh, HD, 2007, Review of the pipeline leak detection methods in the water distribution systems, Journal of Chinese Institute of Civil and Hydraulic Engineering, 34(2), 82-90. (In Chinese).

6. Huang, YC, Yeh, HD, Lin, YC, 2007, A Computer Method Based on Simulated Annealing to Identify Aquifer Parameters Using Pumping Test Data, International Journal for numerical and analytical methods in Geomechanics, 2007. (In press).

7. Chang, YC, Yeh, HD, Huang, YC, 2007, Parameter identification in multi-layer aquifer systems using Simulated Annealing, Hydrogeology Journal. (accepted).

8. Huang, YC, Yeh, HD, 2007, Improvement of parameter identification for a slug test in a well with finite-thickness skin, Journal of Hydrology. (In preparation)

9. Huang, YC, Yeh, HD, Determination of the Specific Yield in unconfined aquifers:

Composite Analysis or not? (In preparation).

10. Wang, CT, Huang, YC, Yeh, HD, The analysis of groundwater sampling data using

討會,國立交通大學,新竹市,論文集(下冊)F181-F185 頁。

10. Huang, YC, Yeh, HD, 2004, Uncertainty and Sensitivity Analyses in Identifying Leaky Aquifer Parameters using Extended Kalman Filter, Western Pacific Geophysics Meeting, AGU, Hawaii, WP60.

11. 黃彥禎、葉弘德,93 年 10 月,含水層參數即時檢定的敏感度分析,九十三年度農

業工程研討會,中國農業工程學會,桃園,論文摘要集258 頁,論文集光碟版

1637-1644 頁。

12. Yeh, HD, Chang, YC, Huang, YC, 2005, Identifying horizontal multi-zone unconfined aquifer parameters using simulated annealing, AOGS 2nd annual meeting, Singapore, 58-HS-A0504.

13. 黃彥禎、葉弘德,94 年 10 月,探討以單口或多口觀測井洩降數據推求自由水層比 出水量參數的差異,九十四年度農業工程研討會,中國農業工程學會,苗栗,論文 摘要集104 頁。

14. 黃彥禎、王智澤、葉弘德、洪慧念、莊士群、邱志昇,94 年 11 月,應用主成分分 析探討地下水污染檢測數據,第三屆土壤與地下水研討會,環境工程學會,桃園,

論文摘要集453 頁。

(C) Others

1. Huang, YC, 2002, Application of extended Kalman filter for identifying leaky aquifer parameters, Master thesis, Institute of Environmental Engineering, National Chiao-tung University, Hsinchu, Taiwan.

相關文件