• 沒有找到結果。

Since radiotherapy for localized muscle-invasive bladder cancer is associated with a

relatively high rate of local recurrence, much effort was put to enhance the efficacy of

radiotherapy by concurrent chemotherapy. For a long time, cisplatin was considered as the

drug of choice in chemoradiotherapy in bladder cancer, although only one randomized trial

has compared these two approaches in bladder cancer (Coppin et al., 1996). In that study, 99

patients were randomly assigned to undergo radiotherapy with or without cisplatin, followed

by elective cystectomy or further radiotherapy. The concurrent cisplatin group had improved

pelvic control of locally advanced bladder cancer with preoperative or definitive radiation,

but has not been shown to improve overall survival. The concern of potential toxicities is also

a problem.

In the Bladder Cancer 2001 (BC2001) trial, the investigators tested if the concurrent use

of a non-platinum regimen, fluorouracil and mitomycin C would be more efficacious than

radiotherapy alone in 360 bladder cancer patients. At 2 years, rates of locoregional disease -

free survival were 67% in the chemoradiotherapy group and 54% in the radiotherapy group.

Five-year rates of overall survival were 48% in the chemoradiotherapy group and 35% in the

radiotherapy group (James et al., 2012). Grade 3 or 4 adverse events were slightly more

common in the chemoradiotherapy group than in the radiotherapy group during treatment

(36.0% vs. 27.5%, P=0.07) The fluorouracil and mitomycin C combination is obviously not

optimal because patient in study group still have 8.5% increase of high-grade toxicities

(although statistically insignificant).

Despite our preclinical data is very inspiring, the potential enhancement of toxicities

by concurrent use of afatinib and radiation is also a big concern. According to the data

in phase I study, the mean Cmax of afatinib after 4-week use of 50mg once daily dose in

5 patients was 66.8(ng/mL) (Murakami et al., 2012) which is equivalent to 138 nM. This

concentration is below most concentration we used in this study. For example, in clonogenic

assay we used 200-1000nM in murine bladder cancer model and 100-500nM in human

bladder cancer model. If future clinical trial of concurrent administration of afatinib and

radiotherapy is planned, the dose must be carefully titrated to ensure the safety in bladder

cancer patients.

In addition, although in animal study we didn’t observe severe diarrhea or weight loss in

mice, the potential additive gastrointestinal toxicity is also important. In LUX-Lung 3

phase III clinical trial of afatinib or cisplatin plus pemetrexed in patients with metastatic lung

adenocarcinoma with EGFR mutations, 95.2% of patients receiving afatinib have diarrhea.

(14.4% ≥ Grade 3), compared with 15.3% all grade diarrhea in chemotherapy group (Sequist

et al., 2013) Similarly, In LUX-Lung 6 phase III clinical trial of afatinib versus cisplatin plus

gemcitabine for first-line treatment of Asian patients with advanced non-small-cell lung

cancer harboring EGFR mutations, 88.3% of patients receiving afatinib have diarrhea. (5.4%

Grade 3), compared with 10.6% all grade diarrhea in chemotherapy group (Y. L. Wu et al.,

2014). On the other hand, in Bladder Cancer 2001 trial of radiotherapy with or without

chemotherapy in muscle-invasive bladder cancer, 9.6% in chemoradiotherapy group and

2.7% in radiotherapy group have Grade 3-5 gastrointestinal toxicity (James et al., 2012),

indicating chemotherapeutic agents as radiosensitizers may enhance the already existed risk

of diarrhea. Therefor the handling of potential gastrointestinal toxicity is very important for

further radiosensitizing studies.

Despite the challenges in designing clinical trial of afatinib as radiosensitizer in bladder

cancer, my PhD study provided many precious data for future preclinical and clinical studies.

In 2015 ASCO Annual meeting, Powles et al. reported a phase II/III, double-blind,

randomized trial comparing maintenance lapatinib versus placebo after first line

chemotherapy in HER1/2 positive metastatic bladder cancer patients. (abstr 4505) Although

maintenance lapatinib does not improve outcomes in EGFR or HER2 positive bladder cancer

patients, this is the first personalized randomized trial in metastatic urothelial carcinoma. It

also showed that EGFR and HER2 are still considered important pathways in bladder cancer

therapy, but the selection of appropriate patients may be required to achieve good result.

Just like lapatinib failed to demonstrate radiosensitizing activity in our screening study

but afatinib successes, we need more well-designed study to examine the clinical potential of

new generation EGFR inhibitor like afatinib in bladder cancer treatment.

REFERENCES

Abboud, M., Saghir, N. S., Salame, J., & Geara, F. B. (2010). Complete response of brain

metastases from breast cancer overexpressing Her-2/neu to radiation and concurrent

Lapatinib and Capecitabine. Breast J, 16(6), 644-646.

doi:10.1111/j.1524-4741.2010.00980.x

Abraham, R., Pagano, F., Gomella, L. G., & Baffa, R. (2007). Chromosomal deletions in

bladder cancer: shutting down pathways. Front Biosci, 12, 826-838.

Baumann, M., Krause, M., Dikomey, E., Dittmann, K., Dorr, W., Kasten-Pisula, U., &

Rodemann, H. P. (2007). EGFR-targeted anti-cancer drugs in radiotherapy: preclinical

evaluation of mechanisms. Radiother Oncol, 83(3), 238-248.

doi:10.1016/j.radonc.2007.04.006

Bean, J., Riely, G. J., Balak, M., Marks, J. L., Ladanyi, M., Miller, V. A., & Pao, W. (2008).

Acquired resistance to epidermal growth factor receptor kinase inhibitors associated

with a novel T854A mutation in a patient with EGFR-mutant lung adenocarcinoma.

Clin Cancer Res, 14(22), 7519-7525. doi:10.1158/1078-0432.ccr-08-0151

Beg, A. A., & Baltimore, D. (1996). An essential role for NF-kappaB in preventing

TNF-alpha-induced cell death. Science, 274(5288), 782-784.

Begg, A. C., Stewart, F. A., & Vens, C. (2011). Strategies to improve radiotherapy with

targeted drugs. Nat Rev Cancer, 11(4), 239-253. doi:10.1038/nrc3007

Billerey, C., Chopin, D., Aubriot-Lorton, M. H., Ricol, D., Gil Diez de Medina, S., Van Rhijn,

B., . . . Radvanyi, F. (2001). Frequent FGFR3 mutations in papillary non-invasive

bladder (pTa) tumors. Am J Pathol, 158(6), 1955-1959.

doi:10.1016/s0002-9440(10)64665-2

Blomgren, H., Edsmyr, F., von Stedingk, L. V., & Wasserman, J. (1986). Bestatin treatment

enhances the recovery of radiation induced impairments of the immunological

reactivity of the blood lymphocyte population in bladder cancer patients. Biomed

Pharmacother, 40(2), 50-54.

Boeckman, H. J., Trego, K. S., & Turchi, J. J. (2005). Cisplatin sensitizes cancer cells to

ionizing radiation via inhibition of nonhomologous end joining. Mol Cancer Res,

3(5), 277-285. doi:10.1158/1541-7786.mcr-04-0032

Bonner, J. A., Harari, P. M., Giralt, J., Azarnia, N., Shin, D. M., Cohen, R. B., . . . Ang, K. K.

(2006). Radiotherapy plus cetuximab for squamous-cell carcinoma of the head and

neck. N Engl J Med, 354(6), 567-578. doi:10.1056/NEJMoa053422

Booth, C. M., Siemens, D. R., Li, G., Peng, Y., Kong, W., Berman, D. M., & Mackillop, W. J.

(2014). Curative therapy for bladder cancer in routine clinical practice: a

population-based outcomes study. Clin Oncol (R Coll Radiol), 26(8), 506-514.

doi:10.1016/j.clon.2014.05.007

Bowers, G., Reardon, D., Hewitt, T., Dent, P., Mikkelsen, R. B., Valerie, K., . . .

Schmidt-Ullrich, R. K. (2001). The relative role of ErbB1-4 receptor tyrosine kinases in

radiation signal transduction responses of human carcinoma cells. Oncogene, 20(11),

1388-1397. doi:10.1038/sj.onc.1204255

Cao, N., Li, S., Wang, Z., Ahmed, K. M., Degnan, M. E., Fan, M., . . . Li, J. J. (2009).

NF-kappaB-mediated HER2 overexpression in radiation-adaptive resistance. Radiat Res,

171(1), 9-21. doi:10.1667/rr1472.1

Cappellen, D., De Oliveira, C., Ricol, D., de Medina, S., Bourdin, J., Sastre-Garau, X., . . .

Radvanyi, F. (1999). Frequent activating mutations of FGFR3 in human bladder and

cervix carcinomas. Nat Genet, 23(1), 18-20. doi:10.1038/12615

Chakravarti, A., Winter, K., Wu, C. L., Kaufman, D., Hammond, E., Parliament, M., . . .

Shipley, W. (2005). Expression of the epidermal growth factor receptor and Her-2 are

predictors of favorable outcome and reduced complete response rates, respectively, in

patients with muscle-invading bladder cancers treated by concurrent radiation and

cisplatin-based chemotherapy: a report from the Radiation Therapy Oncology Group.

Int J Radiat Oncol Biol Phys, 62(2), 309-317. doi:10.1016/j.ijrobp.2004.09.047

Chen, D. J., & Nirodi, C. S. (2007). The epidermal growth factor receptor: a role in repair of

radiation-induced DNA damage. Clin Cancer Res, 13(22 Pt 1), 6555-6560.

doi:10.1158/1078-0432.ccr-07-1610

Chen, R. C., Shipley, W. U., Efstathiou, J. A., & Zietman, A. L. (2013). Trimodality bladder

preservation therapy for muscle-invasive bladder cancer. J Natl Compr Canc Netw,

11(8), 952-960.

Chinnaiyan, P., Huang, S., Vallabhaneni, G., Armstrong, E., Varambally, S., Tomlins, S.

A., . . . Harari, P. M. (2005). Mechanisms of enhanced radiation response following

epidermal growth factor receptor signaling inhibition by erlotinib (Tarceva). Cancer

Res, 65(8), 3328-3335. doi:10.1158/0008-5472.can-04-3547

Colquhoun, A. J., McHugh, L. A., Tulchinsky, E., Kriajevska, M., & Mellon, J. K. (2007).

Combination treatment with ionising radiation and gefitinib ('Iressa', ZD1839), an

epidermal growth factor receptor (EGFR) inhibitor, significantly inhibits bladder

cancer cell growth in vitro and in vivo. J Radiat Res, 48(5), 351-360.

Colquhoun, A. J., & Mellon, J. K. (2004). Epidermal growth factor receptor (EGFR)

blockade with Tarceva (TM) (Erlotinib) potentiates the antitumor effect of ionizing

radiation in bladder cancer cell lines. Journal of Urology, 171(4), 252-252.

Retrieved from <Go to ISI>://WOS:000220495500948

Comprehensive molecular characterization of urothelial bladder carcinoma. (2014). Nature,

507(7492), 315-322. doi:10.1038/nature12965

Coppin, C. M., Gospodarowicz, M. K., James, K., Tannock, I. F., Zee, B., Carson, J., . . .

Sullivan, L. D. (1996). Improved local control of invasive bladder cancer by

concurrent cisplatin and preoperative or definitive radiation. The National Cancer

Institute of Canada Clinical Trials Group. J Clin Oncol, 14(11), 2901-2907.

Cui, Y. H., Suh, Y., Lee, H. J., Yoo, K. C., Uddin, N., Jeong, Y. J., . . . Lee, S. J. (2015).

Radiation promotes invasiveness of non-small-cell lung cancer cells through

granulocyte-colony-stimulating factor. Oncogene. doi:10.1038/onc.2014.466

Das, A. K., Chen, B. P., Story, M. D., Sato, M., Minna, J. D., Chen, D. J., & Nirodi, C. S.

(2007). Somatic mutations in the tyrosine kinase domain of epidermal growth factor

receptor (EGFR) abrogate EGFR-mediated radioprotection in non-small cell lung

carcinoma. Cancer Res, 67(11), 5267-5274. doi:10.1158/0008-5472.can-07-0242

Das, A. K., Sato, M., Story, M. D., Peyton, M., Graves, R., Redpath, S., . . . Nirodi, C. S.

(2006). Non-small-cell lung cancers with kinase domain mutations in the epidermal

growth factor receptor are sensitive to ionizing radiation. Cancer Res, 66(19),

9601-9608. doi:10.1158/0008-5472.can-06-2627

Dent, P., Yacoub, A., Fisher, P. B., Hagan, M. P., & Grant, S. (2003). MAPK pathways in

radiation responses. Oncogene, 22(37), 5885-5896. doi:10.1038/sj.onc.1206701

di Martino, E., L'Hote, C. G., Kennedy, W., Tomlinson, D. C., & Knowles, M. A. (2009).

Mutant fibroblast growth factor receptor 3 induces intracellular signaling and cellular

transformation in a cell type- and mutation-specific manner. Oncogene, 28(48),

4306-4316. doi:10.1038/onc.2009.280

Dittmann, K., Mayer, C., Fehrenbacher, B., Schaller, M., Raju, U., Milas, L., . . . Rodemann,

H. P. (2005). Radiation-induced epidermal growth factor receptor nuclear import is

linked to activation of DNA-dependent protein kinase. J Biol Chem, 280(35),

31182-31189. doi:10.1074/jbc.M506591200

Dittmann, K., Mayer, C., & Rodemann, H. P. (2005). Inhibition of radiation-induced EGFR

nuclear import by C225 (Cetuximab) suppresses DNA-PK activity. Radiother Oncol,

76(2), 157-161. doi:10.1016/j.radonc.2005.06.022

Dominguez-Escrig, J. L., Kelly, J. D., Neal, D. E., King, S. M., & Davies, B. R. (2004).

Evaluation of the therapeutic potential of the epidermal growth factor receptor

tyrosine kinase inhibitor gefitinib in preclinical models of bladder cancer. Clin Cancer

Res, 10(14), 4874-4884. doi:10.1158/1078-0432.ccr-04-0034

Dungo, R. T., & Keating, G. M. (2013). Afatinib: First Global Approval. Drugs.

doi:10.1007/s40265-013-0111-6

Dyrskjot, L., Thykjaer, T., Kruhoffer, M., Jensen, J. L., Marcussen, N., Hamilton-Dutoit,

S., . . . Orntoft, T. F. (2003). Identifying distinct classes of bladder carcinoma using

microarrays. Nat Genet, 33(1), 90-96. doi:10.1038/ng1061

Esrig, D., Elmajian, D., Groshen, S., Freeman, J. A., Stein, J. P., Chen, S. C., . . . Cote, R. J.

(1994). Accumulation of nuclear p53 and tumor progression in bladder cancer. N Engl

J Med, 331(19), 1259-1264. doi:10.1056/nejm199411103311903

Fleischmann, A., Rotzer, D., Seiler, R., Studer, U. E., & Thalmann, G. N. (2011). Her2

amplification is significantly more frequent in lymph node metastases from urothelial

bladder cancer than in the primary tumours. Eur Urol, 60(2), 350-357.

doi:10.1016/j.eururo.2011.05.035

Gandour-Edwards, R., Lara, P. N., Jr., Folkins, A. K., LaSalle, J. M., Beckett, L., Li, Y., . . .

DeVere-White, R. (2002). Does HER2/neu expression provide prognostic information

in patients with advanced urothelial carcinoma? Cancer, 95(5), 1009-1015.

doi:10.1002/cncr.10808

Goebell, P. J., & Knowles, M. A. (2010). Bladder cancer or bladder cancers? Genetically

distinct malignant conditions of the urothelium. Urol Oncol, 28(4), 409-428.

doi:10.1016/j.urolonc.2010.04.003

Golding, S. E., Rosenberg, E., Neill, S., Dent, P., Povirk, L. F., & Valerie, K. (2007).

Extracellular signal-related kinase positively regulates ataxia telangiectasia mutated,

homologous recombination repair, and the DNA damage response. Cancer Res, 67(3),

1046-1053. doi:10.1158/0008-5472.can-06-2371

Gonzalez, J. E., Barquinero, J. F., Lee, M., Garcia, O., & Casaco, A. (2012).

Radiosensitization induced by the anti-epidermal growth factor receptor monoclonal

antibodies cetuximab and nimotuzumab in A431 cells. Cancer Biol Ther, 13(2),

71-76. doi:10.4161/cbt.13.2.18439

Gow, C. H., Chien, C. R., Chang, Y. L., Chiu, Y. H., Kuo, S. H., Shih, J. Y., . . . Yang, P. C.

(2008). Radiotherapy in lung adenocarcinoma with brain metastases: effects of

activating epidermal growth factor receptor mutations on clinical response. Clin

Cancer Res, 14(1), 162-168. doi:10.1158/1078-0432.ccr-07-1468

Hamilton, E., Blackwell, K., Hobeika, A. C., Clay, T. M., Broadwater, G., Ren, X. R., . . .

Morse, M. A. (2012). Phase 1 clinical trial of HER2-specific immunotherapy with

concomitant HER2 kinase inhibition [corrected]. J Transl Med, 10, 28.

doi:10.1186/1479-5876-10-28

Harrington, K. J., El-Hariry, I. A., Holford, C. S., Lusinchi, A., Nutting, C. M., Rosine,

D., . . . Bourhis, J. (2009). Phase I study of lapatinib in combination with

chemoradiation in patients with locally advanced squamous cell carcinoma of the

head and neck. J Clin Oncol, 27(7), 1100-1107. doi:10.1200/jco.2008.17.5349

Hernandez, S., Lopez-Knowles, E., Lloreta, J., Kogevinas, M., Amoros, A., Tardon, A., . . .

Real, F. X. (2006). Prospective study of FGFR3 mutations as a prognostic factor in

nonmuscle invasive urothelial bladder carcinomas. J Clin Oncol, 24(22), 3664-3671.

doi:10.1200/jco.2005.05.1771

Herr, H. W., Dotan, Z., Donat, S. M., & Bajorin, D. F. (2007). Defining optimal therapy for

muscle invasive bladder cancer. J Urol, 177(2), 437-443.

doi:10.1016/j.juro.2006.09.027

Hirsh, V. (2011). Afatinib (BIBW 2992) development in non-small-cell lung cancer. Future

Oncol, 7(7), 817-825. doi:10.2217/fon.11.62

Horiguchi, Y., Kikuchi, E., Ozu, C., Nishiyama, T., Oyama, M., Horinaga, M., . . . Tachibana,

M. (2008). Establishment of orthotopic mouse superficial bladder tumor model for

studies on intravesical treatments. Hum Cell, 21(3), 57-63.

doi:10.1111/j.1749-0774.2008.00055.x

Huang, S. M., & Harari, P. M. (2000). Modulation of radiation response after epidermal

growth factor receptor blockade in squamous cell carcinomas: inhibition of damage

repair, cell cycle kinetics, and tumor angiogenesis. Clin Cancer Res, 6(6), 2166-2174.

Hurst, C. D., Platt, F. M., Taylor, C. F., & Knowles, M. A. (2012). Novel tumor subgroups of

urothelial carcinoma of the bladder defined by integrated genomic analysis. Clin

Cancer Res, 18(21), 5865-5877. doi:10.1158/1078-0432.ccr-12-1807

James, N. D., Hussain, S. A., Hall, E., Jenkins, P., Tremlett, J., Rawlings, C., . . . Huddart, R.

A. (2012). Radiotherapy with or without chemotherapy in muscle-invasive bladder

cancer. N Engl J Med, 366(16), 1477-1488. doi:10.1056/NEJMoa1106106

Jimenez, R. E., Hussain, M., Bianco, F. J., Jr., Vaishampayan, U., Tabazcka, P., Sakr, W.

A., . . . Grignon, D. J. (2001). Her-2/neu overexpression in muscle-invasive urothelial

carcinoma of the bladder: prognostic significance and comparative analysis in primary

and metastatic tumors. Clin Cancer Res, 7(8), 2440-2447.

Kachnic, L. A., Kaufman, D. S., Heney, N. M., Althausen, A. F., Griffin, P. P., Zietman, A. L.,

& Shipley, W. U. (1997). Bladder preservation by combined modality therapy for

invasive bladder cancer. J Clin Oncol, 15(3), 1022-1029.

Kandel, E. S., Skeen, J., Majewski, N., Di Cristofano, A., Pandolfi, P. P., Feliciano, C. S., . . .

Hay, N. (2002). Activation of Akt/protein kinase B overcomes a G(2)/m cell cycle

checkpoint induced by DNA damage. Mol Cell Biol, 22(22), 7831-7841.

Kassouf, W., Black, P. C., Tuziak, T., Bondaruk, J., Lee, S., Brown, G. A., . . . Dinney, C. P.

(2008). Distinctive expression pattern of ErbB family receptors signifies an

aggressive variant of bladder cancer. J Urol, 179(1), 353-358.

doi:10.1016/j.juro.2007.08.087

Kaufman, D. S., Shipley, W. U., & Feldman, A. S. (2009). Bladder cancer. Lancet, 374(9685),

239-249. doi:10.1016/s0140-6736(09)60491-8

Kawamoto, A., Yokoe, T., Tanaka, K., Saigusa, S., Toiyama, Y., Yasuda, H., . . . Kusunoki, M.

(2012). Radiation induces epithelial-mesenchymal transition in colorectal cancer cells.

Oncol Rep, 27(1), 51-57. doi:10.3892/or.2011.1485

Kiemeney, L. A., Sulem, P., Besenbacher, S., Vermeulen, S. H., Sigurdsson, A., Thorleifsson,

G., . . . Stefansson, K. (2010). A sequence variant at 4p16.3 confers susceptibility to

urinary bladder cancer. Nat Genet, 42(5), 415-419. doi:10.1038/ng.558

King, F. W., Skeen, J., Hay, N., & Shtivelman, E. (2004). Inhibition of Chk1 by activated

PKB/Akt. Cell Cycle, 3(5), 634-637.

Kirshner, J., Jobling, M. F., Pajares, M. J., Ravani, S. A., Glick, A. B., Lavin, M. J., . . .

Barcellos-Hoff, M. H. (2006). Inhibition of transforming growth factor-beta1

signaling attenuates ataxia telangiectasia mutated activity in response to genotoxic

stress. Cancer Res, 66(22), 10861-10869. doi:10.1158/0008-5472.can-06-2565

Knowles, M. A., & Hurst, C. D. (2015). Molecular biology of bladder cancer: new insights

into pathogenesis and clinical diversity. Nat Rev Cancer, 15(1), 25-41.

doi:10.1038/nrc3817

Krause, M., Gurtner, K., Deuse, Y., & Baumann, M. (2009). Heterogeneity of tumour

response to combined radiotherapy and EGFR inhibitors: differences between

antibodies and TK inhibitors. Int J Radiat Biol, 85(11), 943-954.

doi:10.3109/09553000903232835

Kriegs, M., Kasten-Pisula, U., Rieckmann, T., Holst, K., Saker, J., Dahm-Daphi, J., &

Dikomey, E. (2010). The epidermal growth factor receptor modulates DNA

double-strand break repair by regulating non-homologous end-joining. DNA Repair (Amst),

9(8), 889-897. doi:10.1016/j.dnarep.2010.05.005

Kruger, S., Weitsch, G., Buttner, H., Matthiensen, A., Bohmer, T., Marquardt, T., . . . Bohle,

A. (2002). HER2 overexpression in muscle-invasive urothelial carcinoma of the

bladder: prognostic implications. Int J Cancer, 102(5), 514-518.

doi:10.1002/ijc.10731

Li, D., Ambrogio, L., Shimamura, T., Kubo, S., Takahashi, M., Chirieac, L. R., . . . Wong, K.

K. (2008). BIBW2992, an irreversible EGFR/HER2 inhibitor highly effective in

preclinical lung cancer models. Oncogene, 27(34), 4702-4711.

doi:10.1038/onc.2008.109

Liang, K., Lu, Y., Jin, W., Ang, K. K., Milas, L., & Fan, Z. (2003). Sensitization of breast

cancer cells to radiation by trastuzumab. Mol Cancer Ther, 2(11), 1113-1120.

Lindgren, D., Frigyesi, A., Gudjonsson, S., Sjodahl, G., Hallden, C., Chebil, G., . . . Hoglund,

M. (2010). Combined gene expression and genomic profiling define two intrinsic

molecular subtypes of urothelial carcinoma and gene signatures for molecular grading

and outcome. Cancer Res, 70(9), 3463-3472. doi:10.1158/0008-5472.can-09-4213

Lipponen, P., Eskelinen, M., Syrjanen, S., Tervahauta, A., & Syrjanen, K. (1991). Use of

immunohistochemically demonstrated c-erb B-2 oncoprotein expression as a

prognostic factor in transitional cell carcinoma of the urinary bladder. Eur Urol, 20(3),

238-242.

Liu, W., Huang, Y. J., Liu, C., Yang, Y. Y., Liu, H., Cui, J. G., . . . Li, B. L. (2014). Inhibition

of TBK1 attenuates radiation-induced epithelial-mesenchymal transition of A549

human lung cancer cells via activation of GSK-3beta and repression of ZEB1. Lab

Invest, 94(4), 362-370. doi:10.1038/labinvest.2013.153

Loehrer, P. J., Sr., Einhorn, L. H., Elson, P. J., Crawford, E. D., Kuebler, P., Tannock, I., . . . et

al. (1992). A randomized comparison of cisplatin alone or in combination with

methotrexate, vinblastine, and doxorubicin in patients with metastatic urothelial

carcinoma: a cooperative group study. J Clin Oncol, 10(7), 1066-1073.

Lokeshwar, S. D., Ruiz-Cordero, R., Hupe, M. C., Jorda, M., & Soloway, M. S. (2015).

Impact of 2004 ISUP/WHO classification on bladder cancer grading. World J Urol.

doi:10.1007/s00345-015-1548-x

Maddineni, S. B., Sangar, V. K., Hendry, J. H., Margison, G. P., & Clarke, N. W. (2005).

Differential radiosensitisation by ZD1839 (Iressa), a highly selective epidermal

growth factor receptor tyrosine kinase inhibitor in two related bladder cancer cell

lines. Br J Cancer, 92(1), 125-130. doi:10.1038/sj.bjc.6602299

Maemondo, M., Inoue, A., Kobayashi, K., Sugawara, S., Oizumi, S., Isobe, H., . . . Nukiwa,

T. (2010). Gefitinib or chemotherapy for non-small-cell lung cancer with mutated

EGFR. N Engl J Med, 362(25), 2380-2388. doi:10.1056/NEJMoa0909530

Mak, R. H., Doran, E., Muzikansky, A., Kang, J., Neal, J. W., Baldini, E. H., . . . Sequist, L.

V. (2011). Outcomes after combined modality therapy for EGFR-mutant and

wild-type locally advanced NSCLC. Oncologist, 16(6), 886-895.

doi:10.1634/theoncologist.2011-0040

Manning, B. D., & Cantley, L. C. (2007). AKT/PKB signaling: navigating downstream. Cell,

129(7), 1261-1274. doi:10.1016/j.cell.2007.06.009

Miller, V. A., Hirsh, V., Cadranel, J., Chen, Y. M., Park, K., Kim, S. W., . . . Yang, J. C.

(2012). Afatinib versus placebo for patients with advanced, metastatic non-small-cell

lung cancer after failure of erlotinib, gefitinib, or both, and one or two lines of

chemotherapy (LUX-Lung 1): a phase 2b/3 randomised trial. Lancet Oncol, 13(5),

528-538. doi:10.1016/s1470-2045(12)70087-6

Miyamoto, H., Miller, J. S., Fajardo, D. A., Lee, T. K., Netto, G. J., & Epstein, J. I. (2010).

Non-invasive papillary urothelial neoplasms: the 2004 WHO/ISUP classification

system. Pathol Int, 60(1), 1-8. doi:10.1111/j.1440-1827.2009.02477.x

Moneef, M. A., Sherwood, B. T., Bowman, K. J., Kockelbergh, R. C., Symonds, R. P.,

Steward, W. P., . . . Jones, G. D. (2003). Measurements using the alkaline comet assay

predict bladder cancer cell radiosensitivity. Br J Cancer, 89(12), 2271-2276.

doi:10.1038/sj.bjc.6601333

Morris, Z. S., & Harari, P. M. (2014). Interaction of radiation therapy with molecular targeted

agents. J Clin Oncol, 32(26), 2886-2893. doi:10.1200/jco.2014.55.1366

Murakami, H., Tamura, T., Takahashi, T., Nokihara, H., Naito, T., Nakamura, Y., . . .

Yamamoto, N. (2012). Phase I study of continuous afatinib (BIBW 2992) in patients

with advanced non-small cell lung cancer after prior chemotherapy/erlotinib/gefitinib

(LUX-Lung 4). Cancer Chemother Pharmacol, 69(4), 891-899.

doi:10.1007/s00280-011-1738-1

Neal, D. E., Sharples, L., Smith, K., Fennelly, J., Hall, R. R., & Harris, A. L. (1990). The

epidermal growth factor receptor and the prognosis of bladder cancer. Cancer, 65(7),

1619-1625.

Neoadjuvant chemotherapy in invasive bladder cancer: update of a systematic review and

analysis of individual patient data advanced bladder cancer (ABC)

meta-analysis collaboration. (2005). Eur Urol, 48(2), 202-205; discussion 205-206.

doi:10.1016/j.eururo.2005.04.006

Nicolle, G., Daher, A., Maille, P., Vermey, M., Loric, S., Bakkar, A., . . . Chopin, D. K.

(2006). Gefitinib inhibits the growth and invasion of urothelial carcinoma cell lines in

which Akt and MAPK activation is dependent on constitutive epidermal growth factor

receptor activation. Clin Cancer Res, 12(9), 2937-2943.

doi:10.1158/1078-0432.ccr-05-2148

No, M., Choi, E. J., & Kim, I. A. (2009). Targeting HER2 signaling pathway for

radiosensitization: alternative strategy for therapeutic resistance. Cancer Biol Ther,

8(24), 2351-2361.

Patel, S. G., Cohen, A., Weiner, A. B., & Steinberg, G. D. (2015). Intravesical therapy for

bladder cancer. Expert Opin Pharmacother, 16(6), 889-901.

doi:10.1517/14656566.2015.1024656

Pietras, R. J., Poen, J. C., Gallardo, D., Wongvipat, P. N., Lee, H. J., & Slamon, D. J. (1999).

Monoclonal antibody to HER-2/neureceptor modulates repair of radiation-induced

DNA damage and enhances radiosensitivity of human breast cancer cells

overexpressing this oncogene. Cancer Res, 59(6), 1347-1355.

Prasad, S. M., Decastro, G. J., & Steinberg, G. D. (2011). Urothelial carcinoma of the

bladder: definition, treatment and future efforts. Nat Rev Urol, 8(11), 631-642.

doi:10.1038/nrurol.2011.144

Puc, J., Keniry, M., Li, H. S., Pandita, T. K., Choudhury, A. D., Memeo, L., . . . Parsons, R.

(2005). Lack of PTEN sequesters CHK1 and initiates genetic instability. Cancer Cell,

7(2), 193-204. doi:10.1016/j.ccr.2005.01.009

Quesnelle, K. M., & Grandis, J. R. (2011). Dual kinase inhibition of EGFR and HER2

overcomes resistance to cetuximab in a novel in vivo model of acquired cetuximab

resistance. Clin Cancer Res, 17(18), 5935-5944. doi:10.1158/1078-0432.ccr-11-0370

Rogakou, E. P., Pilch, D. R., Orr, A. H., Ivanova, V. S., & Bonner, W. M. (1998). DNA

double-stranded breaks induce histone H2AX phosphorylation on serine 139. J Biol

Chem, 273(10), 5858-5868.

Sambade, M. J., Camp, J. T., Kimple, R. J., Sartor, C. I., & Shields, J. M. (2009). Mechanism

of lapatinib-mediated radiosensitization of breast cancer cells is primarily by

inhibition of the Raf>MEK>ERK mitogen-activated protein kinase cascade and

radiosensitization of lapatinib-resistant cells restored by direct inhibition of MEK.

Radiother Oncol, 93(3), 639-644. doi:10.1016/j.radonc.2009.09.006

Sambade, M. J., Kimple, R. J., Camp, J. T., Peters, E., Livasy, C. A., Sartor, C. I., & Shields,

J. M. (2010). Lapatinib in combination with radiation diminishes tumor regrowth in

HER2+ and basal-like/EGFR+ breast tumor xenografts. Int J Radiat Oncol Biol Phys,

77(2), 575-581. doi:10.1016/j.ijrobp.2009.12.063

Sato, S., Kajiyama, Y., Sugano, M., Iwanuma, Y., Sonoue, H., Matsumoto, T., . . . Tsurumaru,

M. (2005). Monoclonal antibody to HER-2/neu receptor enhances radiosensitivity of

esophageal cancer cell lines expressing HER-2/neu oncoprotein. Int J Radiat Oncol

Biol Phys, 61(1), 203-211. doi:10.1016/j.ijrobp.2004.05.017

Schlessinger, J. (2000). Cell signaling by receptor tyrosine kinases. Cell, 103(2), 211-225.

Sequist, L. V., Yang, J. C., Yamamoto, N., O'Byrne, K., Hirsh, V., Mok, T., . . . Schuler, M.

(2013). Phase III study of afatinib or cisplatin plus pemetrexed in patients with

metastatic lung adenocarcinoma with EGFR mutations. J Clin Oncol, 31(27),

3327-3334. doi:10.1200/jco.2012.44.2806

Singer, S., Ziegler, C., Schwalenberg, T., Hinz, A., Gotze, H., & Schulte, T. (2013). Quality of

life in patients with muscle invasive and non-muscle invasive bladder cancer. Support

Care Cancer, 21(5), 1383-1393. doi:10.1007/s00520-012-1680-8

Sjodahl, G., Lauss, M., Lovgren, K., Chebil, G., Gudjonsson, S., Veerla, S., . . . Hoglund, M.

(2012). A molecular taxonomy for urothelial carcinoma. Clin Cancer Res, 18(12),

3377-3386. doi:10.1158/1078-0432.ccr-12-0077-t

Sjodahl, G., Lovgren, K., Lauss, M., Patschan, O., Gudjonsson, S., Chebil, G., . . . Hoglund,

M. (2013). Toward a molecular pathologic classification of urothelial carcinoma. Am

J Pathol, 183(3), 681-691. doi:10.1016/j.ajpath.2013.05.013

Smith, H., Weaver, D., Barjenbruch, O., Weinstein, S., & Ross, G., Jr. (1989). Routine

excretory urography in follow-up of superficial transitional cell carcinoma of bladder.

Urology, 34(4), 193-196.

Toulany, M., Dittmann, K., Baumann, M., & Rodemann, H. P. (2005). Radiosensitization of

Ras-mutated human tumor cells in vitro by the specific EGF receptor antagonist

BIBX1382BS. Radiother Oncol, 74(2), 117-129. doi:10.1016/j.radonc.2004.11.008

Toulany, M., Minjgee, M., Kehlbach, R., Chen, J., Baumann, M., & Rodemann, H. P. (2010).

ErbB2 expression through heterodimerization with erbB1 is necessary for ionizing

radiation- but not EGF-induced activation of Akt survival pathway. Radiother Oncol,

97(2), 338-345. doi:10.1016/j.radonc.2010.03.008

Tsai, Y. C., Ho, P. Y., Tzen, K. Y., Tuan, T. F., Liu, W. L., Cheng, A. L., . . . Cheng, J. C.

Tsai, Y. C., Ho, P. Y., Tzen, K. Y., Tuan, T. F., Liu, W. L., Cheng, A. L., . . . Cheng, J. C.

相關文件