• 沒有找到結果。

Looking back on what we have learned about TVF since Taylor’s[2] original paper, what seems to be most impressive is the tremendous progress that has been made in the experimental field. Foremost among the modern experimental discoveries is the observation of the WVF by Coles[31].

This study analyzes both the fluid flow of rotating cylinders and the stability of the modulated Couette flow by numerical methods; under different modulated amplitudes and frequencies, the unstable behavior caused by fluid flow influences the Couette flow to become TVF.

Then this study investigates the instability analysis of modulated TVF by utilizing a numerical method. Based on the consideration that the outer cylinder is fixed and the inner cylinder rotates at a non-zero averaged speed under varying modulated amplitudes and frequencies, the flow is converted from one-dimension Couette flow to TVF. When the modulated amplitude is greater than one and the rotation speed of the inner cylinder exceeds the threshold value for one-dimensional flow, the flow will be more stable at intermediate and high frequencies. When the modulated amplitude is sufficiently large and the inner cylinder rotates at medium frequency, subharmonic flow arises.

When the rotational speed of cylinders exceeds the threshold value of stable TVF, the flow will be transformed from TVF to WVF. First, we numerically investigate the lowest stability boundary of TVF for flows with different wavenumbers and for various radius ratios under the inner cylinder rotates at a fixed speed and outer cylinder is stationary. The variation in the wavenumber of a supercritical TVF will cause the various stability of the flow and the wavenumber of Taylor vortices is constant only as long as the flow is quasi-static. The variation in the wavenumber is examined and found to be important when the radius ratio is less than 0.7842. And then we consider the case

wherein η = 0.88, α = 2.7–3.5, and k = 1–3, and we solve the lowest instability 1 boundary of TVF for two concentric rotating cylinders.

One may ask whether it is worth the effort to pursue these obviously very difficult nonlinear aspects of the Taylor vortex problem. The answer to this question seems to be yes, because in the case of TVF we can pursue the formation of turbulence from laminar flow to full turbulent with great precision in all detail through a number of very characteristic stages. In other words, basic theoretical work can be done on this problem, which, in the end, rank as high as the pioneering studies that we have examined in this study.

References

1. Couette, M., Etudes sur le frottement des liquides. Ann. Chim. Phys., 1890. 6: p.

433-510.

2. Taylor, G. I., Stability of a viscous liquid contained between two rotating cylinders. Philos Trans. R. Sec. London, 1923. A223: p. 289-343.

3. Donnelly, R. J., Experiment on the stability of viscous flow between rotating cylinders I. Torque measurement. Proc. Roy. Soc. London, 1958. A246: p.

312-325.

4. Simon, N. J. and Donnelly R. J., An empirical torque relation for supercritical flow between rotating cylinders. J. Fluid Mech., 1960. 7: p. 401-418.

5. Koschmieder, E. L., Turbulent Taylor vortex flow. J. Fluid Mech., 1979. 93: p.

515-527.

6. Burkhalter, J. E. and E. L. Koschmieder, Steady supercritical Taylor vortex flow.

J. Fluid Mech., 1973. 58: p. 547-560.

7. Swinney, H. L. and J. P. Gollub, The transition to Turbulence. Phy. Today August, 1978. August: p. 41-49.

8. Coles, D., Transition in circular Couette flow. J. Fluid Mech., 1965. 21: p.

385-425.

9. Schwarz, K. W., B. E. Springett, and R. J. Donnelly, Modes of instability in spiral flow between rotating cylinders. J. Fluid Mech., 1964. 20: p. 281-289.

10. Nissan, A. H., J. L. Nardacci, and C. Y. Ho, The onset of different modes of instability for flow between rotating cylinders. A. I. Ch. E. J., 1963. 9: p.

620-624.

11. Walsh, T. J. and R. J. Donnelly, Couette flow with periodically corotated and counterrotated cylinders. Phys. Rev. Lett., 1988. 60: p. 700-703.

12. Gollub, J. P. and H. L. Swinney, Onset of turbulent in a rotating fluid. Phys. Rev.

Lett., 1975. 35: p. 927-930.

13. Walden, R. W. and R. J. Donnelly, Reemergent order of chaotic circular Couette flow. Phy. Rev. Lett., 1979. 42: p. 301-304.

14. Cole, J. A., Taylor-vortex instability and annulus-length effects. J. Fluid Mech., 1976. 75: p. 1-15.

15. Hall, P. and P. J. Blennerhasset, Centrifugal instability of circumferential flow in finit cylinders. Proc. Roy. Soc. London, 1979. A365: p. 191-207.

16. Barenghi, C. F. and C. F. Jones, Modulated Taylor-Couette flow. J. Fluid Mech.,

1989. 208: p. 127-170.

17. Murray, B. T., G. B. McFadden, and S. R. Coriell, Stabilization of Taylor-Couette flow due to time-periodic outer cylinder oscillation. Phys. Fluids, 1990. A2: p.

2147-2156.

18. Walowit, J., S. Tsao, and R. C. Diprima, Stability of flow between arbitrarily speed concentrical surfaces including the effect of a radial temperature gradient.

J. Appl. Mech., 1964. 31: p. 585-593.

19. Snyder, H. A. and S. K. F. Karlsson, Experiments on the stability of Couette motion with a radial thermal gradient. Phys. Fluids, 1964. 7: p. 1696-1706.

20. Donnelly, R. J., F. Reif, and H. Suhl, Enhancement of hydrodynamic stability by modulation. Phys. Rev. Lett., 1962. 9: p. 363-365.

21. Hall, P., The stability of unsteady cylinder flows. J. Fluid Mech., 1975. 67: p.

29-63.

22. Riley, P. J. and R. L. Laurence, Linear stability of modulated circular Couette flow. J. Fluid Mech., 1976. 75: p. 625-646.

23. Davis, S. H., The stability of time-periodic flows. Ann. Rev. Fluid Mech., 1976.

8: p. 57-74.

24. Carmi, S. and J. I. Tustaniwskyj, Stability of modulated finite-gap cylindrical Couette flow:linear theory. J. Fluid Mech., 1981. 108: p. 19-42.

25. Walsh, T. J., W. T. Wagner, and R.J. Donnelly, Stability of modulated Couette flow. Phys. Rev. Lett., 1987. 58: p. 2543-2546.

26. Kuhlmann, H., D. Roth, and M. Lucke, Taylor vortex flow under harmonic modulation of the driving force. Phys. Rev. , 1989. A39: p. 745-762.

27. Ganske, A., T. Gebhardt, and S. Grossmann, Taylor-Couette flow with time modulated inner cylinder velocity. Phys. Lett., 1994. A192: p. 74-78.

28. Meksyn, D., New methods in laminar boumdary-layer theory. 1961, London:

Pergamon press.

29. Sparrow, E. M., W. D. Munro, and V. K. Jonsson, Instability of the flow between rotating cylinders:the wide gap problem. J. Fluid Mech., 1974. 20: p. 35-46.

30. Youd, A. J., A. P. Willis, and C. F. Barenghi, Reversing and non-reversing modulated Taylor--Couette flow. J. Fluid Mech., 2003. 487: p. 367-376.

31. Coles, D., On the instability of Taylor vortices. J. Fluid Mech., 1965. 31: p.

17-62.

32. Lewis, J. W., An experimental study of the motion of a viscous liquid contained between two coaxial cylinder. Proc. Roy. Soc. London, 1928. A117: p. 388-407.

33. Schultz-Grunow, F. and H. Hein, Beitrag zur Couettestromung. Z. Flugwiss, 1956. 4: p. 28-30.

34. Jones, C. A., The transition to wavy Taylor vortices. J. Fluid Mech., 1985. 157: p.

135-162.

35. Stuart, J. T., On the nonlinear mechanics of hydrodynamic stability. J. Fluid Mech., 1958. 4: p. 1-21.

36. Ahlers, G., D. S. Cannell, and M. A. D. Lerma, Possible mechanism for transitions in wavy Taylor-vortex flow. Phys. Rev. A, 1983. 27: p. 1225-1227.

37. Andereck, C., S. S. Liu, and H. L. Swinney, Flow regimes in a circular Couette system with independently rotating cylinders. J. Fluid Mech., 1986. 164: p.

155-183.

38. Park, K., Unusual transition sequence in Taylor wavy vortex flow. Phys. Rev. A, 1984. 29: p. 3458-3460.

39. Burkhalter, J. E. and E. L. Koschmieder, Steady supercritical Taylor vortices after sudden starts. Physics of Fluids, 1974. 17: p. 1929-1935.

40. Antonijoan, J. and J. Sanchez, On stable Taylor vortices above the transition to wavy vortices. Physics of Fluids, 2002. 14: p. 1661-1665.

41. Snyder, H. A., Wave-number selection at finite amplitude in rotating Couette flow. J. Fluid Mech., 1969. 35: p. 273-298.

42. Coddington, E. A. and N. Levinson, Theory of ordinary differential equations.

1955: McGraw-Hill.

43. Canuto, C., et al., Spectral Methods in Fluid Dynamics. 1988.

44. Fox, L. and I. B. Parker, Chebyshev polynomials in numerical analysis. 1968, London: Oxford University Press.

45. Hung, Y. M., Experiments on the instability of modulated circular Couette flow.

NCTU, Master thesis, 1995.

46. Donnelly, R. J., Experiments on the stability of viscous flow between rotating cylinders. II. Visual observation. Proc. Roy. Soc. London, 1960. A258: p.

101-123.

47. Donnelly, R. J., Experiments on the stability of viscous flow between rotating cylinders III. Enhancement of stability by modulation. Proc. Roy. Soc. London, 1964. A281: p. 130-139.

48. Hu, S. J., Experimental measurement of modulated Taylor vortex flow. NCTU, Master thesis, 1996.

49. Marques, F. and J. M. Lopez, Taylor-Couette flow with axial oscillations of the inner cylinder: Floquet analysis of the basic flow. J. Fluid Mech., 1997. 384: p.

153-175.

50. Lopez, J. M. and F. Marques, Dynamics of three-tori in a periodically forced Navier-Stokes flow. Phys. Rev. Lett., 2001. 85: p. 972-975.

51. Youd, A. J., A. P. Willis, and C.F. Barenghi, Non-Reversing Modulated Taylor-Couette Flows. Fluid Dynamics Research, 2005. 36: p. 61-73.

52. Daoyi, C. and G. H. Jirka, Linear instability of the annual Hagen-Poiseuille flow with small inner radius by a Chebyshev pseudospectral method. Internatioal Journal of Computation Fluid Dynamics, 1994. 3: p. 265-280.

53. Speetjens M. F. M. , C. H. J. H., A spectral solver for the Navier-Stokes equations in the velocity-vorticity formulation. Internatioal Journal of Computation Fluid Dynamics, 2005. 19: p. 191-209.

54. Jones, C. A., Numerical methods for the transition to wavy Taylor vortices. J.

Comp. Phys., 1985. 61: p. 321-344.

55. Park, K., L. Gerald, and R. J. Donnelly, Determination of transition in Couette flow in finite geometries. Phy. Rev. Lett., 1981. 47: p. 1448-1450.

56. Jones, C. A., Nonlinear Taylor vortices and their stability. J. Fluid Mech., 1981.

102: p. 249-261.

57. King, G. P. and H. L. Swinney, Limits of stability and irregular flow patterns in wavy vortex flow. Phys. Rev. A, 1983. 27: p. 1240-1243.

自傳

姓 名:林豪傑 性 別:男

出生年月:民國58 年 05 月 19 日 出 生 地:高雄市

聯絡電話:(O)0919650519 (H)03-5358549 住 址:台中縣潭子鄉勝利路 249 巷 3 號 5 樓 E-mail :herojake.lin@gmail.com

學 歷:

1. 漢翔航空公司「生產管理工程師培訓」

2. 中正理工學院兵器系統工程研究所畢業 3. 中正理工學院航空工程學系畢業

4. 台灣省立鳳山高級中學畢業 專 長:

1. 程式設計。

2. 流體穩定論、流體力學、熱力(傳)學、黏性流體力學、邊 界層理論、系統工程與管理。

3. 氣渦輪機理論與實務。

4. 系統模擬與整合及模擬軟體開發。

5. 風險管理計畫撰擬與實務。

相關文件