• 沒有找到結果。

According to the experiment result, we can find that the response is faster and the overshoot may exist when Ki become decrease.

In the experiment, we have some problems when we implement the BLDC motor control and make it failure. The failure analysis list as following:

1. Isolation

Fig 5.2 shows the hardware setup. At first, we did not add the isolation transformer, so the computer’s ground and the inverter’s ground are the same. It will cause damage to computer and microcontroller.

Besides, the primary and secondary’s ground of flyback converter in the inverter are conncected, it will also ruin computer or microcontroller.

2. PWM output waveform

When we set up the PWM output pin by TIOR (Timer input/output control register), the output pins state are right at beginning, but after four to five times of switching PWM output pins state, the output waveforms are error. This is caused by wrong setting so that we ruin many IGBT module in the inverter. So the pins state need to check carefully.

26

3. Priority

In the experiment, the interrupt of checking hall signal and doing commutation must be the highest priority in the interrupts we used, if this interrupt be affected, we have chance to break IGBT module. Table 6.1 shows the priority of internal interrupt, so TGIA_0 interrupt is used for checking hall signal.

The MCU we used is powerful, it can be used to develop more complex control method in BLDC motor such as direct torque control.

27

Reference

[1] Y. S. Lai, F. S. Shyu, and Y. H. Chang, “Novel loss reduction pulse width modulation technique for brushless dc motor drives fed by MOSFET inverter”, IEEE Trans. Power Electron., vol. 19, no. 6, pp. 1646-1652, Nov. 2004.

[2] K. Y. Cheng and Y. Y. Tzou, “Design of a sensorless Commutation IC for BLDC Motors”, IEEE Transactions of Power Electronics, vol.18, no.6, pp.1365-1375, November 2003.

[3] H. C. Chen, Y. C. Chang, and C. K. Huang, “Practical sensorless control for inverter-fed BDCM compressors,” IET Proc. Electric Power Applications, vol.

1, no. 1,pp. 127-132, Jan. 2007.

[4] 徐舶強, 無感測直流無刷馬達之驅動電路設計, 國立交通大學機械工程學 系所, 碩士論文, 2008

[5] 吳宇中, 使用微控制器SN8P1708晶片實現三相永磁馬達之控制, 國立交通 大學電機與控制工程系所, 碩士論文, 2005

[6] 賴逸軒, 以DSP為基礎發展永磁同步馬達使用線性型霍爾感測器與無感測 控制方法, 交通大學電機與控制工程系所, 碩士論文, 2005

[7] 卓淑婷, 直流無刷馬達無感測器驅動之分析, 交通大學電機與控制工程系 所, 2009

28

Table

Step Electrical angle Phase current Hall sensor Switch on

1 100 Q5, Q0

2 101 Q3, Q0

3 001 Q3, Q4

4 011 Q1, Q4

5 010 Q1, Q2

6 110 Q5, Q2

Table 2.1 120 degree six-step square commutation table

29

Output Pins

Channel Registers PWM Mode 1 PWM Mode 2

0 TGRA_0 TIOCA0 TIOCA0

TGRB_0 TIOCB0

TGRC_0 TIOCC0 TIOCC0

TGRD_0 TIOCD0

1 TGRA_1 TIOCA1 TIOCA1

TGRB_1 TIOCB1

2 TGRA_2 TIOCA2 TIOCA2

TGRB_2 TIOCB2

3 TGRA_3 TIOCA3 TIOCA3

TGRB_3 TIOCB3

TGRC_3 TIOCC3 TIOCC3

TGRD_3 TIOCD3

4 TGR4A_4 TIOCA4 TIOCA4

TGR4B_4 TIOCB4

5 TGRA_5 TIOCA5 TIOCA5

TGRB_5 TIOCB5

Table 3.1 PWM output registers and output pins

MD2 MD1 MD0 FWE LSI state after Reset end

1 1 1 0 Advance Mode

0 1 1 1 Boot Mode

Table 4.1 Two Mode correspond to their pins state respectively

30

Table 4.2 Digital operator’s protocol

31

5. data

Digital operator → MCU (6 bytes) 0x 10 70 10 01 DC F 3 MCU → Digital operator (46 bytes)

0x 10 70 10 53 00 00 00 00 00 00 00 00 53 39 45 2D 30 35 34 33 20 20 20 20 20 20 20 20 55 31 2D 30 31 3D 20 20 30 2E 30 30 20 48 5A 20 D0 0F

Table 4.2 Digital operator’s protocol (continue)

Operator to MCU

Start code 1 Start code 2 DATA 1 DATA 2 CRC16_LB CRC16_HB MCU to Operator

Start code 1 Start code 2 LED_Ctrl LED_Data 0x00 0x00 0x00 0x00 LCD_Ctrl1 LCD_Ctrl2 LCD_Line1 LCD_Line2 CRC16_LB CRC16_HB

Table 4.3 Digital operator’s data format

32

Motor Model No. AM750M

Input voltage 220V 10%

Input frequency 50/60 Hz

Max. input current 11.4 A

Motor phase 3

Rated torque 70 kg-cm

Motor insulation/

Max. working TEMP

B Class (130 C/266 F)/Max.

100 C/212 F

Motor weight 8.0 kg

Table 4.4 The specification of BLDC motor

33

Type: RM-1000

Range 10 rpm ~100,000 rpm

Basic Accuracy +/- 0.01% +/- 1 dgt

Resolution 0.1 rpm

Sample rate 1 sec.

Measuring distance 50mm to 200m

Max distance 300mm

Recall Max value, Min value

Data hold Stop measurement and data hold

Time base 12.0MHz quartz crystal

Circuit High speed microcomputer

Range selection Automatic

Battery Four 1.5V batteries (AA UM-3)

Low battery indicator Red LED display Operation temperature 0 to 50 degree C

Table 5.1 Specification of tachometer

Table 5.2 Specification of Adlee driver

34

Table 6.1 Internal priority of MCU

35

Table 6.1 Internal priority of MCU (continue)

36

Figure

Fig 2.1 The structure of BLDC motors

I

B d

+ _

VH

Fig 2.2 The Hall effect

37

Fig 2.3 Schematic of the inverter and motor

Fig 2.4 Six-step sequences waveforms

38

Step 1

Step 2

Step 3

Fig 2.5 The procedure of the commutation

39

Step 4

Step 5

Step 6

Fig 2.5 The procedure of the commutation (continue)

40

Fig 2.6 The equivalent model of a BLDC motor

E

Fig 2.7 A BLDC motor equal circuit

41

Fig 3.1 Main program flowchart

42

Fig 3.2 TGIA0 interrupt flowchart

43 H1

H2 H3

1 hall step or 1 pulse

Fig 3.3 Hall signal

Fig 3.4 Close-loop control block diagram

Fig 4.1 The structure of system

44

Fig 4.2 The HD64F2612F340 chip’s pin arrangement

Fig 4.3 The layout of MCU circuit

45

Fig 4.4 MAX232CPE

Fig 4.5 BLDC motor

46

Fig 5.1 Inverter

Fig 5.2 Hardware setup

47

Fig 5.3 Six-step waveform

48

Fig 5.4 Hall signal’s waveform

Fig 5.5 Speed error

49

Fig 5.5 Speed error (continue)

Fig 5.6 Speed response without load at 1000 rpm

50

Fig 5.7 Speed response without load at 3000 rpm

Fig 5.8 Speed response with load at 500 rpm

相關文件