• 沒有找到結果。

立 政 治 大 學

N a tio na

l C h engchi U ni ve rs it y

64

6. Conclusion

This paper successfully extends the deterministic metafrontier translog cost function to the more general SMF Fourier flexible cost function that has several advantages. Unlike the use of conventional two-step procedure, e.g., Battese et al.

(2004), O’Donnell et al. (2008), and Huang et al. (2011a), which combines the stochastic frontier approach with the mathematical programing technique, the stochastic metafrontier is formulated and applied for estimating the technology gap ratio, instead of the programming technique, such that the first and the second step of the study are compatible. It is therefore of great benefit that the statistical inferences can be drawn, on the basis of a regression model, without relying on simulation or bootstrapping. Furthermore, composed errors can be incorporated to handle random shocks and possible production inefficiency. This avoids the criticism aimed at mathematical programming. Most importantly, our new model specifies the TGR to be a function of some exogenous variables. That is, the group-specific environmental differences are allowed to be included in the second-step estimation procedure. The environments faced with a bank usually impose some restrictions on bank managers, which may limit their ability to optimize the allocation of resources among different uses. This helps characterize the sources of a bank’s production inefficiency, on the one hand, and reduce the problem of heteroskedasticity, on the other hand.

Using the newly developed formulas, this paper devoted to uncovering new evidence on the cost efficiency of Western European banks during the period of 1996 to 2010 and to broaden our capacity for illustrating the usefulness of the proposed estimation approach and comparing with the results of various competing metafrontier models. The empirical application discloses that the TGR and MCE exhibit a gradual upward trend initially during 1996-2000 and then fluctuate with a downward trend reflecting market movements, especially after the subprime crisis of 2007-2010.

‧ 國

立 政 治 大 學

N a tio na

l C h engchi U ni ve rs it y

65

These results show that a single and competitive banking market not only contributes to greater cost efficiencies, but also shrinks the technology gap within the member states of European Union. A representative bank in Western Europe attains a remarkable efficiency improvement after the financial markets become more competitive and integrated due to the creation of a single market in 1993. However, the wave of international economic integration is usually inevitably accompanied by higher degree of risk exposure. The subsequently downward trends reflect this factor during the recession period of global economies after 2000 and are found to have deteriorated after the global financial crisis which started in late 2007.

In seeking further evidence on the role played by the bank’s size, profitability, and risk attitude on relevant efficiency score, several implications can be drawn from the empirical results. First, smaller banks appear to outperform the larger ones in terms of MCE and TGR. On the other words, banks with smaller assets size are able to benefit more from the cost efficiency and advanced technology. Second, higher profitability is connected with greater efficiency. Banks with higher profitability tend to be more cost efficient and to adopt more advanced technology than poor profitable banks. Finally, more conservative banks are related to greater efficiency. Banks with higher values of capital ratio are inclined to enhance cost efficiency and to adopt more advanced technology. This result might be ascribable to the fact that risk-averse bank managers are frequently engaged in monitoring and supervising activities that help reduce the exposure of risks.

As in the case for the other two competing metafrontier models, the choice of methodology seems to influence the estimation results and its associated policy implications derived from the analyses. Not only the parameter estimates considerably differ from each other, but also the so-derived efficiency scores show dissimilar distribution and patterns. The deterministic metafrontier programming techniques

‧ 國

立 政 治 大 學

N a tio na

l C h engchi U ni ve rs it y

66

tends to underestimate the TGR and MCE measures and these estimates exhibit larger variation, probably due to specification error, i.e., the estimates are inclined to be confounded with shocks, and lack of considering environmental variable. Although the SMF92 appear to be better choices due to its ability to incorporate random shocks, it is also apt to underestimate these measures and exhibit larger variation in contrast to the SMF95. Moreover, when we adopt deterministic metafrontier programming techniques to deal with further insights on the effect of assets size, profitability, and risk attitude, there is little evidence to suggest that the widely accepted results.

Therefore, the proposed stochastic metafrontier specification, which includes group-specific environmental variable as determinants of technology gap, should be preferable and consistent with reality.

‧ 國

立 政 治 大 學

N a tio na

l C h engchi U ni ve rs it y

67

References

Al-Jarrah, I. and P. Molyneus (2006), “Cost efficiency, scale elasticity and scale economies in Arab banking,” Banks and Bank Systems, 1(3), 60–89.

Allen, L. and A. Rai (1996), “Operational efficiency in banking: An international comparison,” Journal of Banking and Finance, 20(4), 655–672.

Altunbaş, Y., E.P.M. Gardener, P. Molyneux, and B. Moore (2001a), “Efficiency in European banking,” European Economic Review, 45(10), 1931–1955.

Altunbaş, Y., L. Evans, and P. Molyneux (2001b), “Bank ownership and efficiency”

Journal of Money, Credit and Banking, 33(4), 926–954.

Altunbaş, Y., M.H. Liu, P. Molyneux, and R. Seth (2000), “Efficiency and risk in Japanese banking” Journal of Banking and Finance, 24(10), 1605–1628.

Andrieş, A.M. (2011), “The determinants of bank efficiency and productivity growth in the Central and Eastern European banking systems,” Eastern European

Economics, 49(6), 38–59.

Apergis, N. and E. Alevizopoulou (2011), “Bank efficiency: Evidence from a panel of European banks,” Panoeconomicus, 58(3), 329–341.

Bain, J.S. (1951), “Relation of profit rate to industry concentration: American manufacturing, 1936-1940,” Quarterly Journal of Economics, 65(3), 293–324.

Barth, J.R., G.Jr. Caprio, and R. Levine (2004), “Bank regulation and supervision:

What works best?” Journal of Financial Intermediation, 13(2), 205–248.

Battaglia, F., V. Faroma, F. Fiordelisi, and O. Ricci (2010), “The efficiency of cooperative banks: The impact of environmental economic conditions,” Applied

Financial Economics, 20(17), 1363–1376.

Battese, G.E. and D.S.P. Rao (2002), “Technology gap, efficiency and a stochastic metafrontier function,” International Journal of Business and Economics, 1(2), 87–93.

‧ 國

立 政 治 大 學

N a tio na

l C h engchi U ni ve rs it y

68

Battese, G.E. and T.J. Coelli. (1992), “Frontier production functions, technical efficiency and panel data: With application to paddy farmers in India,” Journal of

Productivity Analysis, 3(1-2), 153–169.

Battese, G.E. and T.J. Coelli. (1995), “A model for technical inefficiency effects in a stochastic frontier production function for panel data,” Empirical Economics, 20(2), 325–332.

Battese, G.E., D.S.P. Rao, and C.J. O’Donnell. (2004), “A metafrontier production function for estimation of technical efficiencies and technology gaps for firms operating under different technologies,” Journal of Productivity Analysis, 21(1), 91–103.

Beccalli, E. (2004), “Cross-country comparisons of efficiency: Evidence from the UK and Italian investment firms,” Journal of Banking and Finance, 28(6), 1363–

1383.

Beccalli, E. and P. Frantz (2009), “M&A operations and performance in banking,”

Journal of Financial Services Research, 36(2-3), 203–226.

Berger, A.N. (2007), “International comparisons of banking efficiency,” Financial

Markets, Institutions and Instruments, 16(3), 119–165.

Berger, A.N., J.H. Leusner, and J.J. Mingo (1997), “The efficiency of bank branches,”

Journal of Monetary Economics, 40(1), 141–162.

Berger, A.N., R. DeYoung, H. Genay, and G.F. Udell (2000), “The globalization of financial institutions: Evidence from cross-border banking performance,”

Brookings-Wharton Papers on Financial Services, 3, 23–158.

Berger, A.N. and D.B. Humphrey (1997), “Efficiency of financial institutions:

international survey and directions for future research,” European Journal of

Operational Research, 98(2), 175–212.

Berger, A.N. and L.J. Mester (1997), “Inside the black box: What explains differences

‧ 國

立 政 治 大 學

N a tio na

l C h engchi U ni ve rs it y

69

in the efficiencies of financial institutions?” Journal of Banking and Finance, 21(7), 895–947.

Bonin, J.P., I. Hasan, and P. Wachtel (2005a), “Bank performance, efficiency and ownership in transition countries,” Journal of Banking and Finance, 29(1), 31–

53.

Bonin, J.P., I. Hasan, and P. Wachtel (2005b), “Privatization matters: Bank efficiency in transition countries,” Journal of Banking and Finance, 29(8-9), 2155–2178.

Bos, J.W.B. and H. Schmiedel (2007), “Is there a single frontier in a single European banking market,” Journal of Banking and Finance, 31(7), 2081–2102.

Camilla, M., L. Serlenga, and Y. Shin (2013), “Globalisation and technological convergence in the EU,” Journal of Productivity Analysis, 40(1), 15–29.

Casu, B. and C. Girardone (2004), “Large banks’ efficiency in the single European Market,” Service Industries Journal, 24(6), 129–142.

Casu, B. and P. Molyneux (2003), “A comparative study of efficiency in European banking,” Applied Economics, 35(17), 1865–1876.

Cavallo, L. and S.P.S. Rossi (2002), “Do environmental variables affect the performance and technical efficiency of the European banking systems? A parametric analysis using the stochastic frontier approach,” European Journal of

Finance, 8(1), 123–146.

Chalfant, J.A. and A.R. Gallant (1985), “Estimating substitution elasticities with the Fourier cost function: Some Monte Carlo results,” Journal of Econometrics, 28(2), 205–222.

Chen, Z. and S. Song (2008), “Efficiency and technology gap in China’s agriculture:

A regional meta-frontier analysis,” China Economic Review, 19(2), 287–296.

Chortareas, G.E., C. Girardone, and A. Ventouri (2012), “Bank supervision, regulation, and efficiency: Evidence from the European Union,” Journal of

‧ 國

立 政 治 大 學

N a tio na

l C h engchi U ni ve rs it y

70

Financial Stability, 8(4), 292–302.

Chortareas, G.E., C. Girardone, and A. Ventouri (2013), “Financial freedom and bank efficiency: Evidence from the European Union,” Journal of Banking and

Finance, 37(4), 1223–1231.

Coelli, T.J. (1996), “A guide to FRONTIER version 4.1: A computer program for stochastic frontier production and cost function estimation,” CEPA Working Papers No. 7/96, School of Economics, University of New England, Armidale.

Curi, C., P. Guarda, A. Lozano-Vivas, and V. Zelenyuk (2012), “Is foreign-bank efficiency in financial centers driven by home or host country characteristics,”

Journal of Productivity Analysis, http://dx.doi.org/10.1007/s11123-012-0294-y

Das, A. and S. Das (2007), “Scale economies, cost complementarities and technical progress in Indian banking: Evidence from fourier flexible functional form,”

Applied Economics, 39(5), 565–580.

Demsetz, H. (1974), “Two systems of belief about monopoly,” in H.J. Goldschmid, H.

M. Mann and J.F. Weston (eds), Industrial Concentration: the New Learning, Boston, MA, Little Brown, pp. 164–184.

Dietsch, M. and A. Lozano-Vivas (2000), “How the environment determines banking efficiency: A comparison between French and Spanish industries,” Journal of

Banking and Finance, 24(6), 985–1004.

Fang, Y., I. Hasan, and K. Marton (2011), “Bank efficiency in South-Eastern Europe,”

Economics of Transition, 19(3), 495–520.

Feng, G. and A. Serletis (2009), “Efficiency and productivity of the US banking industry, 1998-2005: Evidence from the Fourier cost function satisfying global regularity conditions,” Journal of Applied Econometrics, 24(1), 105–138.

Fethi, M.D. and F. Pasiouras (2010), “Assessing bank efficiency and performance with operational research and artificial intelligence techniques: A survey,”

‧ 國

立 政 治 大 學

N a tio na

l C h engchi U ni ve rs it y

71

European Journal of Operational Research, 204(2), 189–198.

Fiordelisi, F., D. Marques-Ibanez, and P. Molyneux (2011), “Efficiency and risk in European banking,” Journal of Banking and Finance, 35(5), 1315–1326.

Fried, H.O., C.A.K. Lovell, S.S. Schmidt, and S. Yaisawarng (2002), “Accounting for environmental effects and statistical noise in data envelopment analysis,”

Journal of Productivity Analysis, 17(1-2), 157–174.

Fries, S. and A. Taci (2005), “Cost efficiency of banks in transition: Evidence from 289 banks in 15 post-communist,” Journal of Banking and Finance, 29(1), 55–

81.

Gallant, A.R. (1982), “Unbiased determination of production technologies,” Journal

of Econometrics, 20(2), 285–323.

Gargouri, I. (2013), “Efficiency of Tunisian commercial banks according to the intermediation approach,” International Journal of Economics and Finance, 5(5), 1916–9278.

Goddard, J.A., P. Molyneux, and J.O.S. Wilson (2001), European banking: Efficiency,

technology and growth, Chichester: John Wiley and Sons.

González, F. (2005), “Bank regulation and risk-taking incentives: An international comparison of bank risk,” Journal of Banking and Finance, 29(5), 1153–1184.

Hayami, Y. (1969), “Sources of agricultural productivity gap among selected countries,” American Journal of Agricultural Economics, 51(3), 564–575.

Hayami, Y. and V.W. Ruttan (1970), “Agricultural productivity differences among countries,” American Economic Review, 60(5), 895–911.

Hayami, Y. and V.W. Ruttan (1971), Agricultural Development: An International

Perspective, Baltimore: Johns Hopkins University Press.

Hicks, J. (1935), “Annual survey of Economic theory, the theory of monopoly,”

Econometrica, 3(1), 1–20.

‧ 國

立 政 治 大 學

N a tio na

l C h engchi U ni ve rs it y

72

Huang, C.J., T.H. Huang, and N.H. Liu (2012), “A new approach to estimating the metafrontier production function based on stochastic frontier framework,”

working paper.

Huang, T.H. and M.H. Wang (2002), “Comparison of economic efficiency estimation methods: Parametric and non-parametric techniques,” Manchester School, 70(5), 682–709.

Huang, T.H. and M.H. Wang (2003), “Estimation of technical and allocative inefficiency using Fourier flexible cost frontiers for Taiwan’s banking industry,”

Manchester School, 71(3), 341–362.

Huang, T.H. and M.H. Wang (2004), “Comparisons of economic inefficiency between output and input measures of technical inefficiency using the Fourier flexible cost function,” Journal of Productivity Analysis, 22(1-2), 123–142.

Huang, T.H., L.C. Chiang, and K.C. Chen (2011a), “An empirical study of bank efficiencies and technology gaps in European banking,” Manchester School, 79(4), 839–860.

Huang, T.H., L.C. Chiang, K.C. Chen, and P.H. Chiu (2010), “An application of the meta-frontier cost function to the study of bank efficiencies and technology gaps in 16 European countries,” Management Review, 29(3), 25–43.

Huang, T.H., C.H. Shen, K.C. Chen, and S.J. Tseng (2011b), “Measuring technical and allocative efficiencies for banks in the transition countries using the Fourier flexible cost function,” Journal of Productivity Analysis, 35(2), 143–157.

Huang, T.H. and Y.H. Chen (2009), “A study on long-run inefficiency levels of a panel dynamic cost frontier under the framework of forward-looking rational expectations,” Journal of Banking and Finance, 33(5), 842–849.

Hughes, J.P. and L.J. Mester (1998), “Bank capitalization and cost: Evidence of scale economies in risk management and signaling,” Review of Economics and

‧ 國

立 政 治 大 學

N a tio na

l C h engchi U ni ve rs it y

73

Statistics, 80(2), 314–325.

Hughes, J.P. and L.J. Mester (2012), “Efficiency in banking: Theory, practice, and evidence,” in A.N. Berger, P. Molyneux and J.O.S. Wilson (eds), The Oxford

Handbook of Banking, New York: Oxford University Press, Chapter 18, pp. 463–

485.

Johnston, J. and J. DiNardo (1997), Econometric Methods, 4th edition, McGraw-Hill companies, Inc., New York.

Kondeas, A.G., S.B. Caudill, D.M. Gropper, and J.E. Raymond (2008), “Deregulation and productivity changes in banking: Evidence from European unification,”

Applied Financial Economics Letters, 4(3), 193–197.

Kontolaimou, A. and K. Tsekouras (2010), “Are cooperatives the weakest link in European banking? A non-parametric metafrontier approach,” Journal of

Banking and Finance, 34(8), 1946–1957.

Košak, M. and J. Zorić (2011), “Accounting for heterogeneity in cross-country bank efficiency comparisons,” Economics of Transition, 19 (3), 473–494.

Košak, M., P. Zakc and J. Zorić (2009), “Bank efficiency differences in the new EU member states,” Baltic Journal of Economics, 9(2), 67–90.

Kraft, E., R. Hofler, and J. Payne (2006), “Privatization, foreign bank entry and bank efficiency in Croatia: A Fourier-flexible function stochastic cost frontier analysis,” Applied Economics, 38(17), 2075–2088.

Kumbhakar, S.C. and C.A.K. Lovell (2003), Stochastic Frontier Analysis. Cambridge:

Cambridge University Press.

Kumbhakar, S.C. and D. Wang (2007), “Economic reforms, efficiency and productivity in Chinese banking,” Journal of Regulatory Economics 32(2), 105–

129.

Lau, L.J. and P.A. Yotopoulos (1989), “The meta-production function approach to

‧ 國

立 政 治 大 學

N a tio na

l C h engchi U ni ve rs it y

74

technological change in world agriculture,” Journal of Development Economics, 31(2), 241–269.

Lozano-Vivas, A., J.T. Pastor, and I. Hasan (2001), “European bank performance beyond country borders: what really matters?” European Finance Review, 5(1-2), 141–165.

Lozano-Vivas, A., J.T. Pastor, and J.M. Pastor (2002), “An efficiency comparison of European banking systems operating under different environmental conditions,”

Journal of Productivity Analysis, 18(1), 59–77.

Lu, Y.H. and C.F. Chen (2012), “Research note: Analysing the efficiency of the Taiwanese hotel industry: A stochastic metafrontier approach,” Tourism

Economics, 18(5), 1143–1150.

Mariano, M.J., R. Villano, and E. Fleming (2011), “Technical efficiency of rice farms in different agroclimatic zones in the Philippines: An application of a stochastic metafrontier model,” Asian Economic Journal, 25(3), 245–269.

Maudos, J., J.M. Pastor, F. Pérez, and J. Quesada (2002), “Cost and profit efficiency in European banks,” Journal of International Financial Markets, Institutions and

Money, 12(1), 33–58.

McAllister, P.H. and D. McManus (1993), “Resolving the scale efficiency puzzle in banking,” Journal of Banking and Finance, 17(2-3), 389–405.

Mitchell, K. and N.M. Onvural, (1996), “Economies of scale and scope at large commercial banks: Evidence from the Fourier flexible function form,” Journal of

Money, Credit and Banking, 28(2), 178–199.

Moreira, V.H. and B.E. Bravo-Ureta (2010), “Technical efficiency and metatechnology ratios for dairy farms in three southern cone counties: A stochastic meta-frontier model,” Journal of Productivity Analysis, 33(1), 33–45.

O’Donnell, C.J., D.S.P. Rao, and G.E. Battese (2008), “Metafrontier frameworks for

‧ 國

立 政 治 大 學

N a tio na

l C h engchi U ni ve rs it y

75

the study of firm-level efficiencies and technology ratio,” Empirical Economics, 34(2), 231–255.

Radić, N., F. Fiordelisi, and C. Girardone (2012), “Efficiency and risk-taking in pre-crisis investment banks,” Journal of Financial Services Research, 41(1-2), 81–101.

Rime, B. and K. J. Stiroh (2003), “The performance of universal banks: Evidence from Switzerland,” Journal of Banking and Finance, 27(11), 2121–2150.

Pastor, J.M. and L. Serrano (2006), “The effect of specialization on banks’ efficiency:

An international comparison,” International Review of Applied Economics, 20(1), 125–149.

Schure, P., R. Wagenvoort, and D. O’Brien (2004), “The efficiency and the conduct of European banks: Developments after 1992,” Review of Financial Economics, 13(4), 371–396.

Sun, L. and T.P. Chang (2011), “A comprehensive analysis of the effects of risk measures on bank efficiency: Evidence from emerging Asian countries,” Journal

of Banking and Finance, 25(5), 429–445.

Taymaz, E. (2005), “Are small firms really less productive?” Small Business

Economics 32(4), 375–395.

Vennet, R.V. (2002), “Cost and profit efficiency of financial conglomerates and universal banks in Europe,” Journal of Money, Credit and Banking, 34(1), 254–

282.

Wang, H.J. and P. Schmidt (2002), “One-step and two-step estimation of the effects of exogenous variables on technical efficiency levels,” Journal of Productivity

Analysis, 18(2), 129–144.

Weill, L. (2004), “Measuring cost efficiency in European banking: A comparison of frontier techniques,” Journal of Productivity Analysis, 21(2), 133–152.

‧ 國

立 政 治 大 學

N a tio na

l C h engchi U ni ve rs it y

76

Weill, L. (2007), “Is there a gap in bank efficiency between CEE and Western European countries,” Comparative Economic Studies, 49(1), 101–127.

White, H. (1982), “Maximum likelihood estimation of misspecified models,”

Econometrica, 50(1), 1–25.

Wheelock, D.C. and P.W. Wilson (2001), “New evidence on returns to scale and product mix among U.S. commercial banks,” Journal of Monetary Economics, 47(3), 653–674.

Williams, J. and E.P.M. Gardener (2003), “The efficiency of European regional banking,” Regional Studies, 37(4), 321–330.

Xie, L. (2007), “Universal banking, conflicts of interest and firm growth,” Journal of

Financial Services Research, 32(3), 177–202.

Yang, C.H. and K.H. Chen (2009), “Are small firms less efficient,” Small Business

Economics 32(4), 375–395.

Yildirim, H.S. and G.C. Philippatos (2007), “Efficiency of banks: Recent evidence from the transition economics of Europe, 1993-2000,” European Journal of

Finance, 13(2), 123–143.

‧ 國

立 政 治 大 學

N a tio na

l C h engchi U ni ve rs it y

App pendix A

Figu ure A1. Ima

aging correla

77

ation of expplanatory vaariables in AAustria

‧ 國

立 政 治 大 學

N a tio na

l C h engchi U ni ve rs it y

Figurre A2. Imag

ging correla

78

ation of explanatory varriables in BBelgium

‧ 國

立 政 治 大 學

N a tio na

l C h engchi U ni ve rs it y

Figuree A3. Imagiing correlat

79

tion of explaanatory variiables in Deenmark

‧ 國

立 政 治 大 學

N a tio na

l C h engchi U ni ve rs it y

Figu ure A4. Imag

ging correla

80

ation of expplanatory vaariables in FFrance

‧ 國

立 政 治 大 學

N a tio na

l C h engchi U ni ve rs it y

Figuree A5. Imagiing correlat

81

tion of explaanatory variiables in Geermany

‧ 國

立 政 治 大 學

N a tio na

l C h engchi U ni ve rs it y

Figu ure A6. Ima

aging correl

82

lation of exxplanatory vvariables in IItaly

‧ 國

立 政 治 大 學

N a tio na

l C h engchi U ni ve rs it y

Figure A A7. Imaging

g correlatio

83

on of explannatory variabbles in Luxeembourg

‧ 國

立 政 治 大 學

N a tio na

l C h engchi U ni ve rs it y

Figu ure A8. Ima

aging correl

84

ation of expplanatory vaariables in SSpain

‧ 國

立 政 治 大 學

N a tio na

l C h engchi U ni ve rs it y

Figure A9. Imagin

ng correlatio

85

on of explannatory variaables in Swiitzerland

‧ 國

立 政 治 大 學

N a tio na

l C h engchi U ni ve rs it y

Figure A A10. Imaging

g correlatio

86

on of explannatory variabbles United Kingdom

‧ 國

立 政 治 大 學

N a tio na

l C h engchi U ni ve rs it y

F Figure A11. Imaging co

orrelation of

87

f explanatorry variabless for all sammple countries

Table B1 Estimates of Fourier series for the sample countries

Austria Belgium Denmark France Germany Italy Luxembourg Spain Switzerland United Kingdom cos 1z 1.197 *** 0.775 *** -0.836 *** 0.470 * 0.584 *** -0.271 *** 0.193 -0.619 ** 0.393 ** 0.051 Notes: Standard errors are given in parentheses. ***, ** and * denote statistical significance at the 1%, 5%, and 10% levels, respectively.

Table B2 Parameter estimates of the translog cost frontier for the sample countries

Austria Belgium Denmark France Germany Italy Luxembourg Spain Switzerland United Kingdom

constant

2.494 *** 1.515 ** 1.457 *** 1.738 *** 1.014 *** -0.297 0.907 ** 4.237 *** 1.273 *** 1.169 **

Notes: Standard errors are given in parentheses. ***, ** and * denote statistical significance at the 1%, 5%, and 10% levels, respectively.

‧ 國

立 政 治 大 學

N a tio na

l C h engchi U ni ve rs it y

91

Table B3 Estimates of Fourier series for various competing metafrontier models

Independent Stochastic Metafrontier with

τ

(SMF95)

Stochastic Metafrontier

without

τ

(SMF92) Metafrontier (QP) variables Coefficient S.E. Coefficient S.E. Coefficient S.D.

cos 1z 0.092 *** 0.009 0.036 *** 0.009 -0.070 0.084 sin 1

z

-0.119 *** 0.006 -0.006 0.008 -0.358 0.060 cos 2

z

-0.011 * 0.006 0.061 *** 0.007 -0.146 0.058 sin 2

z

0.055 *** 0.007 0.017 ** 0.008 -0.010 0.049 cos 3

z

-0.013 * 0.007 -0.086 *** 0.008 -0.029 0.054 sin 3

z

0.047 *** 0.005 0.004 0.007 0.235 0.048 cos 2 1z -0.064 *** 0.004 -0.038 *** 0.004 -0.026 0.032 sin 2 1

z

0.033 *** 0.003 0.040 *** 0.004 0.046 0.037 cos 2 2

z

-0.052 *** 0.003 -0.069 *** 0.003 0.036 0.026 sin 2 2

z

0.020 *** 0.003 0.030 *** 0.004 -0.019 0.032 cos 2 3

z

0.001 0.004 -0.011 *** 0.004 0.095 0.025 sin 2 3

z

-0.026 *** 0.003 -0.013 *** 0.003 -0.016 0.024 cos 1 2z z 0.124 *** 0.004 0.147 *** 0.005 0.019 0.040 sin 1 2

z z

-0.031 *** 0.004 -0.019 *** 0.005 -0.165 0.040 cos 1 3

z z

-0.025 *** 0.004 -0.055 *** 0.005 -0.064 0.045 sin 1 3

z z

-0.088 *** 0.004 -0.052 *** 0.005 -0.088 0.035 cos 2 3

z z

0.033 *** 0.004 0.026 *** 0.004 -0.072 0.040 sin 2 3

z z

0.117 *** 0.004 0.047 *** 0.005 0.186 0.032

Notes: SMF95, stochastic metafrontier with Battese and Coelli (1995) specification; SMF92, stochastic metafrontier with Battese and Coelli (1992) specification; QP, quadratic programming model. The standard errors of the QP estimators are obtained using a bootstrapping method with 1,000 replications.

***, **, and * indicate statistical significance at the 1%, 5%, and 10% levels respectively.

Table B4 Parameter estimates for various competing metafrontier models (TL)

Independent SMF95 SMF92 QP

variables Coefficient S.E. Coefficient S.E. Coefficient S.D.

constant 1.301*** 0.055 0.906*** 0.098 0.433 0.442

Notes: SMF95, stochastic metafrontier with Battese and Coelli (1995) specification; SMF92, stochastic metafrontier with Battese and Coelli (1992) specification; QP, quadratic programming model. The standard errors of SMF are corrected by sandwich estimators. The standard errors of the QP estimators are obtained from bootstrapping. ***, **, and * indicate statistical significance at the 1%, 5%, and 10%

levels respectively.

‧ 國

立 政 治 大 學

N a tio na

l C h engchi U ni ve rs it y

App pendix C

Figure C1

Figure C

. Trends in

C2. Trends i

93

CE, TGR, a

in CE, TGR

and MCE (S

R, and MCE

SMF92-FF)

E (QP-FF) )

‧ 國

立 政 治 大 學

N a tio na

l C h engchi U ni ve rs it y

Figure C3

Figure C

. Trends in

C4. Trends i

94

CE, TGR, a

in CE, TGR

and MCE (S

R, and MCE

SMF92-TL)

(QP-TL) )

‧ 國

立 政 治 大 學

N a tio na

l C h engchi U ni ve rs it y

95

Table C1 Summary statistics of relevant efficiency scores over time (SMF92-FF)

Period CE TGR MCE

Mean S.D. Mean S.D. Mean S.D.

1996 0.887 0.070 0.821 0.105 0.727 0.103 1997 0.891 0.071 0.822 0.106 0.732 0.104 1998 0.897 0.063 0.824 0.106 0.738 0.104 1999 0.900 0.062 0.823 0.107 0.739 0.105 2000 0.904 0.063 0.828 0.106 0.747 0.106 2001 0.893 0.075 0.831 0.105 0.742 0.109 2002 0.894 0.081 0.828 0.104 0.741 0.115 2003 0.896 0.085 0.827 0.107 0.740 0.119 2004 0.899 0.093 0.829 0.118 0.745 0.113 2005 0.893 0.081 0.844 0.105 0.753 0.111 2006 0.894 0.083 0.846 0.104 0.756 0.113 2007 0.890 0.095 0.848 0.112 0.754 0.106 2008 0.880 0.087 0.850 0.099 0.747 0.106 2009 0.878 0.088 0.846 0.104 0.741 0.110 2010 0.871 0.096 0.850 0.100 0.738 0.109 96-98 0.892 0.068 0.822 0.105 0.732 0.104 99-01 0.899 0.067 0.827 0.106 0.743 0.107 02-04 0.896 0.081 0.828 0.106 0.742 0.116 05-07 0.893 0.080 0.846 0.104 0.754 0.110 08-10 0.877 0.090 0.848 0.101 0.742 0.108 Average 0.891 0.077 0.834 0.105 0.742 0.109

Note: SMF92, stochastic metafrontier with Battese and Coelli (1992) specification.

‧ 國

立 政 治 大 學

N a tio na

l C h engchi U ni ve rs it y

96

Table C2 Summary statistics of relevant efficiency scores over time (QP-FF)

Period CE TGR MCE

Mean S.D. Mean S.D. Mean S.D.

1996 0.887 0.070 0.617 0.168 0.545 0.150 1997 0.891 0.071 0.627 0.174 0.557 0.157 1998 0.897 0.063 0.642 0.177 0.575 0.163 1999 0.900 0.062 0.660 0.170 0.594 0.159 2000 0.904 0.063 0.656 0.173 0.592 0.162 2001 0.893 0.075 0.665 0.172 0.594 0.161 2002 0.894 0.081 0.683 0.170 0.611 0.164 2003 0.896 0.085 0.686 0.171 0.616 0.166 2004 0.899 0.093 0.689 0.189 0.620 0.167 2005 0.893 0.081 0.702 0.172 0.627 0.163 2006 0.894 0.083 0.690 0.173 0.618 0.166 2007 0.890 0.095 0.672 0.191 0.598 0.164 2008 0.880 0.087 0.654 0.177 0.575 0.165 2009 0.878 0.088 0.654 0.183 0.574 0.167 2010 0.871 0.096 0.657 0.177 0.571 0.160 96-98 0.892 0.068 0.628 0.173 0.559 0.157 99-01 0.899 0.067 0.660 0.172 0.593 0.161 02-04 0.896 0.081 0.686 0.172 0.616 0.166 05-07 0.893 0.080 0.688 0.173 0.615 0.165 08-10 0.877 0.090 0.655 0.179 0.573 0.164 Average 0.891 0.077 0.662 0.175 0.590 0.164

Note: QP,quadratic programming model.

‧ 國

立 政 治 大 學

N a tio na

l C h engchi U ni ve rs it y

97

Table C3 Summary statistics of relevant efficiency scores over time (SMF92-TL)

Period CE TGR MCE

Mean S.D. Mean S.D. Mean S.D.

1996 0.874 0.080 0.775 0.107 0.675 0.102

1997 0.875 0.082 0.776 0.110 0.677 0.105

1998 0.878 0.077 0.777 0.109 0.681 0.106

1999 0.878 0.079 0.777 0.110 0.681 0.105

2000 0.883 0.080 0.782 0.107 0.689 0.107

2001 0.872 0.089 0.787 0.104 0.684 0.107

2002 0.874 0.092 0.783 0.105 0.683 0.112

2003 0.878 0.096 0.779 0.106 0.682 0.115

2004 0.877 0.139 0.782 0.128 0.686 0.112

2005 0.869 0.099 0.803 0.108 0.696 0.113

2006 0.871 0.099 0.805 0.109 0.699 0.114

2007 0.868 0.133 0.806 0.126 0.698 0.110

2008 0.854 0.106 0.811 0.105 0.689 0.111

2009 0.855 0.102 0.806 0.109 0.686 0.113

2010 0.849 0.105 0.807 0.105 0.683 0.109

96-98 0.875 0.080 0.776 0.109 0.678 0.104

99-01 0.877 0.082 0.782 0.108 0.685 0.106

02-04 0.876 0.092 0.781 0.105 0.684 0.113

05-07 0.869 0.097 0.804 0.108 0.697 0.112

08-10 0.853 0.104 0.808 0.107 0.686 0.111 Average 0.871 0.091 0.790 0.108 0.686 0.109

Note: SMF92, stochastic metafrontier with Battese and Coelli (1992) specification.

‧ 國

立 政 治 大 學

N a tio na

l C h engchi U ni ve rs it y

98

Table C4 Summary statistics of relevant efficiency scores over time (QP-TL)

Period CE TGR MCE

Mean S.D. Mean S.D. Mean S.D.

1996 0.874 0.080 0.572 0.152 0.498 0.135

1997 0.875 0.082 0.585 0.161 0.510 0.142

1998 0.878 0.077 0.592 0.167 0.519 0.148

1999 0.878 0.079 0.615 0.160 0.538 0.140

2000 0.883 0.080 0.610 0.164 0.536 0.145

2001 0.872 0.089 0.626 0.163 0.544 0.146

2002 0.874 0.092 0.641 0.157 0.560 0.147

2003 0.878 0.096 0.643 0.164 0.564 0.153

2004 0.877 0.195 0.656 0.187 0.576 0.152

2005 0.869 0.099 0.677 0.161 0.587 0.149

2006 0.871 0.099 0.662 0.168 0.576 0.156

2007 0.868 0.200 0.644 0.192 0.558 0.151

2008 0.854 0.106 0.638 0.164 0.542 0.149

2009 0.855 0.102 0.651 0.180 0.554 0.161

2010 0.849 0.105 0.656 0.172 0.555 0.152

96-98 0.875 0.080 0.583 0.160 0.509 0.142

99-01 0.877 0.082 0.617 0.163 0.539 0.144

02-04 0.876 0.092 0.647 0.161 0.567 0.151

05-07 0.869 0.097 0.662 0.166 0.574 0.152

08-10 0.853 0.104 0.648 0.172 0.550 0.154 Average 0.871 0.091 0.629 0.167 0.546 0.150

Note: QP, quadratic programming model.

‧ 國

立 政 治 大 學

N a tio na

l C h engchi U ni ve rs it y

App pendix D

Figur

Figure

e D1. Trend

e D2. Trend

ds in CE, TG

s in CE, TG

99

GR, and MC

GR, and MC

CE by size c

CE by ROA

class (SMF9

class (SMF

92-FF)

F92-FF)

‧ 國

立 政 治 大 學

N a tio na

l C h engchi U ni ve rs it y

Figure

Figu

e D3. Trend

ure D4. Tre

ds in CE, TG

ends in CE,

100

GR, and MC

TGR, and M

CE by ETA

MCE by siz

class (SMF

ze class (QP

F92-FF)

P-FF)

‧ 國

立 政 治 大 學

N a tio na

l C h engchi U ni ve rs it y

Figu

Figu

ure D5. Tren

ure D6. Tre

nds in CE, T

nds in CE, T

101

TGR, and M

TGR, and M

MCE by RO

MCE by ETA

OA class (QP

A class (QP P-FF)

P-FF)

‧ 國

立 政 治 大 學

N a tio na

l C h engchi U ni ve rs it y

Figure

Figure

e D7. Trend

e D8. Trend

ds in CE, TG

s in CE, TG

102

GR, and MC

GR, and MC

CE by size c

CE by ROA

class (SMF9

class (SMF

92-TL)

F92-TL)

‧ 國

立 政 治 大 學

N a tio na

l C h engchi U ni ve rs it y

Figure

Figu

e D9. Trend

ure D10. Tre

ds in CE, TG

ends in CE,

103

GR, and MC

TGR, and

CE by ETA

MCE by siz

class (SMF

ze class (QP

F92-TL)

P-TL)

‧ 國

立 政 治 大 學

N a tio na

l C h engchi U ni ve rs it y

Figur

Figu

re D11. Tre

re D12. Tre

nds in CE, T

ends in CE,

104

TGR, and M

TGR, and M

MCE by RO

MCE by ET

OA class (QP

TA class (QP P-TL)

P-TL)

Table D1 Summary statistics of relevant efficiency scores by asset sizes, return on

assets and the ratio of equity to total assets (SMF92)

Class Obs. CE TGR MCE

Panel A. Total Assets

SIZE1 below 100 758 0.90208 0.85441 0.76963

SIZE2 100-200 1,100 0.89761 0.86174 0.77316

SIZE3 200-400 1,368 0.89494 0.85552 0.76529

SIZE4 400-800 1,403 0.89718 0.84892 0.76135

SIZE5 800-2,000 1,700 0.89564 0.84050 0.75207

SIZE6 2,000-5,000 1,179 0.88448 0.82319 0.72671 SIZE7 5,000-15,000 793 0.87694 0.78166 0.68281 SIZE8 above 15,000 888 0.87490 0.77242 0.67181

Panel B. ROA (%)

ROA1 below 0 879 0.86279 0.84296 0.72624

ROA2 0-0.15 870 0.88802 0.81757 0.72431

ROA3 0.15-0.3 1,148 0.89121 0.79648 0.70883

ROA4 0.3-0.5 1,581 0.89828 0.80957 0.72619

ROA5 0.5-1 2,029 0.88942 0.83909 0.74507

ETA2 3-4 720 0.88546 0.77337 0.68289

ETA3 4-6 1,539 0.88866 0.81575 0.72358

ETA4 6-8 1,585 0.89083 0.82777 0.73603

ETA5 8-12 1,795 0.88451 0.84815 0.74976

ETA6 12-20 1,514 0.89170 0.88169 0.78530

ETA7 20-30 591 0.90662 0.88209 0.80007

ETA8 above 30 641 0.93018 0.86681 0.80562

Notes: SMF92, stochastic metafrontier with Battese and Coelli (1992) specification. The values of total assets are measured in millions of US dollars to save space.

Table D2 Summary statistics of relevant efficiency scores by asset sizes, return on

assets and the ratio of equity to total assets (QP)

Class Obs. CE TGR MCE

Panel A. Total Assets

SIZE1 below 100 758 0.90208 0.59463 0.53523

SIZE2 100-200 1,100 0.89761 0.67565 0.60661

SIZE3 200-400 1,368 0.89494 0.69265 0.62070

SIZE4 400-800 1,403 0.89718 0.70076 0.62935

SIZE5 800-2,000 1,700 0.89564 0.68779 0.61614

SIZE6 2,000-5,000 1,179 0.88448 0.66445 0.58630 SIZE7 5,000-15,000 793 0.87694 0.61247 0.53432 SIZE8 above 15,000 888 0.87490 0.58767 0.51188

Panel B. ROA (%)

ROA1 below 0 879 0.86279 0.64634 0.55684

ROA2 0-0.15 870 0.88802 0.62631 0.55480

ROA3 0.15-0.3 1,148 0.89121 0.62665 0.55806

ROA4 0.3-0.5 1,581 0.89828 0.64239 0.57647

ROA5 0.5-1 2,029 0.88942 0.68551 0.60908

ETA2 3-4 720 0.88546 0.61407 0.54386

ETA3 4-6 1,539 0.88866 0.66274 0.58823

ETA4 6-8 1,585 0.89083 0.67896 0.60367

ETA5 8-12 1,795 0.88451 0.69052 0.61134

ETA6 12-20 1,514 0.89170 0.70450 0.62816

ETA7 20-30 591 0.90662 0.68606 0.62312

ETA8 above 30 641 0.93018 0.62752 0.58414

Notes: QP, quadratic programming model. The values of total assets are measured in millions of US dollars to save space.

相關文件