• 沒有找到結果。

Protein phosphorylation catalyzed by kinase plays crucial regulatory role in intracellular signal transduction that transmits information from the cell surface to the nucleus, where they ultimately effect transcriptional changes. With the full annotation of human kinome identified by Manning et al., there is a starting point for comprehensive analysis of intracellular protein phosphorylation networks. Mass spectrometry-based proteomics have enabled the large-scale mapping of in vivo phosphorylation sites. In order to fully and accurately investigate the phosphorylation networks, the experimentally validated phosphorylation site databases have been integrated. However, only 20% experimental phosphorylation sites have the annotation of catalytic kinases, covering 350 kinases (67%). Experimental identification of kinase-specific phosphorylation sites is an inconvenient work and usually limited by the availability of detailed data on the kinase-specific substrates. In silico prediction could be a promising strategy to conduct preliminary analyses and could greatly reduce the number of potential targets that need further in vivo or in vitro confirmation.

The presented method, namely RegPhos, was designed to link experimentally validated phosphorylation sites to protein kinases. Due to the fact that signaling proteins are modular in the sense that they contain domains (catalytic or interaction) and linear motifs (phosphorylation or binding sites), which mediate interactions between proteins, the protein-protein interaction, protein functional association, and cellular localization are incorporated. Investigating into the predictive power of the context of protein associations, physical protein interactions play the dominant role among the primary experimental data, whereas gene coexpression contributes un-robust correlation between kinase and substrate genes. Physical protein interactions were imported and merged from numerous repositories, and the reliability of each individual interaction was assessed based on the promiscuity of the interaction partners. After the evaluation, the improved predictive power gained from using context of protein association underlines the importance of kinase-substrate interactions in the specificity of protein phosphorylation within cells. The predictive specificity of kinase groups with similar consensus motifs can be improved by the consideration of protein association.

We would also suggest that this underlines the utility of protein association data in modeling cellular processes.

To complete the intracellular processes about protein kinases and phosphorylation, the

identified kinase-substrate interactions were adopted to fully construct the intracellular phosphorylation networks starting from membrane receptor to transcription factors. The discovered phosphorylation networks were validated by calculating the Pearson correlation coefficient of gene expression patterns between kinase and substrate genes across 9 time-coursed experiment series of Affymetrix GeneChip Human Genome U133 Array Set HG-U133A platform (GPL96) collected from Gene Expression Omnibus repository. As illustrated in case study, the discovered phosphorylation networks with highly correlated expression pattern demonstrated that they may be involved in insulin signaling pathway or EGF signaling pathway.

References

1. Hubbard, M.J. and P. Cohen, On target with a new mechanism for the regulation of

protein phosphorylation. Trends Biochem Sci, 1993. 18(5): p. 172-7.

2. Diella, F., et al., Phospho.ELM: a database of experimentally verified phosphorylation

sites in eukaryotic proteins. BMC Bioinformatics, 2004. 5(1): p. 79.

3. Farriol-Mathis, N., et al., Annotation of post-translational modifications in the

Swiss-Prot knowledge base. Proteomics, 2004. 4(6): p. 1537-50.

4. Garavelli, J.S.,

The RESID Database of Protein Modifications as a resource and annotation tool. Proteomics, 2004. 4(6): p. 1527-33.

5. Mann, M. and O.N. Jensen, Proteomic analysis of post-translational modifications.

Nat Biotechnol, 2003. 21(3): p. 255-61.

6. Lehninger AL, N.D., Cox MM Lehninger Principles of Biochemistry. Fourth Edition ed. 2005: W. H. Freeman. 1100.

7. Helikar, T., et al.,

Emergent decision-making in biological signal transduction networks. Proc Natl Acad Sci U S A, 2008. 105(6): p. 1913-8.

8. Pawson, T.,

Specificity in signal transduction: from phosphotyrosine-SH2 domain interactions to complex cellular systems. Cell, 2004. 116(2): p. 191-203.

9. Aebersold, R. and M. Mann, Mass spectrometry-based proteomics. Nature, 2003.

422(6928): p. 198-207.

10. Fenn, J.B., et al., Electrospray ionization for mass spectrometry of large biomolecules.

Science, 1989. 246(4926): p. 64-71.

11. Delom, F. and E. Chevet, Phosphoprotein analysis: from proteins to proteomes.

Proteome Sci, 2006. 4: p. 15.

12. de la Fuente van Bentem, S. and H. Hirt, Using phosphoproteomics to reveal

signalling dynamics in plants. Trends Plant Sci, 2007. 12(9): p. 404-11.

13. Janes, K.A. and M.B. Yaffe, Data-driven modelling of signal-transduction networks.

Nat Rev Mol Cell Biol, 2006. 7(11): p. 820-8.

14. Diella, F., et al., Phospho.ELM: a database of experimentally verified phosphorylation

sites in eukaryotic proteins. BMC Bioinformatics, 2004. 5: p. 79.

15. Pang, C.N., A. Hayen, and M.R. Wilkins, Surface accessibility of protein

post-translational modifications. J Proteome Res, 2007. 6(5): p. 1833-45.

16. Moelbert, S., E. Emberly, and C. Tang, Correlation between sequence hydrophobicity

and surface-exposure pattern of database proteins. Protein Sci, 2004. 13(3): p.

752-62.

17. Naderi-Manesh, H., et al., Prediction of protein surface accessibility with information

theory. Proteins, 2001. 42(4): p. 452-9.

18. Ahmad, S., M.M. Gromiha, and A. Sarai, Real value prediction of solvent accessibility

from amino acid sequence. Proteins, 2003. 50(4): p. 629-35.

19. Lee, T.Y., et al., dbPTM: an information repository of protein post-translational

modification. Nucleic Acids Res, 2006. 34(Database issue): p. D622-7.

20. Linding, R., et al., Protein disorder prediction: implications for structural proteomics.

Structure, 2003. 11(11): p. 1453-9.

21. McGuffin, L.J., K. Bryson, and D.T. Jones, The PSIPRED protein structure prediction

server. Bioinformatics, 2000. 16(4): p. 404-5.

22. George, R.A. and J. Heringa, An analysis of protein domain linkers: their

classification and role in protein folding. Protein Eng, 2002. 15(11): p. 871-9.

23. Dunker, A.K., et al., Intrinsically disordered protein. J Mol Graph Model, 2001. 19(1):

p. 26-59.

24. Wright, P.E. and H.J. Dyson, Intrinsically unstructured proteins: re-assessing the

protein structure-function paradigm. J Mol Biol, 1999. 293(2): p. 321-31.

25. Iakoucheva, L.M., et al., Intrinsic disorder in cell-signaling and cancer-associated

proteins. J Mol Biol, 2002. 323(3): p. 573-84.

26. Dunker, A.K., et al., Intrinsic disorder and protein function. Biochemistry, 2002.

41(21): p. 6573-82.

27. Ferron, F., et al., A practical overview of protein disorder prediction methods. Proteins, 2006. 65(1): p. 1-14.

28. Garner, E., et al., Predicting Binding Regions within Disordered Proteins. Genome Inform Ser Workshop Genome Inform, 1999. 10: p. 41-50.

29. Fletcher, C.M. and G. Wagner, The interaction of eIF4E with 4E-BP1 is an induced fit

to a completely disordered protein. Protein Sci, 1998. 7(7): p. 1639-42.

30. Mader, S., et al., The translation initiation factor eIF-4E binds to a common motif

shared by the translation factor eIF-4 gamma and the translational repressors 4E-binding proteins. Mol Cell Biol, 1995. 15(9): p. 4990-7.

31. Romero, P., et al., Sequence complexity of disordered protein. Proteins, 2001. 42(1): p.

38-48.

32. Smyth, E., et al., Solution structure of native proteins with irregular folds from Raman

optical activity. Biopolymers, 2001. 58(2): p. 138-51.

33. Liu, J., H. Tan, and B. Rost, Loopy proteins appear conserved in evolution. J Mol Biol, 2002. 322(1): p. 53-64.

34. Liu, J. and B. Rost, NORSp: Predictions of long regions without regular secondary

structure. Nucleic Acids Res, 2003. 31(13): p. 3833-5.

35. Ward, J.J., et al., The DISOPRED server for the prediction of protein disorder.

Bioinformatics, 2004. 20(13): p. 2138-9.

36. Linding, R., et al., GlobPlot: Exploring protein sequences for globularity and disorder.

Nucleic Acids Res, 2003. 31(13): p. 3701-8.

37. Dosztanyi, Z., et al., IUPred: web server for the prediction of intrinsically

unstructured regions of proteins based on estimated energy content. Bioinformatics,

2005. 21(16): p. 3433-4.

38. Coeytaux, K. and A. Poupon, Prediction of unfolded segments in a protein sequence

based on amino acid composition. Bioinformatics, 2005. 21(9): p. 1891-900.

39. Yang, Z.R., et al., RONN: the bio-basis function neural network technique applied to

the detection of natively disordered regions in proteins. Bioinformatics, 2005. 21(16):

p. 3369-76.

40. Vullo, A., et al.,

Spritz: a server for the prediction of intrinsically disordered regions in protein sequences using kernel machines. Nucleic Acids Res, 2006. 34(Web Server

issue): p. W164-8.

41. Pierleoni, A., et al., BaCelLo: a balanced subcellular localization predictor.

Bioinformatics, 2006. 22(14): p. e408-16.

42. Boeckmann, B., et al., The SWISS-PROT protein knowledgebase and its supplement

TrEMBL in 2003. Nucleic Acids Res, 2003. 31(1): p. 365-70.

43. Hornbeck, P.V., et al., PhosphoSite: A bioinformatics resource dedicated to

physiological protein phosphorylation. Proteomics, 2004. 4(6): p. 1551-61.

44. Wurgler-Murphy, S.M., D.M. King, and P.J. Kennelly, The Phosphorylation Site

Database: A guide to the serine-, threonine-, and/or tyrosine-phosphorylated proteins in prokaryotic organisms. Proteomics, 2004. 4(6): p. 1562-70.

45. Gnad, F., et al., PHOSIDA (phosphorylation site database): management, structural

and evolutionary investigation, and prediction of phosphosites. Genome Biol, 2007.

8(11): p. R250.

46. Gupta, R., et al., O-GLYCBASE version 4.0: a revised database of O-glycosylated

proteins. Nucleic Acids Res, 1999. 27(1): p. 370-2.

47. Chernorudskiy, A.L., et al.,

UbiProt: a database of ubiquitylated proteins. BMC

Bioinformatics, 2007. 8: p. 126.

48. Boutet, E., et al., UniProtKB/Swiss-Prot: The Manually Annotated Section of the

UniProt KnowledgeBase. Methods Mol Biol, 2007. 406: p. 89-112.

49. Diella, F., et al., Phospho.ELM: a database of phosphorylation sites--update 2008.

Nucleic Acids Res, 2008. 36(Database issue): p. D240-4.

50. Apweiler, R., et al., UniProt: the Universal Protein knowledgebase. Nucleic Acids Res, 2004. 32(Database issue): p. D115-9.

51. Peri, S., et al., Development of human protein reference database as an initial platform

for approaching systems biology in humans. Genome Res, 2003. 13(10): p. 2363-71.

52. Heazlewood, J.L., et al., PhosPhAt: a database of phosphorylation sites in

Arabidopsis thaliana and a plant-specific phosphorylation site predictor. Nucleic

Acids Res, 2008. 36(Database issue): p. D1015-21.

53. Zanzoni, A., et al., Phospho3D: a database of three-dimensional structures of protein

phosphorylation sites. Nucleic Acids Res, 2007. 35(Database issue): p. D229-31.

54. Lo Conte, L., et al., SCOP: a structural classification of proteins database. Nucleic Acids Res, 2000. 28(1): p. 257-9.

55. Huang, H.D., et al., Incorporating hidden Markov models for identifying protein

kinase-specific phosphorylation sites. J Comput Chem, 2005. 26(10): p. 1032-41.

56. Huang, H.D., et al., KinasePhos: a web tool for identifying protein kinase-specific

phosphorylation sites. Nucleic Acids Res, 2005. 33(Web Server issue): p. W226-9.

57. Blom, N., S. Gammeltoft, and S. Brunak, Sequence and structure-based prediction of

eukaryotic protein phosphorylation sites. J Mol Biol, 1999. 294(5): p. 1351-62.

58. Iakoucheva, L.M., et al., The importance of intrinsic disorder for protein

phosphorylation. Nucleic Acids Res, 2004. 32(3): p. 1037-49.

59. Berry, E.A., A.R. Dalby, and Z.R. Yang, Reduced bio basis function neural network

for identification of protein phosphorylation sites: comparison with pattern

recognition algorithms. Comput Biol Chem, 2004. 28(1): p. 75-85.

60. Crooks, G.E., et al., WebLogo: a sequence logo generator. Genome Res, 2004. 14(6):

p. 1188-90.

61. Schneider, T.D. and R.M. Stephens, Sequence logos: a new way to display consensus

sequences. Nucleic Acids Res, 1990. 18(20): p. 6097-100.

62. Burge, C. and S. Karlin, Prediction of complete gene structures in human genomic

DNA. J Mol Biol, 1997. 268(1): p. 78-94.

63. Eddy, S.R.,

Profile hidden Markov models. Bioinformatics, 1998. 14(9): p. 755-63.

64. Yip, Y.L., et al., The Swiss-Prot variant page and the ModSNP database: a resource

for sequence and structure information on human protein variants. Hum Mutat, 2004.

23(5): p. 464-70.

65. Hubbard, T., et al., Ensembl 2005. Nucleic Acids Res, 2005. 33(Database issue): p.

D447-53.

66. Mulder, N.J., et al., InterPro: an integrated documentation resource for protein

families, domains and functional sites. Brief Bioinform, 2002. 3(3): p. 225-35.

67. Deshpande, N., et al., The RCSB Protein Data Bank: a redesigned query system and

relational database based on the mmCIF schema. Nucleic Acids Res, 2005.

33(Database issue): p. D233-7.

68. Kabsch, W. and C. Sander, Dictionary of protein secondary structure: pattern

recognition of hydrogen-bonded and geometrical features. Biopolymers, 1983. 22(12):

p. 2577-637.

69. Tatusov, R.L., et al., The COG database: an updated version includes eukaryotes.

BMC Bioinformatics, 2003. 4: p. 41.

70. Ahmad, S., M.M. Gromiha, and A. Sarai, RVP-net: online prediction of real valued

accessible surface area of proteins from single sequences. Bioinformatics, 2003.

19(14): p. 1849-51.

71. Altschul, S.F., et al., Gapped BLAST and PSI-BLAST: a new generation of protein

database search programs. Nucleic Acids Res, 1997. 25(17): p. 3389-402.

72. Thompson, J.D., D.G. Higgins, and T.J. Gibson, CLUSTAL W: improving the

sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res, 1994.

22(22): p. 4673-80.

73. Julenius, K., et al., Prediction, conservation analysis, and structural characterization

of mammalian mucin-type O-glycosylation sites. Glycobiology, 2005. 15(2): p.

153-64.

74. Gupta, R., et al., Scanning the available Dictyostelium discoideum proteome for

O-linked GlcNAc glycosylation sites using neural networks. Glycobiology, 1999. 9(10):

p. 1009-22.

75. Zhou, F.F., et al., GPS: a novel group-based phosphorylation predicting and scoring

method. Biochem Biophys Res Commun, 2004. 325(4): p. 1443-8.

76. Xue, Y., et al., PPSP: prediction of PK-specific phosphorylation site with Bayesian

decision theory. BMC Bioinformatics, 2006. 7: p. 163.

77. Blom, N., et al., Prediction of post-translational glycosylation and phosphorylation of

proteins from the amino acid sequence. Proteomics, 2004. 4(6): p. 1633-49.

78. Kim, J.H., et al., Prediction of phosphorylation sites using SVMs. Bioinformatics, 2004. 20(17): p. 3179-84.

79. Kiemer, L., J.D. Bendtsen, and N. Blom, NetAcet: prediction of N-terminal acetylation

sites. Bioinformatics, 2005. 21(7): p. 1269-70.

80. Chen, H., et al., MeMo: a web tool for prediction of protein methylation modifications.

Nucleic Acids Res, 2006. 34(Web Server issue): p. W249-53.

81. Li, A., et al., Prediction of Nepsilon-acetylation on internal lysines implemented in

Bayesian Discriminant Method. Biochem Biophys Res Commun, 2006. 350(4): p.

818-24.

82. Monigatti, F., et al., The Sulfinator: predicting tyrosine sulfation sites in protein

sequences. Bioinformatics, 2002. 18(5): p. 769-70.

83. Xue, Y., et al., NBA-Palm: prediction of palmitoylation site implemented in Naive

Bayes algorithm. BMC Bioinformatics, 2006. 7: p. 458.

84. Zhou, F., et al., CSS-Palm: palmitoylation site prediction with a clustering and scoring

strategy (CSS). Bioinformatics, 2006. 22(7): p. 894-6.

85. Maurer-Stroh, S., B. Eisenhaber, and F. Eisenhaber, N-terminal N-myristoylation of

proteins: prediction of substrate proteins from amino acid sequence. J Mol Biol, 2002.

317(4): p. 541-57.

86. Podell, S. and M. Gribskov, Predicting N-terminal myristoylation sites in plant

proteins. BMC Genomics, 2004. 5(1): p. 37.

87. Bologna, G., et al., N-Terminal myristoylation predictions by ensembles of neural

networks. Proteomics, 2004. 4(6): p. 1626-32.

88. Xue, Y., et al., SUMOsp: a web server for sumoylation site prediction. Nucleic Acids Res, 2006. 34(Web Server issue): p. W254-7.

89. Fankhauser, N. and P. Maser, Identification of GPI anchor attachment signals by a

Kohonen self-organizing map. Bioinformatics, 2005. 21(9): p. 1846-52.

90. Eisenhaber, B., P. Bork, and F. Eisenhaber, Prediction of potential GPI-modification

sites in proprotein sequences. J Mol Biol, 1999. 292(3): p. 741-58.

91. Wong, Y.H., et al., KinasePhos 2.0: a web server for identifying protein kinase-specific

phosphorylation sites based on sequences and coupling patterns. Nucleic Acids Res,

2007. 35(Web Server issue): p. W588-94.

92. Seet, B.T., et al., Reading protein modifications with interaction domains. Nat Rev Mol Cell Biol, 2006. 7(7): p. 473-83.

93. Ng, S.K., et al., InterDom: a database of putative interacting protein domains for

validating predicted protein interactions and complexes. Nucleic Acids Res, 2003.

31(1): p. 251-4.

94. Stock, A.M., V.L. Robinson, and P.N. Goudreau, Two-component signal transduction.

Annu Rev Biochem, 2000. 69: p. 183-215.

95. Manning, G., et al., The protein kinase complement of the human genome. Science, 2002. 298(5600): p. 1912-34.

96. Arthur, J.W., A. Sanchez-Perez, and D.I. Cook, Scoring of predicted GRK2

phosphorylation sites in Nedd4-2. Bioinformatics, 2006. 22(18): p. 2192-5.

97. Duda RO, H.P., Stork DG, Pattern classification. 2nd edition. Vol. 680. 2004, Beijing:

China Maching Press.

98. Haykin, S.,

Neural Networks: A comprehensive foundation, 2nd Ed. 1999:

Prentice-Hall.

99. Hoekstra, A., Kraaijveld, M.A., Ridder, D. de and Schmidt, W.F. , The Complete

SPRLIB & ANNLIB. April 1996: Pattern Recognition Group, Delft University of

Technolog.

100. Cortes, C.a.V.V.,

Support-vector networks. Machine Learning, 1995. 20: p. 273-297.

101. Yu, C.S., et al., Prediction of protein subcellular localization. Proteins, 2006. 64(3): p.

643-51.

102. Nguyen, M.N. and J.C. Rajapakse, Two-stage multi-class support vector machines to

protein secondary structure prediction. Pac Symp Biocomput, 2005: p. 346-57.

103. Williams, R.D., et al., Prognostic classification of relapsing favorable histology Wilms

tumor using cDNA microarray expression profiling and support vector machines.

Genes Chromosomes Cancer, 2004. 41(1): p. 65-79.

104. Lin, C.-C.C.a.C.-J.,

LIBSVM : a library for support vector machines. Software

available at http://www.csie.ntu.edu.tw/~cjlin/libsvm, 2001.

105. Obenauer, J.C., L.C. Cantley, and M.B. Yaffe, Scansite 2.0: Proteome-wide prediction

of cell signaling interactions using short sequence motifs. Nucleic Acids Res, 2003.

31(13): p. 3635-41.

106. Xue, Y., et al., GPS: a comprehensive www server for phosphorylation sites prediction.

Nucleic Acids Res, 2005. 33(Web Server issue): p. W184-7.

107. Wan, J., et al., Meta-prediction of phosphorylation sites with weighted voting and

restricted grid search parameter selection. Nucleic Acids Res, 2008. 36(4): p. e22.

108. Liang, H.K., et al., Amino acid coupling patterns in thermophilic proteins. Proteins, 2005. 59(1): p. 58-63.

109. Bryson, K., et al., Protein structure prediction servers at University College London.

Nucleic Acids Res, 2005. 33(Web Server issue): p. W36-8.

110. Chang, C.-C. and C.-J. Lin, LIBSVM : a library for support vector machines. Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm, 2001.

111. Johnson, S.A. and T. Hunter, Kinomics: methods for deciphering the kinome. Nat Methods, 2005. 2(1): p. 17-25.

112. Linding, R., et al., Systematic discovery of in vivo phosphorylation networks. Cell, 2007. 129(7): p. 1415-26.

113. Hjerrild, M., et al., Identification of phosphorylation sites in protein kinase A

substrates using artificial neural networks and mass spectrometry. J Proteome Res,

2004. 3(3): p. 426-33.

114. von Mering, C., et al., STRING 7--recent developments in the integration and

prediction of protein interactions. Nucleic Acids Res, 2007. 35(Database issue): p.

D358-62.

115. Chia-Ting Yang, C.-H.C., Ya-Ling Yu, Tsu-Chun Emma Lin, Sheng-An Lee, Chueh-Chuan Yen, Jinn-Moon Yang, Jin-Mei Lai, Yi-Ren Hong, Tzu-Ling Tseng, Kun-Mao Chao and Chi-Ying F. Huang, PhosphoPOINT: a comprehensive human

kinase interactome and phospho-protein database. Bioinformatics, 2008.

116. Neves, S.R. and R. Iyengar, Modeling of signaling networks. Bioessays, 2002. 24(12):

p. 1110-7.

117. Choi, C., et al., Consistent re-modeling of signaling pathways and its implementation

in the TRANSPATH database. Genome Inform, 2004. 15(2): p. 244-54.

118. Sachs, K., et al., Causal protein-signaling networks derived from multiparameter

single-cell data. Science, 2005. 308(5721): p. 523-9.

119. Steffen, M., et al., Automated modelling of signal transduction networks. BMC Bioinformatics, 2002. 3: p. 34.

120. Roberts, C.J., et al., Signaling and circuitry of multiple MAPK pathways revealed by a

matrix of global gene expression profiles. Science, 2000. 287(5454): p. 873-80.

121. Xenarios, I., et al., DIP, the Database of Interacting Proteins: a research tool for

studying cellular networks of protein interactions. Nucleic Acids Res, 2002. 30(1): p.

303-5.

122. Salwinski, L., et al., The Database of Interacting Proteins: 2004 update. Nucleic Acids Res, 2004. 32(Database issue): p. D449-51.

123. Chatr-Aryamontri, A., et al., MINT: the Molecular INTeraction database. Nucleic Acids Res, 2006.

124. Kerrien, S., et al., IntAct--open source resource for molecular interaction data.

Nucleic Acids Res, 2007. 35(Database issue): p. D561-5.

125. Camon, E., et al., The Gene Ontology Annotation (GOA) Database--an integrated

resource of GO annotations to the UniProt Knowledgebase. In Silico Biol, 2004. 4(1):

p. 5-6.

126. Ashburner, M., et al., Gene ontology: tool for the unification of biology. The Gene

Ontology Consortium. Nat Genet, 2000. 25(1): p. 25-9.

127. Sprenger, J., et al., LOCATE: a mammalian protein subcellular localization database.

Nucleic Acids Res, 2008. 36(Database issue): p. D230-3.

128. Guo, T., et al., DBSubLoc: database of protein subcellular localization. Nucleic Acids Res, 2004. 32(Database issue): p. D122-4.

129. Wiwatwattana, N., et al., Organelle DB: an updated resource of eukaryotic protein

localization and function. Nucleic Acids Res, 2007. 35(Database issue): p. D810-4.

130. Rey, S., et al., PSORTdb: a protein subcellular localization database for bacteria.

Nucleic Acids Res, 2005. 33(Database issue): p. D164-8.

131. Davis, M.J., et al., MemO: a consensus approach to the annotation of a protein's

membrane organization. In Silico Biol, 2006. 6(5): p. 387-99.

132. Bono, H., et al., FANTOM DB: database of Functional Annotation of RIKEN Mouse

cDNA Clones. Nucleic Acids Res, 2002. 30(1): p. 116-8.

133. Barrett, T., et al., NCBI GEO: mining tens of millions of expression profiles--database

and tools update. Nucleic Acids Res, 2007. 35(Database issue): p. D760-5.

134. Dhillon, I.S.a.M., D. S., Concept decompositions for large sparse text data using

clustering. Machine Learning, 2001. 42: p. 143-175.

135. Bebek, G. and J. Yang, PathFinder: mining signal transduction pathway segments

from protein-protein interaction networks. BMC Bioinformatics, 2007. 8: p. 335.

136. Sharan, R., et al., Conserved patterns of protein interaction in multiple species. Proc Natl Acad Sci U S A, 2005. 102(6): p. 1974-9.

137. Wingender, E., H. Karas, and R. Knuppel, TRANSFAC database as a bridge between

sequence data libraries and biological function. Pac Symp Biocomput, 1997: p.

477-85.

138. Hochreiter, S., D.A. Clevert, and K. Obermayer, A new summarization method for

Affymetrix probe level data. Bioinformatics, 2006. 22(8): p. 943-9.

139. Craparo, A., T.J. O'Neill, and T.A. Gustafson, Non-SH2 domains within insulin

receptor substrate-1 and SHC mediate their phosphotyrosine-dependent interaction with the NPEY motif of the insulin-like growth factor I receptor. J Biol Chem, 1995.

270(26): p. 15639-43.

140. Sachdev, D. and D. Yee, Disrupting insulin-like growth factor signaling as a potential

cancer therapy. Mol Cancer Ther, 2007. 6(1): p. 1-12.

141. Lehman, J.A. and J. Gomez-Cambronero, Molecular crosstalk between p70S6k and

MAPK cell signaling pathways. Biochem Biophys Res Commun, 2002. 293(1): p.

463-9.

142. Forrest, A.R., et al., Phosphoregulators: protein kinases and protein phosphatases of

mouse. Genome Res, 2003. 13(6B): p. 1443-54.

143. von Mering, C., et al., Comparative assessment of large-scale data sets of

protein-protein interactions. Nature, 2002. 417(6887): p. 399-403.

144. Deane, C.M., et al., Protein interactions: two methods for assessment of the reliability

of high throughput observations. Mol Cell Proteomics, 2002. 1(5): p. 349-56.

145. Sprinzak, E., S. Sattath, and H. Margalit, How reliable are experimental

protein-protein interaction data? J Mol Biol, 2003. 327(5): p. 919-23.

146. Scott, J., et al., Efficient algorithms for detecting signaling pathways in protein

interaction networks. J Comput Biol, 2006. 13(2): p. 133-44.

147. Dan, I., N.M. Watanabe, and A. Kusumi, The Ste20 group kinases as regulators of

MAP kinase cascades. Trends Cell Biol, 2001. 11(5): p. 220-30.

148. Theodosiou, A. and A. Ashworth, MAP kinase phosphatases. Genome Biol, 2002. 3(7):

p. REVIEWS3009.