• 沒有找到結果。

The nitrogenous and carbonaceous compounds present in the aeration tank were removed by the SNAD process. The overall removal efficiencies of nitrogenous and carbonaceous compounds in the SNAD process was calculated using stoichiometric equations are 75.7% and 28%, respectively. The microorganism from the landfill-leachate treatment aeration tank was confirmed to be Anammox bacteria using the FISH and PCR analyses.

The SNAD process also was successfully developed in a SBR. The influence of OLR and NLR on the performance of the SBR was investigated. The experimental outcomes indicate that the performance of the SBR is affected more by the NLR compared to the OLR. The influent BOD has a good correlation with the TN removal in the system. Partial nitrification and anammox were responsible for majority of total nitrogen removal in the SBR. The landfill-leachate contains less bioavailable COD; therefore, the effluent from the SNAD process still needs some treatment with regard to organics. The maximum ammonium removal in the SBR was close to 94%, however, it can be improved by increasing the oxygen-transfer efficiency from gas to liquid phase. As a whole, the experimental findings indicate that the SNAD process is more suitable for the landfill-leachate treatment with high nitrogen and low COD content.

Recommendations for future work

Based on the findings of this study, some suggestions are summarized as follows:

1. The reactor used for SNAD process could be improved by sealing the reactor exposing to the atmosphere. A completely covered SBR is a better reactor design for estimating the gas production (nitrogen gas, nitrous oxide) and oxygen aerating rate.

2. The model based on simple assumptions could be improved through consideration of more detailed aspects.

57

3. Continuous flow of a reactor design could be implemented to ehance the performance in the future study.

4. According to the slowly growth of Anammox bacteria, attached growth could provide Anammox bacteria retaining in the reactor and reduced the DO exposure chance.

5. The ratio and quantity of AOB, NOB, Anammox bacteria and heterotrophic denitrifier could be identified using biological molecular technologies. The results of this examination could explain the performance of the SNAD process.

6. An appropriate HRT and SRT might be estimated in the future study.

58

Reference

[1] Olsen, G.J. (1999) Microbiology: What's eating the free lunch? Nature, Vol. 400, No.

6743, pp. 403-405.

[2] Mulder, A., Vandegraaf, A.A., Robertson, L.A. and Kuenen, J.G. (1995) ANAEROBIC AMMONIUM OXIDATION DISCOVERED IN A DENITRIFYING FLUIDIZED-BED REACTOR. Fems Microbiology Ecology, Vol. 16, No. 3, pp. 177-183.

[3] Schmidt, I., Sliekers, O., Schmid, M., Bock, E., Fuerst, J., Kuenen, J.G., Jetten, M.S.M.

and Strous, M. (2003) New concepts of microbial treatment processes for the nitrogen removal in wastewater. Fems Microbiology Reviews, Vol. 27, No. 4, pp. 481-492.

[4] Strous, M. and Jetten, M.S.M. (2004) Anaerobic oxidation of methane and ammonium.

Annual Review of Microbiology, Vol. 58, No. pp. 99-117.

[5] Qiao, S., Yamamoto, T., Misaka, M., Isaka, K., Sumino, T., Bhatti, Z. and Furukawa, K.

(2010) High-rate nitrogen removal from livestock manure digester liquor by combined partial nitritation-anammox process. Biodegradation, Vol. 21, No. 1, pp. 11-20.

[6] Tchobanoglous, G., Burton, F.L. and Stensel, H.D., (2003) Wastewater engineering:

treatment and reuse. 4th ed. New York: McGraw-Hill.

[7] Zeng, R.J., Yuan, Z. and Keller, J. (2003) Enrichment of denitrifying

glycogen-accumulating organisms in anaerobic/anoxic activated sludge system.

Biotechnology and Bioengineering, Vol. 81, No. 4, pp. 397-404.

[8] Cervantes, F.J., (2009) Environmental technologies to treat nitrogen pollution. UK: IWA Publishing.

[9] Broda, E. (1977) Two kinds of lithotrophs missing in nature. Zeitschrift für allgemeine Mikrobiologie, Vol. 17, No. 6, pp. 491-493.

59

[10] van de Graaf, A.A., Mulder, A., Debruijn, P., Jetten, M.S.M., Robertson, L.A. and Kuenen, J.G. (1995) ANAEROBIC OXIDATION OF AMMONIUM IS A BIOLOGICALLY MEDIATED PROCESS. Applied and Environmental Microbiology, Vol. 61, No. 4, pp.

1246-1251.

[11] Strous, M., Heijnen, J.J., Kuenen, J.G. and Jetten, M.S.M. (1998) The sequencing batch reactor as a powerful tool for the study of slowly growing anaerobic ammonium-oxidizing microorganisms. Applied Microbiology and Biotechnology, Vol. 50, No. 5, pp. 589-596.

[12] van de Graaf, A.A., deBruijn, P., Robertson, L.A., Jetten, M.S.M. and Kuenen, J.G. (1996) Autotrophic growth of anaerobic ammonium-oxidizing micro-organisms in a fluidized bed reactor. Microbiology-Uk, Vol. 142, No. pp. 2187-2196.

[13] Jetten, M.S.M., Strous, M., Pas-Schoonen, K.T., Schalk, J., Dongen, U.G.J.M., Graaf, A.A., Logemann, S., Muyzer, G., Loosdrecht, M.C.M. and Kuenen, J.G. (1999) The anaerobic oxidation of ammonium. Fems Microbiology Reviews, Vol. 22, No. 5, pp.

421-437.

[14] Trigo, C., Campos, J.L., Garrido, J.M. and Mendez, R. (2006) Start-up of the Anammox process in a membrane bioreactor. Journal of Biotechnology, Vol. 126, No. 4, pp.

475-487.

[15] Vlaeminck, S.E., Cloetens, L.F.F., Carballa, M., Boon, N. and Verstraete, W. (2008) Granular biomass capable of partial nitritation and anammox. Water Science and Technology, Vol. 58, No. 5, pp. 1113-1120.

[16] Strous, M., Fuerst, J.A., Kramer, E.H.M., Logemann, S., Muyzer, G., van de Pas-Schoonen, K.T., Webb, R., Kuenen, J.G. and Jetten, M.S.M. (1999) Missing lithotroph identified as new planctomycete. Nature, Vol. 400, No. 6743, pp. 446-449.

60

[17] Kuypers, M.M.M., Sliekers, A.O., Lavik, G., Schmid, M., Jorgensen, B.B., Kuenen, J.G., Sinninghe Damste, J.S., Strous, M. and Jetten, M.S.M. (2003) Anaerobic ammonium oxidation by anammox bacteria in the Black Sea. Nature, Vol. 422, No. 6932, pp.

608-611.

[18] Kuenen, J.G. (2008) Anammox bacteria: from discovery to application. Nature Reviews Microbiology, Vol. 6, No. 4, pp. 320-326.

[19] Schmid, M., Twachtmann, U., Klein, M., Strous, M., Juretschko, S., Jetten, M., Metzger, J.W., Schleifer, K.H. and Wagner, M. (2000) Molecular evidence for genus level diversity of bacteria capable of catalyzing anaerobic ammonium oxidation. Systematic and Applied Microbiology, Vol. 23, No. 1, pp. 93-106.

[20] Schmid, M., Walsh, K., Webb, R., Rijpstra, W.I., van de Pas-Schoonen, K., Verbruggen, M.J., Hill, T., Moffett, B., Fuerst, J., Schouten, S., Sinninghe Damsté, J.S., Harris, J., Shaw, P., Jetten, M. and Strous, M. (2003) Candidatus "Scalindua brodae", sp. nov., Candidatus "Scalindua wagneri", sp. nov., Two New Species of Anaerobic Ammonium Oxidizing Bacteria. Systematic and Applied Microbiology, Vol. 26, No. 4, pp. 529-538.

[21] Kartal, B., Rattray, J., van Niftrik, L.A., van de Vossenberg, J., Schmid, M.C., Webb, R.I., Schouten, S., Fuerst, J.A., Damste, J.S.S., Jetten, M.S.M. and Strous, M. (2007)

Candidatus "Anammoxoglobus propionicus" a new propionate oxidizing species of anaerobic ammonium oxidizing bacteria. Systematic and Applied Microbiology, Vol. 30, No. 1, pp. 39-49.

[22] Kartal, B., Van Niftrik, L., Rattray, J., Van De Vossenberg, J.L.C.M., Schmid, M.C., Sinninghe Damsté, J., Jetten, M.S.M. and Strous, M. (2008) Candidatus ‘Brocadia fulgida’: an autofluorescent anaerobic ammonium oxidizing bacterium. Fems

61

Microbiology Ecology, Vol. 63, No. 1, pp. 46-55.

[23] Quan, Z.X., Rhee, S.K., Zuo, J.E., Yang, Y., Bae, J.W., Park, J.R., Lee, S.T. and Park, Y.H.

(2008) Diversity of ammonium-oxidizing bacteria in a granular sludge anaerobic

ammonium-oxidizing (anammox) reactor. Environmental Microbiology, Vol. 10, No. 11, pp. 3130-3139.

[24] Dosta, J., Fernandez, I., Vazquez-Padin, J.R., Mosquera-Corral, A., Campos, J.L., Mata-Alvarez, J. and Mendez, R. (2008) Short- and long-term effects of temperature on the Anammox process. Journal of Hazardous Materials, Vol. 154, No. 1-3, pp. 688-693.

[25] Cema, G., Wiszniowski, J., Zabczynski, S., Zablocka-Godlewska, E., Raszka, A. and Surmacz-Gorska, J. (2007) Biological nitrogen removal from landfill leachate by deammonification assisted by heterotrophic denitrification in a rotating biological contactor (RBC). Water Science and Technology, Vol. 55, No. 8-9, pp. 35-42.

[26] Isaka, K., Date, Y., Sumino, T., Yoshie, S. and Tsuneda, S. (2006) Growth characteristic of anaerobic ammonium-oxidizing bacteria in an anaerobic biological filtrated reactor.

Applied Microbiology and Biotechnology, Vol. 70, No. 1, pp. 47-52.

[27] Jetten, M.S.M., Wagner, M., Fuerst, J., van Loosdrecht, M., Kuenen, G. and Strous, M.

(2001) Microbiology and application of the anaerobic ammonium oxidation ('anammox') process. Current Opinion in Biotechnology, Vol. 12, No. 3, pp. 283-288.

[28] Jetten, M.S.M., Horn, S.J. and vanLoosdrecht, M.C.M. (1997) Towards a more

sustainable municipal wastewater treatment system. Water Science and Technology, Vol.

35, No. 9, pp. 171-180.

[29] Hellinga, C., Schellen, A., Mulder, J.W., van Loosdrecht, M.C.M. and Heijnen, J.J. (1998) The SHARON process: An innovative method for nitrogen removal from ammonium-rich

62

waste water. Water Science and Technology, Vol. 37, No. 9, pp. 135-142.

[30] van Dongen, U., Jetten, M.S.M. and van Loosdrecht, M.C.M. (2001) The

SHARON((R))-Anammox((R)) process for treatment of ammonium rich wastewater.

Water Science and Technology, Vol. 44, No. 1, pp. 153-160.

[31] Gali, A., Dosta, J., van Loosdrecht, M.C.M. and Mata-Alvarez, J. (2007) Two ways to achieve an anammox influent from real reject water treatment at lab-scale: Partial SBR nitrification and SHARON process. Process Biochemistry, Vol. 42, No. 4, pp. 715-720.

[32] Blackburne, R., Yuan, Z. and Keller, J. (2008) Partial nitrification to nitrite using low dissolved oxygen concentration as the main selection factor. Biodegradation, Vol. 19, No.

2, pp. 303-312.

[33] Kuai, L.P. and Verstraete, W. (1998) Ammonium removal by the oxygen-limited

autotrophic nitrification-denitrification system. Applied and Environmental Microbiology, Vol. 64, No. 11, pp. 4500-4506.

[34] Strous, M., vanGerven, E., Kuenen, J.G. and Jetten, M. (1997) Effects of aerobic and microaerobic conditions on anaerobic ammonium-oxidizing (Anammox) sludge. Applied and Environmental Microbiology, Vol. 63, No. 6, pp. 2446-2448.

[35] Third, K.A., Sliekers, A.O., Kuenen, J.G. and Jetten, M.S.M. (2001) The CANON system (completely autotrophic nitrogen-removal over nitrite) under ammonium limitation:

Interaction and competition between three groups of bacteria. Systematic and Applied Microbiology, Vol. 24, No. 4, pp. 588-596.

[36] Third, K.A., Paxman, J., Schmid, M., Strous, M., Jetten, M.S.M. and Cord-Ruwisch, R.

(2005) Enrichment of anammox from activated sludge and its application in the CANON process. Microbial Ecology, Vol. 49, No. 2, pp. 236-244.

63

[37] Sliekers, A.O., Derwort, N., Gomez, J.L.C., Strous, M., Kuenen, J.G. and Jetten, M.S.M.

(2002) Completely autotrophic nitrogen removal over nitrite in one single reactor. Water Research, Vol. 36, No. 10, pp. 2475-2482.

[38] Chen, H.H., Liu, S.T., Yang, F.L., Xue, Y. and Wang, T. (2009) The development of simultaneous partial nitrification, ANAMMOX and denitrification (SNAD) process in a single reactor for nitrogen removal. Bioresource Technology, Vol. 100, No. 4, pp.

1548-1554.

[39] Wang, C.C., Lee, P.H., Kumar, M., Huang, Y.T., Sung, S.W. and Lin, J.G. (2010) Simultaneous partial nitrification, anaerobic ammonium oxidation and denitrification (SNAD) in a full-scale landfill-leachate treatment plant. Journal of Hazardous Materials, Vol. 175, No. 1-3, pp. 622-628.

[40] Rittmann, B.E. and Mccarty, P.L., (2001) Environmental biotechnology: principles and applications. International Edition ed. Singapore: McGraw-Hill Book Co.

[41] Fux, C., Boehler, M., Huber, P., Brunner, I. and Siegrist, H. (2002) Biological treatment of ammonium-rich wastewater by partial nitritation and subsequent anaerobic ammonium oxidation (anammox) in a pilot plant. Journal of Biotechnology, Vol. 99, No. 3, pp.

295-306.

[42] van der Star, W.R.L., Abma, W.R., Blommers, D., Mulder, J.W., Tokutomi, T., Strous, M., Picioreanu, C. and Van Loosdrecht, M.C.M. (2007) Startup of reactors for anoxic

ammonium oxidation: Experiences from the first full-scale anammox reactor in Rotterdam. Water Research, Vol. 41, No. 18, pp. 4149-4163.

[43] Innerebner, G., Insam, H., Franke-Whittle, I.H. and Wett, B. (2007) Identification of anammox bacteria in a full-scale deammonification plant making use of anaerobic

64

ammonia oxidation. Systematic and Applied Microbiology, Vol. 30, No. 5, pp. 408-412.

[44] Strous, M., VanGerven, E., Zheng, P., Kuenen, J.G. and Jetten, M.S.M. (1997) Ammonium removal from concentrated waste streams with the anaerobic ammonium oxidation (anammox) process in different reactor configurations. Water Research, Vol. 31, No. 8, pp. 1955-1962.

[45] Schalk, J., Oustad, H., Kuenen, J.G. and Jetten, M.S.M. (1998) The anaerobic oxidation of hydrazine: a novel reaction in microbial nitrogen metabolism. Fems Microbiology Letters, Vol. 158, No. 1, pp. 61-67.

[46] Schmidt, I., Hermelink, C., de Pas-Schoonen, K., Strous, M., den Camp, H.J.O., Kuenen, J.G. and Jetten, M.S.M. (2002) Anaerobic ammonia oxidation in the presence of nitrogen oxides (NOx) by two different lithotrophs. Applied and Environmental Microbiology, Vol.

68, No. 11, pp. 5351-5357.

[47] Fujii, T., Sugino, H., Rouse, J.D. and Furukawa, K. (2002) Characterization of the microbial community in an anaerobic ammonium-oxidizing biofilm cultured on a

nonwoven biomass carrier. Journal of Bioscience and Bioengineering, Vol. 94, No. 5, pp.

412-418.

[48] Dong, X. and Tollner, E.W. (2003) Evaluation of Anammox and denitrification during anaerobic digestion of poultry manure. Bioresource Technology, Vol. 86, No. 2, pp.

139-145.

[49] Furukawa, K., Rouse, J.D., Yoshida, N. and Hatanaka, H. (2003) Mass cultivation of anaerobic ammonium-oxidizing sludge using a novel nonwoven biomass carrier. Journal of Chemical Engineering of Japan, Vol. 36, No. 10, pp. 1163-1169.

[50] Sliekers, A.O., Third, K.A., Abma, W., Kuenen, J.G. and Jetten, M.S.M. (2003) CANON

65

and Anammox in a gas-lift reactor. Fems Microbiology Letters, Vol. 218, No. 2, pp.

339-344.

[51] Dapena-Mora, A., Campos, J.L., Mosquera-Corral, A., Jetten, M.S.M. and Mendez, R.

(2004) Stability of the ANAMMOX process in a gas-lift reactor and a SBR. Journal of Biotechnology, Vol. 110, No. 2, pp. 159-170.

[52] Dapena-Mora, A., Arrojo, B., Campos, J.L., Mosquera-Corral, A. and Mendez, R. (2004) Improvement of the settling properties of Anammox sludge in an SBR. Journal of Chemical Technology and Biotechnology, Vol. 79, No. 12, pp. 1417-1420.

[53] Wyffels, S., Boeckx, P., Pynaert, K., Zhang, D., Van Cleemput, O., Chen, G. and Verstraete, W. (2004) Nitrogen removal from sludge reject water by a two-stage oxygen-limited autotrophic nitrification denitrification process. Water Science and Technology, Vol. 49, No. 5-6, pp. 57-64.

[54] Li, X., Zen, G., Rosenwinkel, K.H., Kunst, S., Weichgrebe, D., Cornelius, A. and Yang, Q.

(2004) Start up of deammonification process in one single SBR system. Water Science and Technology, Vol. 50, No. 6, pp. 1-8.

[55] Pynaert, K., Smets, B.F., Beheydt, D. and Verstraete, W. (2004) Start-up of autotrophic nitrogen removal reactors via sequential biocatalyst addition. Environmental Science &

Technology, Vol. 38, No. 4, pp. 1228-1235.

[56] Kartal, B., Koleva, M., Arsov, R., van der Star, W., Jetten, M.S.M. and Strous, M. (2006) Adaptation of a freshwater anammox population to high salinity wastewater. Journal of Biotechnology, Vol. 126, No. 4, pp. 546-553.

[57] Sumino, T., Isaka, K., Ikuta, H., Saiki, Y. and Yokota, T. (2006) Nitrogen removal from wastewater using simultaneous nitrate reduction and anaerobic ammonium oxidation in

66

single reactor. Journal of Bioscience and Bioengineering, Vol. 102, No. 4, pp. 346-351.

[58] Kalyuzhnyi, S., Gladchenko, M., Mulder, A. and Versprille, B. (2006) DEAMOX - New biological nitrogen removal process based on anaerobic ammonia oxidation coupled to sulphide-driven conversion of nitrate into nitrite. Water Research, Vol. 40, No. 19, pp.

3637-3645.

[59] Arrojo, B., Mosquera-Corral, A., Campos, J.L. and Mendez, R. (2006) Effects of

mechanical stress on Anammox granules in a sequencing batch reactor (SBR). Journal of Biotechnology, Vol. 123, No. 4, pp. 453-463.

[60] Waki, M., Tokutomi, T., Yokoyama, H. and Tanaka, Y. (2007) Nitrogen removal from animal waste treatment water by anammox enrichment. Bioresource Technology, Vol. 98, No. 14, pp. 2775-2780.

[61] Chamchoi, N. and Nitisoravut, S. (2007) Anammox enrichment from different conventional sludges. Chemosphere, Vol. 66, No. 11, pp. 2225-2232.

[62] Tsushima, I., Ogasawara, Y., Kindaichi, T., Satoh, H. and Okabe, S. (2007) Development of high-rate anaerobic ammonium-oxidizing (anammox) biofilm reactors. Water Research, Vol. 41, No. 8, pp. 1623-1634.

[63] Chamchoi, N., Nitisoravut, S. and Schmidt, J.E. (2008) Inactivation of ANAMMOX communities under concurrent operation of anaerobic ammonium oxidation

(ANAMMOX) and denitrification. Bioresource Technology, Vol. 99, No. 9, pp.

3331-3336.

[64] Lan, C.J., Kumar, M., Wang, C.C. and Lin, J.G. (2010) Development of simultaneous partial nitrification, anammox and denitrification (SNAD) process in a sequential batch reactor. Bioresource Technology, Vol. No. pp.

67

[65] Ni, S.Q., Gao, B.Y., Wang, C.C., Lin, J.G. and Sung, S.W. (2010) Fast start-up, performance and microbial community in a pilot-scale anammox reactor seeded with exotic mature granules. Bioresource Technology, Vol. No. pp.

[66] Schmid, M., Walsh, K., Webb, R., Rijpstra, W.I.C., van de Pas-Schoonen, K., Verbruggen, M.J., Hill, T., Moffett, B., Fuerst, J., Schouten, S., Damste, J.S.S., Harris, J., Shaw, P., Jetten, M. and Strous, M. (2003) Candidatus "Scalindua brodae", sp nov., Candidatus

"Scalindua wagneri", sp nov., two new species of anaerobic ammonium oxidizing bacteria.

Systematic and Applied Microbiology, Vol. 26, No. 4, pp. 529-538.

[67] Amann, R.I., Ludwig, W. and Schleifer, K.H. (1995) PHYLOGENETIC IDENTIFICATION AND IN-SITU DETECTION OF INDIVIDUAL

MICROBIAL-CELLS WITHOUT CULTIVATION. Microbiological Reviews, Vol. 59, No.

1, pp. 143-169.

[68] Schmid, M.C., Maas, B., Dapena, A., de Pas-Schoonen, K.V., de Vossenberg, J.V., Kartal, B., van Niftrik, L., Schmidt, I., Cirpus, I., Kuenen, J.G., Wagner, M., Damste, J.S.S., Kuypers, M., Revsbech, N.P., Mendez, R., Jetten, M.S.M. and Strous, M. (2005)

Biomarkers for in situ detection of anaerobic ammonium-oxidizing (anammox) bacteria.

Applied and Environmental Microbiology, Vol. 71, No. 4, pp. 1677-1684.

[69] Amann, R.I., Krumholz, L. and Stahl, D.A. (1990) Fluorescent-Oligonucleotide Probing of Whole Cells for Determinative, Phylogenetic, and Environmental Studies in

Microbiology. Journal of Bacteriology, Vol. 172, No. 2, pp.

[70] Huston, W.M., Harhangi, H.R., Leech, A.P., Butler, C.S., Jetten, M.S.M., den Camp, H.

and Moir, J.W.B. (2007) Expression and characterisation of a major c-type cytochrome encoded by gene kustc0563 from Kuenenia stuttgartiensis as a recombinant protein in

68

Escherichia coli. Protein Expression and Purification, Vol. 51, No. 1, pp. 28-33.

[71] Cirpus, I.E.Y., de Been, M., Op den Camp, H.J.M., Strous, M., Le Paslier, D., Kuenen, G.J. and Jetten, M.S.M. (2005) A new soluble 10 kDa monoheme cytochrome c-552 from the anammox bacterium Candidatus "Kuenenia stuttgartiensis". Fems Microbiology Letters, Vol. 252, No. 2, pp. 273-278.

[72] APHA, "Standard Methods for the Examination of Water and Wastewater," ed. USA:

United Book Press, 1998.

[73] Ahn, Y.H., Hwang, I.S. and Min, K.S. (2004) ANAMMOX and partial denitritation in anaerobic nitrogen removal from piggery waste. Water Science and Technology, Vol. 49, No. 5-6, pp. 145-153.

[74] Sliekers, A.O., Haaijer, S., Schmid, M., Harhangi, H., Verwegen, K., Kuenen, J.G. and Jetten, M.S.M. (2004) Nitrification and Anammox with urea as the energy source.

Systematic and Applied Microbiology, Vol. 27, No. 3, pp. 271-278.

[75] Hippen, A., Rosenwinkel, K.H., Baumgarten, G. and Seyfried, C.F. (1997) Aerobic deammonification: A new experience in the treatment of wastewaters. Water Science and Technology, Vol. 35, No. 10, pp. 111-120.

[76] Ahn, Y.H. (2006) Sustainable nitrogen elimination biotechnologies: A review. Process Biochemistry, Vol. 41, No. 8, pp. 1709-1721.

[77] Pathak, B.K., Kamm, F., Salki, Y. and Sumino, T. (2007) Presence and activity of anammox and denitrification process in low ammonium-fed bioreactors. Bioresource Technology, Vol. 98, No. 11, pp. 2201-2206.

[78] Egli, K., Fanger, U., Alvarez, P.J.J., Siegrist, H., van der Meer, J.R. and Zehnder, A.J.B.

(2001) Enrichment and characterization of an anammox bacterium from a rotating

69

biological contactor treating ammonium-rich leachate. Archives of Microbiology, Vol. 175, No. 3, pp. 198-207.

[79] Abma, W.R., Schultz, C.E., Mulder, J.W., van der Star, W.R.L., Strous, M., Tokutomi, T.

and van Loosdrecht, M.C.M. (2007) Full-scale granular sludge Anammox process. Water Science and Technology, Vol. 55, No. 8-9, pp. 27-33.

[80] Strous, M., Pelletier, E., Mangenot, S., Rattei, T., Lehner, A., Taylor, M.W., Horn, M., Daims, H., Bartol-Mavel, D., Wincker, P., Barbe, V., Fonknechten, N., Vallenet, D., Segurens, B., Schenowitz-Truong, C., Médigue, C., Collingro, A., Snel, B., Dutilh, B.E., Op den Camp, H.J.M., van der Drift, C., Cirpus, I., van de Pas-Schoonen, K.T., Harhangi, H.R., van Niftrik, L., Schmid, M., Keltjens, J., van de Vossenberg, J., Kartal, B., Meier, H., Frishman, D., Huynen, M.A., Mewes, H.-W., Weissenbach, J., Jetten, M.S.M., Wagner, M.

and Le Paslier, D. (2006) Deciphering the evolution and metabolism of an anammox bacterium from a community genome. Nature, Vol. 440, No. 7085, pp. 790-794.

[81] Schmid, M., Schmitz-Esser, S., Jetten, M. and Wagner, M. (2001) 16S-23S rDNA

intergenic spacer and 23S rDNA of anaerobic ammonium-oxidizing bacteria: implications for phylogeny and in situ detection. Environmental Microbiology, Vol. 3, No. 7, pp.

450-459.

[82] Woebken, D., Lam, P., Kuypers, M.M.M., Naqvi, S.W.A., Kartal, B., Strous, M., Jetten, M.S.M., Fuchs, B.M. and Amann, R. (2008) A microdiversity study of anammox bacteria reveals a novel Candidatus Scalindua phylotype in marine oxygen minimum zones.

Environmental Microbiology, Vol. 10, No. 11, pp. 3106-3119.

[83] Kartal, B., van Niftrik, L., Sliekers, O., Schmid, M.C., Schmidt, I., van de Pas-Schoonen, K., Cirpus, I., van der Star, W., van Loosdrecht, M., Abma, W., Kuenen, J.G., Mulder,

70

J.-W., Jetten, M.S.M., den Camp, H.O., Strous, M. and van de Vossenberg, J. (2004) Application, eco-physiology and biodiversity of anaerobic ammonium-oxidizing bacteria.

Reviews in Environmental Science and Biotechnology, Vol. 3, No. 3, pp. 255-264.

[84] Jing, C., Ping, Z. and Mahmood, Q. (2009) Simultaneous sulfide and nitrate removal in anaerobic reactor under shock loading. Bioresource Technology, Vol. 100, No. 12, pp.

3010-3014.

[85] van Dongen, L.G.J.M., Jetten, M.S.M. and van Loosdrecht, M.C.M., (2001) The combined Sharon/Anammox process. London: IWA Publishing.

71

Appendix A: 16S rRNA sequence tggcg aaagggtgag

taatgcattg ataacctgcc tttgagatgg gaataactgc gtttcgagca atcggaacta ccgaaagggc tgctaatacc caataatact ataggtgcaa aagcacttgt ggtcaaatgc taggaattct gttccttgtg cttaaagagg ggttaatgtc ctatcagcta gttggtgggg taatggccta ccaaggcaaa gacgggtagc cggcttgaga gggtggtcgg ccacactggg actgagacac tgcccagact cctacgggag gctgcagtcg agaatctttc gcaatgcccg aaagggtgac gaagcgacgc cgcgtgtggg aagaaggcct tcgggttgta aaccactgtc gggagttagg aaatgcaggt gcgttaatag cgcacttgct tgactaaggc tccagaggaa gccacggcta actctgtgcc agcagccgcg gtaatacaga ggcggcaagc gttgttcgga attattgggc gtaaagagca cgtaggcggc cttgcaagtc agttgtgaaa gccttccgct taacggaaga acggcatctg atactacagg gcttgagtac gggaggggag agtggaactt ctggtggagc ggtgaaatgc gtagatatca gaaggaacgc cggcggcgaa agcgactctc tggtccgaaa ctgacgctga gtgtgcgaaa gctaggggag caaacgggat tagatacccc ggtagtccta gccgtaaacg atgggcacta agtagagggg ttttgattat ttctctgccg gagctaacgc attaagtgcc ccgcctgggg agtacggccg caaggctaaa actcaaaaga attgacgggg gctcgcacaa gcggtggagc atgtggctta attcgatgca acgcgaagaa ccttaccggg gcttgacatg gtagaagtag aatcctgaaa gggtgacgat cggtatccag tccgaagcta tcacaggtgt tgcatggctg tcgtcagctc gtgtcgtgag acgttgggtt aagtccccta acgagcgaaa cccttgtctt tagttgctaa cgggtaatgc tgagcacttt agagagactg ccgtcgttaa gacggaggaa ggtggggacg acgtcaagtc atcatggccc ttatgtcccg ggctgcacac gtgctacaat ggtcggtaca aagggatgct aagtcgcgag atggtgcgaa acctataaag ccgatctcag ttcagattgg aggctgaaac tcgcctccat gaagttggaa tcgctagtaa tcgcggatca gctacgccgc ggtgaatatg ttcccgagcc ttgtacacac cgcccgtcaa gccacccaag caagatgcac ccaaaatcgc ctgcctaacc cgtaagggag ggaagtgcct aagg

72

Appendix B: The original data of SBR

Time

73

74

75

76

77

78

79

80

81

82

258 12.615 7.3 154 319 1.5

259 29.537 7.12 162 319 140 4.4 90 152 1.6 410 23 16

260 58.775 7.07 177 319 0

261 11.738 7.37 -34 319 138 2.8 180 187 0 500 66 55

262 1.183 7.35 -18 319 0

263 1.979 7.6 -10 319 181 2.4 96 173 0 490 68 43

264 3.756 7.24 -4 319 0

265 5.431 7.68 -17 319 0

266 1.285 7.42 -1 319 232 0.4 80 168 0 470 57 38

相關文件