• 沒有找到結果。

First part presented in the research is purification of MWCNTs. The MWCNTs of high yield and no damage are obtained by microwave heating system with acid treatment. In the microwave system, acid rapidly absorbs microwave heat and energy and completely dissolve metals for purification without damage and of high quality.

The processing time of the microwave-assisted and acid treated system to dissolve metals in MWCNTs is below one hour. After purification, the amounts of residual catalyst metals in samples reduced from 30wt% to 5.15wt% for ECR-synthesized MWCNTs. The results show that multi-walled carbon nanotubes of no damage and with metals about 5wt% are obtained.

Investigated of purification efficiency of MWCNTs synthesized by thermal chemical vapor deposition with different parameters by using TGA, SEM, TEM and Raman spectroscopy and MWCNTs of high purity are expected. The results show that the purification efficiency increases with increasing acid treatment time. The amount of residual catalysts in purified samples was reduced to 0.1% after digestion for 90 min at 210°C. Microwave heating method has excellent prospect to yield carbon nanotubes of high purity if carbon nanotubes are small and uniform in diameter. In conclusion, microwave heating method may have great potential in mass purification.

Large amount of purified CNTs with high quality would be applied to more intrinsic studies and industrial applications.

The contents of metallic catalysts in the as-prepared MWCNTs can be effectively eliminated from 10.39 wt% to 1.515 wt% within 15 minute purification time at 120°C of 250W power. A possible reaction model was apparently proposed to describe this reaction, that is, the nano-scale metallic catalysts embedded at the tip end of MWCNTs could absorb microwave radiation energy in electromagnetic field by

magnetic resonance and interfacial electric polarization, and then form a localized hot area to combine with hot-surface effects around the tip-liquid interface of CNTs and significantly accelerate the reaction rate in the wall of CNTs near the tip.

Although microwave technology has been extensively applied in our daily life, there might be a great potential in microwave chemistry to apply microwave radiation energy on traditional chemical reaction processes. However, further intensive studies are expected to acquire complete understandings of the microwave-assisted chemical reaction.

In the second part of this thesis, Pt nanoparticles on CNTs were prepared by rapid and uniform microwave heating, which provided a more homogeneous temperature gradient for the quick nucleation and growth of Pt particles. The effects of temperature and time on the synthesis of Pt in microwave-assisted methods were clarified by individual careful control of the two factors, and the results, first reported by this work, showed the domination of temperature over the reaction time. Pt/CNTs electrocatalysts with suitable narrow distribution size and highly dispersed Pt nanoparticles were synthesized by a one-step microwave-assisted polyol method by adding proper amount of SDS to the synthesis solution. It was found that SDS in the solution could be used as a good agent to wrap a lot of PVP-adsorbed Pt nanoparticles around MWCNTs side by side without particle agglomeration, and the loading of Pt on CNTs could exceed 50 wt%, higher than the 20 wt% or below of conventional or other microwave methods without SDS addition. The synthesis method proposed in this paper is simple and fast, and has great potential to be developed for the preparation of other high loading supported metal and alloy systems.

References

[1] M. S. Dresselhaus, G. Dresselhaus, P. C. Eklund, Boston (1996).

[2] R. Saito, G. Dresselhaus, M. S. Dresselhaus, Imperial College Press, London (1998).

[3] http://smalley.rice.edu/images/allotropes.jpg

[4] R. Saito, M. Fujita, G. Dresselhaus, M. S. Dresselhaus, Appl. Phys. Lett. 60 (1992) 2204.

[5] M. S. Dresselhaus, G. Dressehaus, and R. Saito, Carbon, 33 (1995) 883.

[6] S. Iijima, T. Ichihashi, Y. Ando, Nature 356 (1992) 776.

[7] L. Chico, V.H. Crespi, L.X. Benedict, S.G. Louie, M.L. Cohen, Phys Rev Lett 76 (1996) 971.

[8] J. M. Bonard, H. Kind, T. Stöckli, L. O. Nilsson, Solid State Electronics 45 (2001) 893.

[9] E. T. Thostenson, Z. Ren, T. W. Chou, Composites Science and Technology 61 (2001) 1899.

[10] K. Tanaka, K. Okahara, M. Okada, T. Yamabe, Chem. Phys. Lett. 191 (1992) 469.

[11] S. Iijima, Nature 354 (1991) 56.

[12] D. Bernaerts, M. Op De Beeck, S. Amelinckx, J. Van Landuyt, G. Van Tendeloo, Philos. Mag. A 74 (1996) 723.

[13] X. F. Zhang, X. B. Zhang, G. Van Tendeloo, S. Amelinckx, M. Op de Beeck, J.

Van Landuyt, J. Cryst. Growth 130 (1993) 3.

[14] N. Hamada, S.-I. Sawada, A. Oshiyama, Phys. Rev. Lett. 68 (1992) 1579.

[15] X. Blase, L.X. Benedict, E.L. Shirley, S.G. Louie, Phys. Rev. Lett. 72 (1994) 1878.

[16] J.W. Mintmire, C.T. White, Carbon 33 (1995) 893.

[17] C.L. Kane, E.J. Mele, Phys. Rev. Lett. 78 (1997) 1932.

[18] P.R. Wallace, Phys. Rev. 71 (1947) 622.

[19] J.W.G. Wildöer, L.C. Venema, A.G. Rinzler, R.E. Smalley, C. Dekker, Nature 391 (1998) 59.

[20] T.W. Odom, J.L. Huang, P. Kim, C.M. Lieber, Nature 391 (1998) 62.

[21] L.C. Venema, J.W.G. Wildöer, C. Dekker, A.G. Rinzler, R.E. Smalley, Appl. Phys.

A 66 (1998) S153.

[22] T.W. Odom, J.L. Huang, P. Kim, C.M. Lieber, J. Phys. Chem. B 104 (2000) 2794.

[23] L.C. Venema, J.W.G. Wildöer, J.W. Janssen, S.J. Tans, H.L.J. Temminck Tuinstra, L.P. Kouwenhoven, C. Dekker, Science 283 (1999) 52.

[24] P. Kim, T.W. Odom, J.-L. Huang, C.M. Lieber, Phys. Rev. Lett. 82 (1999) 1225.

[25] S.J. Tans, A.R.M. Verschueren, C. Dekker, Nature 393 (1998) 49.

[26] R. Martel, T. Schmidt, H.R. Shea, T. Hertel, Ph. Avouris, Appl. Phys. Lett. 73 (1998) 2447.

[27] M. Bockrath, D.H. Cobden, P.L. McEuen, N.G. Chopra, A. Zettl, A. Thess, R.E.

Smalley, Science 275 (1997) 1922.

[28] S.J. Tans, M.H. Devoret, H. Dai, A. Thess, R.E. Smalley, L.J. Geerligs, C.

Dekker, Nature 386 (1997) 474.

[29] S.J. Tans, M.H. Devoret, R.J.A. Groeneveld, C. Dekker, Nature 394 (1998) 761.

[30] M. Bockrath, D.H. Cobden, J. Lu, A.G. Rinzler, R.E. Smalley, L. Balents, P.L.

McEuen, Nature 397 (1999) 598.

[31] A. Bachtold, C. Strunk, J.-P. Salvetat, J.-M. Bonard, L. Forró, T. Nussbaumer, C.

Schönenberger, Nature 397 (1999) 673.

[32] H.T. Soh, C.F. Quate, A.F. Morpurgo, C.M. Marcus, J. Kong, H. Dai, Appl. Phys.

Lett. 75 (1999) 627.

[33] C. Schönenberger, A. Bachtold, C. Strunk, J.-P. Salvetat, L. Forró, Appl. Phys. A 69 (1999) 283.

[34] J. Kong, C. Zhou, A. Morpurgo, H.T. Soh, C.F. Quate, C. Marcus, H. Dai, Appl.

Phys. A 69 (1999) 305.

[35] K. Liu, M. Burghard, S. Roth, P. Bernier, Appl. Phys. Lett. 75 (1999) 2494.

[36] P.L. McEuen, M. Bockrath, D.H. Cobden, Y.-G. Yoon, S.G. Louie, Phys. Rev.

Lett. 83 (1999) 5098.

[37] H. Dai, E.W. Wong, C.M. Lieber, Science 272 (1996) 523.

[38] L. Langer, V. Bayot, E. Grivei, J.-P. Issi, J.P. Heremans, C.H. Olk, L. Stockman, C. Van Haesendonck, Y. Bruynseraede, Phys. Rev. Lett. 76 (1996) 479.

[39] T.W. Ebbesen, H.J. Lezec, H. Hiura, J.W. Bennett, H.F. Ghaemi, T. Thio, Nature 382 (1996) 54.

[40] B.I. Yakobson, C.J. Brabec, J. Bernholc, Phys. Rev. Lett. 76 (1996) 2511.

[41] B.I. Yakobson, G. Samsonidze, G.G. Samsonidze, Carbon 38 (2000) 1675.

[42] M.M.J. Treacy, T.W. Ebbesen, T. M. Gibson, Nature 381 (1996) 678.

[43] E.W. Wong, P.E. Sheehan, C.M. Lieber, Science 277 (1997) 1971.

[44] D.A. Walters, L.M. Ericson, M.J. Casavant, J. Liu, D.T. Colbert, K.A. Smith, R.E.

Smalley, Appl. Phys. Lett. 74 (1999) 3803.

[45] M.-F. Yu, O. Lourie, M.J. Dyer, K. Moloni, T.F. Kelly, R.S. Ruoff, Science 287 (2000) 637.

[46] M.-F. Yu, B.S. Files, S. Arepalli, R.S. Ruoff, Appl. Phys. Lett. 84 (2000) 5552.

[47] http:// 140.114.18.223/~hcshih/diamond/nanotube.html (2000).

[48] Ajayan, P. M. and Zhou, O. Z., Carbon Nanotubes, 80 (2001) 391

[49] Baughman, R. H., Zakhidov, A. A., and de Heer, W. A., Science, 297 (2002) 787 [50] D.Rotman, Natuur & Techniek, 70 (2002) 30

[51] S. Iijima, Nature 354 (1991) 56.

[52] T.W. Ebbesen, P.M. Ajayan, Nature 358 (1992) 220.

[53] S. Iijima, T. Ichihashi, Nature 363 (1993) 603.

[54] D.S. Bethune, C.H. Klang, M.S. de Vries, G. Gorman, R. Savoy, J. Vazquez, R.

Beyers, Nature 363 (1993) 605.

[55] J. Abrahamson, P.G. Wiles, B.L. Rhoades, Carbon 37 (1999) 1873.

[56] P.A. Thrower, Carbon 37 (1999) 1677.

[57] X.K. Wang, X.W. Lin, V.P. Dravid, J.B. Ketterson, R.P.H. Chang, Appl. Phys.

Lett. 66 (1995) 2430.

[58] H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, R. E. Smalley, Nature 318 (1985) 162.

[59] T. Guo, P. Nikolaev, A. Thess, D. T. Colbert, R. E. Smalley, Chem. Phys. Lett.

243 (1995) 49.

[60] T. Guo, P. Nikolaev, A.G. Rinzler, D. Tománek, D.T. Colbert, R.E. Smalley, J.

Phys. Chem. 99 (1995) 10694.

[61] A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y.H. Lee, S.G.

Kim, A.G. Rinzler, D.T. Colbert, G.E. Scuseria, D. Tománek, J.E. Fischer, R.E.

Smalley, Science 273 (1996) 483.

[62] A.G. Rinzler, J. Liu, H. Dai, P. Nikolaev, C.B. Huffman, F.J. Rodriguez-Macias, P.J. Boul, A.H. Lu, D. Heymann, D.T. Colbert, R.S. Lee, J.E. Fischer, A.M. Rao, P.C. Eklund, R.E. Smalley, Appl. Phys. A 67 (1998) 29.

[63] B. I. Yakobson, R. E. Smalley, Am. Sci. 85 (1997) 324.

[64] P.L. Walker Jr, J.F. Rakszawski, G.R. Imperial, J. Phys. Chem. 63 (1959) 133.

[65] M.S. Kim, N. M. Rodriguez, R.T.K. Baker, J. Catal. 131 (1991) 60.

[66] M. José-Yacamán, M. Miki-Yoshida, L. Rendón, J.G. Santiesteban, Appl. Phys.

Lett. 62 (1993) 657.

[67] V. Ivanov, J.B. Nagy, P. Lambin, A. Lucas, X.B. Zhang, X.F. Zhang, D. Bernaerts, G. Van Tendeloo, S. Amelinckx, J. Van Landuyt, Chem. Phys. Lett. 223 (1994) 329.

[68] K. Hernadi, A. Fonseca, J.B. Nagy, D. Bernaerts, J. Riga, A. Lucas, Synthetic Metals 77 (1996) 31.

[69] A. Fonseca, K. Hernadi, P. Piedigrosso, J.-F. Colomer, K. Mukhopadhyay, R.

Doome, S. Lazarescu, L.P. Biro, Ph. Lambin, P.A. Thiry, D. Bernaerts, J.B. Nagy, Appl. Phys. A 67 (1998) 11.

[70] P. Nikolaev, M.J. Bronikowski, R.K. Bradley, F. Rohmund, D.T. Colbert, K.A.

Smith, R.E. Smalley, Chem. Phys. Lett. 313 (1999) 91.

[71] J. Kong, A.M. Cassell, H. Dai, Chem. Phys. Lett. 292 (1998) 567.

[72] M. Ge, K. Sattler, Appl. Phys. Lett. 64 (1994) 710.

[73] G. Che, B.B. Lakshmi, C.R. Martin, E.R. Fisher, R.S. Rouff, Chem. Mater. 10 (1998) 260.

[74] R. T. K. Baker, P. S. Harris, Chem. Phys. Carbon 14 (1978) 83.

[75] S.B. Sinnott, R. Andrews, D. Qian, A.M. Rao, Z. Mao, E.C. Dickey, F.

Derbyshire, Chem. Phys. Lett. 315 (1999) 25.

[76] R. Andrews, D. Jacques, A.M. Rao, F. Derbyshire, D. Qian, X. Fan, E.C. Dickey, J. Chen, Chem. Phys. Lett. 303 (1999) 467.

[77] R.T.K. Baker, Carbon 27 (1989) 315.

[78] The first reference to microwave temperature-jump expenments can be found in 1967 Later an improved modification of this method was reported E F Caldin and J P Field, J Chem SOC Faraday Trans I ,78 (1982)1923

[79] S W Liu and J P Wightman, J Appl Chem Biotechnol, 21 (1971)168 [80] R N Gedye, W Rank and K C Westaway, Can J Chem, 69 (1991) 706

[81] R Hicks and G Majetich, J Microwave Power Electromagn Eng, 30 (1995) 27

[82] F. Fievet, J. P. Lagier, B. Blin, B. Beaudoin, M. Fiflarz, Solid State Ionics, 32/33 (1989)198.

[83] a) P.-Y. Silvert, R. Herrera-Urbina; N. Duvauchelle, V. Vijayakrishnan, K.

Tekaia-Elhsissen, J. Mater. Chem., 6 (1996) 573; b) P.-Y. Silvert, R.

Herrera-Urbina, K. Tekaia-Elhsissen, J. Mater. Chem., 7 (1997) 293.

[84] M. S. Hedge, D. Larcher, L. Dupont, B. Beaudoin, K. Tekaia-Elhsissen, J. M.

Tarascon, Solid State Ionics, 93 (1997) 33.

[85] Y. Wada, H. Kuramoto, T. Sakata, H. Mori, T. Sumida, T. Kitamura, S.

Yanagida, Chem. Lett., 28 (1999) 607.

[86] W. Tu, H. Liu, J. Mater. Chem., 10 (2000) 2207.

[87] Z. L. Jiang, Z. W. Feng, X. C. Shen, Chin. Chem. Lett., 12 (2001) 551.

[88] M. Tsuji, M. Hashimoto, T. Tsuji, Chem. Lett., 31 (2002) 1232.

[89] I. Pastoriza-Santos, L. Liz-Marz_n, Langmuir, 18 (2002) 2888.

[90] S. Komarneni, D. Li, B. Newalkar, H. Katsuki, A. S. Bhalla, Langmuir, 18 (2002) 5959.

[91] R. He, X. Qian, J. Yin, Z. Zhu, J. Mater. Chem., 12 (2002) 3783.

[92] R. He, X. Qian, J. Yin, Z. Zhu, Chem. Phys. Lett., 369 (2003) 454.

[93] F. K. Liu, C. J. Ker, Y. C. Chang, F. H. Ko, T. C. Chu, B. T. Dai, Jpn. J. Appl.

Phys. Part 1, 42 (2003) 4152.

[94] M. Tsuji, M. Hashimoto, Y. Nishizawa, T. Tsuji, Chem. Lett., 32 (2003) 1114.

[95] Y. J. Zhu, X. L. Hu, Chem. Lett., 32 (2003) 1140.

[96] R. Harpeness, A. Gedanken, A. M. Weiss, M. A. Slifkin, J. Mater. Chem., 13 (2003) 2603.

[97] T. Yamamoto, Y. Wada, T. Sakata, H. Mori, M. Goto, S. Hibino, S. Yanagida, Chem. Lett., 33 (2004) 158.

[98] M. Tsuji, Y. Nishizawa, M. Hashimoto, T. Tsuji, Chem. Lett., 33 (2004) 370.

[99] W. X. Chen, J. Zhao, J. Y. Lee, Z. L. Liu, Chem. Lett., 33 (2004) 474.

[100] F. Liu, Y. Chang, F. Ko, and T. Chu, Mater. Lett., 58 (2004) 373.

[101] Y. J. Zhu, X. L. Hu, Mater. Lett., 58 (2004) 1517.

[102] M. Tsuji, M. Hashimoto, Y. Nishizawa, T. Tsuji, Mater. Lett., 58 (2004) 2326.

[103] M. Tsuji, M. Hashimoto, Y. Nishizawa, T. Tsuji, Hoshasen Kagaku, Radiation Chem., 77 (2004) 8

[104] T. Yamamoto, H. Yin, Y. Wada, T. Kitamura, T. Sakata, H. Mori, S. Yanagida, Bull. Chem. Soc. Jpn., 77 (2004) 757.

[105] O. Palchik, R. Kerner, A. Gedanken, A. M. Weiss, M. A. Slifkin, V. Palchik, J.

Mater. Chem., 11 (2001) 874.

[106] Y. Wada, H. Kuramoto, J. Anand, T. Kitamura, T. Sakata, H. Mori, S. Yanagida, J. Mater. Chem., 11 (2001) 1936.

[107] T. Yamamoto, Y. Wada, H. Yin, T. Sakata, H. Mori, S. Yanagida, Chem. Lett., 31 (2002) 964.

[108] T. Ding, J. Zhang, S. Long, J. Zhu, Microelectron. Eng., 66 (2003) 46.

[109] H. Grisaru, O. Palchik, A. Gedanken, V. Palchik, M. A. Slifkin, A. M. Weiss, Inorg. Chem., 42 (2003) 7148.

[110] Z. L. Liu, X. Y. Ling, J. Y. Lee, X. D. Su, L. M. Gan, J. Mater. Chem., 13 (2003) 3049.

[111] Z. L. Liu, J. Y. Lee, W. X. Chen, M. Han, L. M. Gan, Lamgmuir, 20 (2004) 181.

[112] R. Harpeness, A. Gedanken, Langmuir, 20 (2004) 3431.

[113] Microwave-Enhanced Chemistry: Fundamentals, Sample Preparation, Applications (Eds.: H. M. Kingston, S. J. Haswell), American Chemical Society, Washington DC, 1997.

[114] S. A. Galema, Chem. Soc. Rev., 26 (1997) 233.

[115] R. Andrews, D. Jacques. D. Qian, E. C. Dickey, Carbon 39 (2001) 1681.

[116] P. X. Hou, S. Bai, Q. H. Yang, C. Lin, H. M. Cheng, Carbon 40 (2002) 81.

[117] M. Yumura, S. Ohshima, K. Uchida, Y. Tasaka, Y. Kuriki, F. Ikazaki, Y. Saito, S.

Uemura, Diamond and Relat. Mater. 8 (1999) 785.

[118] Y. Saito, K. Hamaguchi, K. Hata, K. Tohji, A. Kasuya, Y. Nishina, K. Uchida, Y.

Tasaka, F. Ikazaki, M. Yumura, Ultramicroscopy 73 (1998) 1.

[119] Y. Ando, X. Zhao, H. Kataura, Y. Achiba, K. Kaneto, M. Tsuruta, S. Uemura, S.

Iijima, Diamond and Relat. Mater. 9 (2000) 847.

[120] Y. S. Park, Y. C. Choi, K. S. Kim, D. C. Chung, D. J. Bae, K. H. An, S. C. Lim, X. Y. Zhu, Y. H. Lee, Carbon 39 (2001) 655.

[121] S.C. Tsang, P.J.F. Harris, M.L.H. Green, Nature 362(1993) 520.

[122] T. Y .Ebbesen, P. M. Ajaya, F .H .Liou, H. Hiura, K. Tangaki, Nature 367(1997) 519.

[123] K. Tohji, H. Takahashi, Y. Shinoda, N. Shimizu, B. Jeyadevan, I. Matsuoka, Y.

Saito, A.Kasuya, S. Ito, Y. Nishina, J. Phys. Chem. B 101(1997) 1974.

[124] B. Liu, T. Wagberg, E. Olssen, R. Yang, H. Li, S. Zhang, H. Yang, G. Zou, B.

Sundqvist, Chem. Phys. Lett. 321(2000)365.

[125] K.B. Shelimov, R. O. Esenaliev, A. G. Rinzler, C. B. Huffman, R. E. Smalley, Chem. Phys. Lett. 282(1998) 429.

[126] J. M. Moon, K. H. An, Y. H. Lee, Y. S. Park, D. J. Bae, G. S. Park, J. Phys.

Chem. B105(2001) 5677.

[127] M. Zhang, M. Yudasaka, A. Koshio, S. Iijima, Chem. Phys, Lett. 349 (2001) 25.

[128] D. Chattopadhyay, I. Galeska, F. Papadimitrakopoulos, Carbon 40 (2002) 985.

[129] X. H. Chen, C. S. Chen, Q. Chen, F. Q. Cheng, G. Zhang, Z. Z. Chen, Materials Lett. 57(2002) 734.

[130] H. Kajiura, S. Tsutsui, H. Huang, Y. Murakami, Chem. Phys, Lett. 364 (2002)

586.

[131]S. Bandow, A. M. Rao, K. A. Williams, A. Thess, R. E. Smalley, P. C. Eklund, J.

Phys. Chem. B, 101 (1997) 8839.

[132] Y. Ando, X. Zhao, S. Inoue, S. Iijima, Journal of Crystal Growth 237-239 (2002) 1926.

[133] I. W. Chiang, B. E. Brinson, A. Y. Huang, P. A. Willis, M. J. Bronikowski, J. L.

Margrave, R. E. Smalley, R. H. Hauge, J. Phys. Chem. B 105 (2001) 8297.

[134] US EPA Method 3051,” Microwave-Assisted Acid Digestion of Sediments, Sludges, Soils and Oils”, Washington DC, (1994)

[135] K. A. Mauritz, C. J.Hora, A. J. Hopfinger, Advances in Chemistry 187 (1980) 124

[136] H. L. Yeager, A. J. Steck, Electrochem. Soc.128 (1981) 1880

[137] A. Eisenberg, B. Hird, R. B. Moore, ”A new multiplet-cluster model for the morphology of random ionomers”, Macromolecules 23 (1990) 4098

[138] T. D. Gierke, G. E. Munn, F. C. Wilson, J. Polym. Sci.19 (1981) 1687 [139] G. B. Butler, K. F.O’Driscoll, G. L. Wilkes, Chem. Phys. C34 (1994) 325

[140] A. Eisenberg and H. L. Yeager, ACS Symp. Ser. No.180, American Chemical Society: Washington, DC, (1982) pp. 1-6, 41-63,

[141] L.A. Utracki and R.A. Weiss, ACS Symp. Ser. No. 395; American Chemical Society: Washington, DC, (1989) 401

[142] A. Eisenberg and M. King, Ion-Containing Polymers: Physical Properties and Structure, Vol. 2, (1977) 163

[143] W. Y. Hsu, T. D. Gierke, Macromolecules 15 (1982) 101

[144] A. V. Anantaraman, C. L. Gardner, ” Studies on ion-exchange membranes. Part 1. Effect of humidity on the conductivity of Nafion®”, J. Electroanal. Chem. 414 (1996) 115

[145] C. S. Kim, Y. G. Chun, D. H. Peck, D. R. Shin, “ A novel process to fabricate membrane electrode assemblies for proton exchange membrane fuel cells “ Int. J.

Hydrogen Energy 23 (1998) 1045

[146] D.Bevers, N. Wagner, M. VonBradke,“ Innovative production procedure for low cost PEFC electrodes and electrode/membrane structures “ Int. J. Hydrogen Energy 24 (1998) 57

[147] L. Giorgi, E. Antolini, A. Pozio, E. Passalacqua, “Influence of the PTFE content in the diffusion layer of low-Pt loading electrodes for polymer electrolyte fuel cells ”, Electrochim. Acta 43, (1998) 3675

[148] H. S.Wroblowa, Y. C. Pan, G. J. Razumnet, Electroanal. Chem. 69, 195, 1976.

[149] A. J. Appleby, M. J.Savy, Electroanal. Chem., 92 (1978) 15

[150] R. W. Zurilla, R. K. Sen, E. J.Yeager, Electrochem. Soc. 125 (1978) 1103 [151] Gruver, G. A.; Pascoe, R. F.; Kunz, H. R. J. Electrochem. Soc. 127 (1980) 1219 [152] M. C. Lefebvre, Z. Qi, P. G. Pickup,” Electronically Conducting Proton

Exchange Polymers as Catalyst Supports for Proton Exchange Membrane Fuel Cells. Electrocatalysis of Oxygen Reduction, Hydrogen Oxidation, and Methanol Oxidation”, J. Electrochem. Soc. 146 (1999) 2054

[153] J. Shan, P. G. Pickup,” Characterization of polymer supported catalysts by cyclic voltammetry and rotating disk voltammetry ”, Electrochim. Acta 46 (2000) 119

[154] I. D. Raistri, Symposium on Diaphragms, Separators, and Ion-Exchange Membranes, Pennington, NJ (1986) 172

[155] S. Srinivasan, D. J. Manko, H. Koch, M. A. Enayetullah, A.J. Appleby, “Recent advances in solid polymer electrolyte fuel cell technology with low platinum loading electrodes ”, J. Power Sources, 29 (1990) 367

[156] S. Hirano, J.Kim, S. Srinivasan, ” High performance proton exchange

membrane fuel cells with sputter-deposited Pt layer electrodes”, Electrochim.

Acta 42 (1997) 1587

[157] S. Y. Cha, W. M. Lee,” Performance of Proton Exchange Membrane Fuel Cell Electrodes Prepared by Direct Deposition of Ultrathin Platinum on the Membrane Surface”, J. Electrochem. Soc. 146 (1999) 4055

[158] A. Hamnett, “Mechanism and electrocatalysis in the direct methanol fuel cell “, Catal. Today 38 (1997) 445

[159] S. Wasmus, A. Kuver, “Methanol oxidation and direct methanol fuel cells: a selective review”, J. Electroanal. Chem. 461 (1999) 14

[160] T. Matsumoto, T. Komatsu, K. Arai, T. Yamazaki, M. Kijima, H. Shimizu, Y.

Takasawa, J. Nakamura, “Reduction of Pt usage in fuel cell electrocatalysts with carbon nanotube electrodes”, Chem. Commun. 7 (2004) 840

[161] W. Y. Yu, W. X. Tu, H. F. Liu, Langmuir 15 (1999) 6.

[162] W. X. Tu, H. F. Liu, Chem. Mater. 12 (2000) 564.

[163] V. Mehta, J. S. Cooper, J. Power Sources 114 (2003) 32.

[164] E. Antolini, Mater. Chem. Phys. 78 (2003) 563.

[165] T. S. Armadi, Z. L. Wang, T. C. Green, A. Henglein, M. A. El-Sayed, Science 272 (1996) 1924.

[166] J. Kiwi, M. Gratzel, J. Am. Chem. Soc. 101 (1979) 7214.

[167] G. Schmid, Chem. Rev. 92 (1992) 1709.

[168] M. Brust, M. Walker, D. Bethell, D. J. Schiffrin, R. Whyman, J. Chem. Soc., Chem. Commun. 7 (1994) 801.

[169] K. Y. Chan, J. Ding, J. Ren, S. Cheng, K. Y. Tsang, J. Mater. Chem. 14 (2004) 505.

[170] Z. L. Liu, J. Y. Lee, M. Han, W. X. Chen, L. M. Gan, J. Mater. Chem. 12 (2002) 2453.

[171] Y. H. Lin, X. L. Cui, C. H. Yen, C. M. Wai, Langmuir 21 (2005) 11474.

[172] K. Okitsu, A. Yue, S. Tanabe, H. Matsumoto, Chem. Mater. 12 (2000) 3006.

[173] T. Fujimoto, S. Teraushi, H. Umehara, I. Kojima, W. Henderson, Chem. Mater.

13 (2001) 1057.

[174] L. K. Kurihara, G. M. Chow, P. E. Schoen, Nanostruct. Mater. 5 (1995) 607.

[175] F. Bonet, V. Delmas, S. Grugeon, R. H. Urbina, P. Y. Silvert, K.

Tekaia-Elhsissen, Nanostruct. Mater. 11 (1999) 1277.

[176] C. L. Sun, L. C. Chen, M. C. Su, L. S. Hong, O. Chyan, C. Y. Hsu, K. H. Chen, T. F. Chang, L. Chang, Chem. Mater. 17 (2005) 3749.

[177] http://www.milestonesci.com/dig-products.php

[178] http://www.tainstruments.com/product.aspx?id=20&n=1&siteid=11

[179] A. C. Dillon, T. Gennett, K. M. Jones, J. L. Alleman, P. A. Parilla, and M. J.

Heben, Adv. Mater. 11 (1999) 1354.

[180] J. F. Colomer, P. Piedigrosso, A. Fornseca, Synth. Met. 103 (1999) 2482.

[181] V. Lordi, S. X. C. Ma, and N. Yao: Surface Science 421 (1999) 150.

[182] R. N. Gedye, W. Rank, and K. C. Westaway: Can. J. Chem. 69 (1991) 706.

[183] R. Hicks, and G. Majetich: J. Microwave Power Electromagn. Eng. 30 (1995) 27.

[184] F. K. Liu, C. J. Ker, Y. C. Chang, F. H. Ko, T. C. Chu, and B. T. Dai: Jpn. J.

Appl. Phys. Part 1 42 (2003) 4152.

[185] M. Tsuji, M. Hashimoto, Y. Nishizawa, and T. Tsuji: Chem. Lett. 32 (2003) 1114.

[186] M. Tsuji, M. Hashimoto, Y. Nishizawa, and T. Tsuji: Radiation Chem. 77 (2004) 8.

[187] Y. J. Zhu, and X. L. Hu: Chem. Lett. 32 (2003) 1140.

[188] F. Liu, Y. Chang, F. Ko, and T. Chu: Mater. Lett. 58 (2004) 373.

[189] R. He, X. Qian, J. Yin, and Z. Zhu: J. Mater. Chem. 12 (2002) 3783.

[190] M. Tsuji, M. Hashimoto, Y. Nishizawa, M. Kubokawa, and T. Tsuji: Chem. Eur.

J. 11 (2005) 440.

[191] R. Laurent, A. Laportene, J. Dubac, J. Berlan, S. Lefeuvre, and M. Audhuy : J.

Org. Chem. 57 (1992) 7099.

[192] A. Wadhawan, D. Grarrett, and J. M. Perez: Appl. Phys. Lett. 83 (2003) 2683.

[193] J. Cheng, R. Roy, and D. Agrawal: J. Mater. Sci. Lett. 20 (2001) 1561.

[194] D. Michael, P. Mingos, and D. R. Baghurst: Chem. Soc. Rev. 20 (1991) 1.

[195] R. Roy, D. Agrawal, J. Cheng, and S. Gedevanishvili: Nature 399 (1999) 668.

[196] C. G. Koops: Phys. Rev. 83 (1951) 121. Diam. Relat. Mater. 13 (2004) 1182.

[200] C. M. Chen, M. Chen, Y. W. Peng, C. H. Lin, L. W. Chang, C. F. Chen, Diam.

Relat. Mater. 14 (2005) 798.

[201] Y. T. Kim, T. Mitani, J. Catal. 238 (2006) 394.

[202] S. Mukerjee, J. McBreen, J. Electroanal. Chem. 448 (1998)163.

[203] B. Xue, P. Chen, Q. Hong, J. Y. Lin, K. L. Tan, J. Mater. Chem. 11 (2001) 2378.

[204] C. Ma, C. Li, J. Colloid Interface Sci. 131 (1989) 485

[205] V. V. Didenko, V. C. Moore, D. S. Baskin, R. E. Smalley, Nano Lett. 5 (2005) 1563.

[206] W. Chen, J. Zhao, J. Y. Lee, Z. Liu, Mater. Chem. Phys. 91 (2005) 124.

[207] Minoru Umeda, Mitsuhiro Kokubo, Mohamed Mohamedi and Isamu Uchida,

Electrochimica Acta 10 (2003) 1367

[208] S.Kerkeni, E. Lamy-Pitara,.J.Barbier, Catal. Today 75 (2002) 35

[209] H. Wang, T. Loffler, H. Baltruschat, J. Appl. Electrochem. 31 (2001) 759