• 沒有找到結果。

Firstly, this research focused on determining appropriate temperature for the elevated temperature test. Serious capacity fading and polarization of the electrode was found with the increased temperature. To balance the safety operation and necessary temperature effect on the LIB, optimum temperature for testing the cell was selected.

Secondly, a novel method for the electrode modification is developed using the plasma enhanced chemical vapor deposition (PECVD) process. This process successfully deposited Teflon thin film on the LrMNO based electrodes. Coin cells were assembled using the pristine/modified electrodes and tested both at room temperature and 55 oC. Since Teflon layer has the anti-corrosion property and thermal stability, the Teflon coated electrodes have prevented the attacks from the electrolyte byproducts and their performance was also improved at the elevated temperature. Polarization of the modified electrodes during cycling apparently reduced and cycling performance of the electrode enhanced, subsequently.

Thirdly, instead of modifying on the electrode surface, the functional polymers was directly coated on the NCM particles by environmental friendly less power consuming water-based coating process. In the first part, single polymer PSSNa modification was made on the NCM particles. This has obtained improved performance, particularly high-rate capability due to the possible interaction between the electron lone pairs present in the anionic polymer and the Li+. Besides, the organic compounds of the polymer could have facilitated the de-solvation and solvation process of the Li-ion. The relative higher charge transfer resistance in the early stage of polymer modified cells was solved by the addition of Super P, in which, the electrostatic self-assembling technique by the cationic and anionic polymer (PDDA-PSSNa) have been employed for the Super P attachment. By this technique, the Super P showed good adhesion on

doi:10.6342/NTU201601970

145

the NCM particles. In addition, the modified samples also demonstrated the enhancement in the cycle performance at 55 oC. After the electrochemical operation, in terms of the reduced electrolyte decomposition and SEI formation can strongly relative to the contribution of the polymer-physical-barrier layer on the material surface.

Furthermore, the inhibition of the phase transformation in the surface structure of polymer-coated particles could be also examined. In the second part of polymer modification, the Li-type PSS has been prepared and used to replace the Na-type PSS onto the NCM material. The result demonstrated the better rate capability in the Li-type PSS than that of the Na-type modified sample. It could be attributed to the Li-ion migrating that is more kinetics favor in the lithium-containing polymer film. The 1 % CNT as the conductive agent has also participated in the polymer coating. With the PSSLi and concomitant CNT networks modification, the considerable improvement in the reversible capacity, rate capability, and cycle stability can be simultaneously achieved.

Finally, the elevated high cut-off operating potential (4.6 V) of the NCM has been investigated. The intense electrolyte decomposition was come up in the non-treated NCM cell, causing the serious capacity fading during the cycling. In contrast, the polymer and CNT-polymer modified cells could maintain the well capacity retention (>

90 %) after cycling at such the high operating potential. Additionally, the more cation mixing appeared in the pristine cell may associate with the exposing of materials to the electrolyte. By comparison, the polymeric A-SEI we constructed on the NCM particle surface could show the capability to stabilize the electrode-electrolyte interface further gives the substantial promotions in the electrochemical performance.

doi:10.6342/NTU201601970

146

Reference

[1] T. Nagaura and K. Tozawa, "Lithium ion rechargeable battery", Prog. Batter.

Sol. Cells, 9, 209-211 (1990)

[2] L. J. Fu, H. Liu, C. Li, Y. P. Wu, E. Rahm, R. Holze, and H. Q. Wu, "Surface modifications of electrode materials for lithium ion batteries", Solid State Sciences, 8, 113-128 (2006)

[3] B. Xu, D. Qian, Z. Wang, and Y. S. Meng, "Recent progress in cathode materials research for advanced lithium ion batteries", Materials Science and Engineering:

R: Reports, 73, 51-65 (2012)

[4] C. M. Julien, A. Mauger, K. Zaghib, and H. Groult, "Comparative Issues of Cathode Materials for Li-Ion Batteries", Inorganics, 2, 132-154 (2014)

[5] N.-S. Choi, Z. Chen, S. A. Freunberger, X. Ji, Y.-K. Sun, K. Amine, G. Yushin, L. F. Nazar, J. Cho, and P. G. Bruce, "Challenges Facing Lithium Batteries and Electrical Double-Layer Capacitors", Angewandte Chemie-International Edition, 51, 9994-10024 (2012)

[6] J. M. Tarascon and M. Armand, "Issues and challenges facing rechargeable lithium batteries", Nature, 414, 359-367 (2001)

[7] R. M. Dell, "Batteries - fifty years of materials development", Solid State Ionics, 134, 139-158 (2000)

[8] M. S. Whittingham, "Electrical Energy-Storage and Intercalation Chemistry", Science, 192, 1126-1127 (1976)

[9] D. W. M. J. B. B. C. H. Steele, Materials for advanced batteries. Plenum Press.(1980)

[10] D. W. Murphy, F. J. Disalvo, J. N. Carides, and J. V. Waszczak, "Topochemical Reactions of Rutile Related Structures with Lithium", Mater. Res. Bull., 13,

doi:10.6342/NTU201601970

147

1395-1402 (1978)

[11] M. Lazzari and B. Scrosati, "Cyclable Lithium Organic Electrolyte Cell Based on 2 Intercalation Electrodes", J. Electrochem. Soc., 127, 773-774 (1980) [12] T. N. K. Tozawa, "Progress in batteries and solar cells", 9, 209 (1990)

[13] P. V. J. N. M. G. K. Shenoy, Fast ion transport in solids : electrodes, and electrolytes - Conference proceedings. North Holland. p. 131-136,(1979) [14] I. E. Kelly, J. R. Owen, and B. C. H. Steele, "Poly(Ethylene Oxide) Electrolytes

for Operation at near Room-Temperature", J. Power Sources, 14, 13-21 (1985) [15] J. M. Tarascon, A. S. Gozdz, C. Schmutz, F. Shokoohi, and P. C. Warren,

"Performance of Bellcore's plastic rechargeable Li-ion batteries", Solid State Ionics, 86-8, 49-54 (1996)

[16] D. Guyomard, "New Trends in Electrochemical Technology: Energy Storage Systems for Electronics", Gordon & Breach Science, 9, 253–350 (2000) [17] M. S. Islam and C. A. J. Fisher, "Lithium and sodium battery cathode materials:

computational insights into voltage, diffusion and nanostructural properties", Chem Soc Rev, 43, 185-204 (2014)

[18] A. K. Padhi, K. S. Nanjundaswamy, and J. B. Goodenough, "Phospho-olivines as positive-electrode materials for rechargeable lithium batteries", Journal of the Electrochemical Society, 144, 1188-1194 (1997)

[19] V. A. Streltsov, E. L. Belokoneva, V. G. Tsirelson, and N. K. Hansen, "Multipole Analysis of the Electron-Density in Triphylite, Lifepo4, Using X-Ray-Diffraction Data", Acta Crystallogr B, 49, 147-153 (1993)

[20] C. Masquelier, A. K. Padhi, K. S. Nanjundaswamy, and J. B. Goodenough,

"New cathode materials for rechargeable lithium batteries: The 3-D framework structures Li3Fe2(XO4)3 (X = P, As)", J Solid State Chem, 135, 228-234 (1998)

doi:10.6342/NTU201601970

148

[21] A. K. Padhi, K. S. Nanjundaswamy, C. Masquelier, S. Okada, and J. B.

Goodenough, "Effect of structure on the Fe3+/Fe2+ redox couple in iron phosphates", Journal of the Electrochemical Society, 144, 1609-1613 (1997) [22] A. Guerfi, M. Kaneko, M. Petitclerc, M. Mori, and K. Zaghib, "LiFePO4

water-soluble binder electrode for Li-ion batteries", J Power Sources, 163, 1047-1052 (2007)

[23] A. S. Andersson, B. Kalska, L. Haggstrom, and J. O. Thomas, "Lithium extraction/insertion in LiFePO4: an X-ray diffraction and Mossbauer spectroscopy study", Solid State Ionics, 130, 41-52 (2000)

[24] C. Delacourt, L. Laffont, R. Bouchet, C. Wurm, J. B. Leriche, M. Morcrette, J.

M. Tarascon, and C. Masquelier, "Toward understanding of electrical limitations (electronic, ionic) in LiMPO4 (M = Fe, Mn) electrode materials", Journal of the Electrochemical Society, 152, A913-A921 (2005)

[25] Z. L. Gong and Y. Yang, "Recent advances in the research of polyanion-type cathode materials for Li-ion batteries", Energ Environ Sci, 4, 3223-3242 (2011) [26] G. Amatucci, A. Du Pasquier, A. Blyr, T. Zheng, and J. M. Tarascon, "The elevated temperature performance of the LiMn2O4/C system: failure and solutions", Electrochimica Acta, 45, 255-271 (1999)

[27] Y. M. Lin, H. C. Wu, Y. C. Yen, Z. Z. Guo, M. H. Yang, H. M. Chen, H. S. Sheu, and N. L. Wu, "Enhanced high-rate cycling stability of LiMn2O4 cathode by ZrO2 coating for Li-ion battery", Journal of the Electrochemical Society, 152, A1526-A1532 (2005)

[28] C. Liu, Z. G. Neale, and G. Cao, "Understanding electrochemical potentials of cathode materials in rechargeable batteries", Materials Today, 19, 109-123 (2016)

doi:10.6342/NTU201601970

149

[29] D. H. Jang and S. M. Oh, "Electrolyte effects on spinel dissolution and cathodic capacity losses in 4 v Li/LixMn2O4 rechargeable cells", J. Electrochem. Soc., 144, 3342-3348 (1997)

[30] Y. Dai, L. Cai, and R. E. White, "Capacity Fade Model for Spinel LiMn2O4

Electrode", J. Electrochem. Soc., 160, A182-A190 (2013)

[31] J. B. Goodenough and Y. Kim, "Challenges for Rechargeable Li Batteries", Chem Mater, 22, 587-603 (2010)

[32] K. Mizushima, P. C. Jones, P. J. Wiseman, and J. B. Goodenough, "Lixcoo2

"(Oless-Thanxless-Than-or-Equal-To1) - a New Cathode Material for Batteries of High-Energy Density", Mater Res Bull, 15, 783-789 (1980)

[33] H. Gabrisch, R. Yazami, and B. Fultz, "The character of dislocations in LiCoO2", Electrochemical and Solid State Letters, 5, A111-A114 (2002)

[34] J. N. Reimers and J. R. Dahn, "Electrochemical and Insitu X-Ray-Diffraction Studies of Lithium Intercalation in LixCoO2", Journal of the Electrochemical Society, 139, 2091-2097 (1992)

[35] T. Ohzuku and A. Ueda, "Solid-State Redox Reactions of Licoo2 (R(3)over-Bar-M) for 4 Volt Secondary Lithium Cells", Journal of the Electrochemical Society, 141, 2972-2977 (1994)

[36] Y. J. Kim, T. J. Kim, J. W. Shin, B. Park, and J. P. Cho, "The effect of Al2O3

coating on the cycle life performance in thin-film LiCoO2 cathodes", Journal of the Electrochemical Society, 149, A1337-A1341 (2002)

[37] L. J. Liu, L. Q. Chen, X. J. Huang, X. Q. Yang, W. S. Yoon, H. S. Lee, and J.

McBreen, "Electrochemical and in situ synchrotron XRD studies on Al2O3 -coated LiCoO2 cathode material", Journal of the Electrochemical Society, 151, A1344-A1351 (2004)

doi:10.6342/NTU201601970

150

[38] K. Y. Chung, W. S. Yoon, J. McBreen, X. Q. Yang, S. H. Oh, H. C. Shin, W. Il Cho, and B. W. Cho, "Structural studies on the effects of ZrO2 coating on LiCoO2 during cycling using in situ X-ray diffraction technique", Journal of the Electrochemical Society, 153, A2152-A2157 (2006)

[39] C. Delmas, M. Menetrier, L. Croguennec, I. Saadoune, A. Rougier, C. Pouillerie, G. Prado, M. Grune, and L. Fournes, "An overview of the Li(Ni,M)O2 systems:

syntheses, structures and properties", Electrochimica Acta, 45, 243-253 (1999) [40] W. Li, J. C. Currie, and J. Wolstenholme, "Influence of morphology on the

stability of LiNiO2", J Power Sources, 68, 565-569 (1997)

[41] T. Ohzuku, A. Ueda, and M. Kouguchi, "Synthesis and characterization of LiAl1/4Ni3/4O2 (R(3)over-bar-m) for lithium-ion (shuttlecock) batteries", Journal of the Electrochemical Society, 142, 4033-4039 (1995)

[42] L. Croguennec, P. Deniard, and R. Brec, "Electrochemical cyclability of orthorhombic LiMnO2 - Characterization of cycled materials", J. Electrochem.

Soc., 144, 3323-3330 (1997)

[43] B. Ammundsen and J. Paulsen, "Novel lithium-ion cathode materials based on layered manganese oxides", Advanced Materials, 13, 943 (2001)

[44] J. Reed, G. Ceder, and A. Van der Ven, "Layered-to-spinel phase transition in LixMnO2", Electrochemical and Solid State Letters, 4, A78-A81 (2001) [45] Y. I. Jang, B. Y. Huang, Y. M. Chiang, and D. R. Sadoway, "Stabilization of

LiMnO2 in the alpha-NaFeO2 structure type by LiAlO2 addition", Electrochemical and Solid State Letters, 1, 13-16 (1998)

[46] Y. M. Chiang, D. R. Sadoway, Y. I. Jang, B. Y. Huang, and H. F. Wang, "High capacity, temperature-stable lithium aluminum manganese oxide cathodes for rechargeable batteries", Electrochemical and Solid State Letters, 2, 107-110

doi:10.6342/NTU201601970

151

(1999)

[47] I. J. Davidson, R. S. McMillan, and J. J. Murray, "RECHARGEABLE CATHODES BASED ON LI2CRXMN2-XO4", J. Power Sources, 54, 205-208 (1995)

[48] M. E. Spahr, P. Novak, B. Schnyder, O. Haas, and R. Nesper, "Characterization of layered lithium nickel manganese oxides synthesized by a novel oxidative coprecipitation method and their electrochemical performance as lithium insertion electrode materials", Journal of the Electrochemical Society, 145, 1113-1121 (1998)

[49] N. Yabuuchi and T. Ohzuku, "Novel lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for advanced lithium-ion batteries", J Power Sources, 119, 171-174 (2003)

[50] I. Saadoune and C. Delmas, "On the LixNi0.8Co0.2O2 system", J Solid State Chem, 136, 8-15 (1998)

[51] E. Rossen, C. D. W. Jones, and J. R. Dahn, "Structure and Electrochemistry of Lixmnyni1-Yo2", Solid State Ionics, 57, 311-318 (1992)

[52] C. Pouillerie, F. Perton, P. Biensan, J. P. Peres, M. Broussely, and C. Delmas,

"Effect of magnesium substitution on the cycling behavior of lithium nickel cobalt oxide", J Power Sources, 96, 293-302 (2001)

[53] Z. L. Liu, A. S. Yu, and J. Y. Lee, "Synthesis and characterization of LiNi 1-x-yCoxMnyO2 as the cathode materials of secondary lithium batteries", J Power Sources, 81, 416-419 (1999)

[54] T. Ohzuku and Y. Makimura, "Layered lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for lithium-ion batteries", Chemistry Letters, 642-643 (2001)

doi:10.6342/NTU201601970

152

[55] K. M. Shaju, G. V. S. Rao, and B. V. R. Chowdari, "Performance of layered Li(Ni1/3Co1/3Mn1/3)O2 as cathode for Li-ion batteries", Electrochim. Acta, 48, 145-151 (2002)

[56] Z. Wu, X. Han, J. Zheng, Y. Wei, R. Qiao, F. Shen, J. Dai, L. Hu, K. Xu, Y. Lin, W. Yang, and F. Pan, "Depolarized and Fully Active Cathode Based on Li(Ni0.5Co0.2Mn0.3)O2 Embedded in Carbon Nanotube Network for Advanced Batteries", Nano Letters, 14, 4700-4706 (2014)

[57] J. Li, R. Yao, and C. Cao, "LiNi1/3Co1/3Mn1/3O2 Nanoplates with {010} Active Planes Exposing Prepared in Polyol Medium as a High-Performance Cathode for Li-Ion Battery", ACS Appl. Mater. Interfaces, 6, 5075-5082 (2014)

[58] Z. H. Lu, D. D. MacNeil, and J. R. Dahn, "Layered cathode materials Li[NixLi(1/3-2x/3)Mn(2/3-x/3)]O2 for lithium-ion batteries", Electrochem. Solid State Lett., 4, A191-A194 (2001)

[59] M. M. Thackeray, C. S. Johnson, J. T. Vaughey, N. Li, and S. A. Hackney,

"Advances in manganese-oxide 'composite' electrodes for lithium-ion batteries", J Mater Chem, 15, 2257-2267 (2005)

[60] M. M. Thackeray, S. H. Kang, C. S. Johnson, J. T. Vaughey, R. Benedek, and S.

A. Hackney, "Li2MnO3-stabilized LiMO2 (M = Mn, Ni, Co) electrodes for lithium-ion batteries", J. Mater. Chem., 17, 3112-3125 (2007)

[61] X. T. Guan, B. Ding, X. F. Liu, J. J. Zhu, C. H. Mi, and X. G. Zhang, "Enhancing the electrochemical performance of Li1.2Ni0.2Mn0.6O2 by surface modification with nickel-manganese composite oxide", J Solid State Electr, 17, 2087-2093 (2013)

[62] C. S. Johnson, N. C. Li, C. Lefief, J. T. Vaughey, and M. M. Thackeray,

"Synthesis, Characterization and Electrochemistry of Lithium Battery

doi:10.6342/NTU201601970

153

Electrodes: xLi2MnO3 · (1-x)LiMn0.333Ni0.333Co0.333O2 (0 <= x <= 0.7)", Chem Mater, 20, 6095-6106 (2008)

[63] B. Ammundsen, J. Paulsen, I. Davidson, R. S. Liu, C. H. Shen, J. M. Chen, L.

Y. Jang, and J. F. Lee, "Local structure and first cycle redox mechanism of layered Li1.2Cr0.4Mn0.4O2 cathode material", Journal of the Electrochemical Society, 149, A431-A436 (2002)

[64] C. J. Pan, Y. J. Lee, B. Ammundsen, and C. P. Grey, "6Li MAS NMR studies of the local structure and electrochemical properties of Cr-doped lithium manganese and lithium cobalt oxide cathode materials for lithium-ion batteries", Chem Mater, 14, 2289-2299 (2002)

[65] J. Bareno, M. Balasubramanian, S. H. Kang, J. G. Wen, C. H. Lei, S. V. Pol, I.

Petrov, and D. P. Abraham, "Long-Range and Local Structure in the Layered Oxide Li1.2Co0.4Mn0.4O2", Chem Mater, 23, 2039-2050 (2011)

[66] C. H. Lei, J. Bareno, J. G. Wen, I. Petrov, S. H. Kang, and D. P. Abraham, "Local structure and composition studies of Li1.2Ni0.2Mn0.6O2 by analytical electron microscopy", J Power Sources, 178, 422-433 (2008)

[67] M. Gu, I. Belharouak, A. Genc, Z. G. Wang, D. P. Wang, K. Amine, F. Gao, G.

W. Zhou, S. Thevuthasan, D. R. Baer, J. G. Zhang, N. D. Browning, J. Liu, and C. M. Wang, "Conflicting Roles of Nickel in Controlling Cathode Performance in Lithium Ion Batteries", Nano Lett, 12, 5186-5191 (2012)

[68] J. Bareno, C. H. Lei, J. G. Wen, S. H. Kang, I. Petrov, and D. P. Abraham, "Local Structure of Layered Oxide Electrode Materials for Lithium-Ion Batteries", Adv Mater, 22, 1122-1127 (2010)

[69] A. Boulineau, L. Simonin, J. F. Colin, E. Canevet, L. Daniel, and S. Patoux,

"Evolutions of Li1.2Mn0.61Ni0.18Mg0.01O2 during the Initial Charge/Discharge

doi:10.6342/NTU201601970

154

Cycle Studied by Advanced Electron Microscopy", Chem Mater, 24, 3558-3566 (2012)

[70] B. Xu, C. R. Fell, M. F. Chi, and Y. S. Meng, "Identifying surface structural changes in layered Li-excess nickel manganese oxides in high voltage lithium ion batteries: A joint experimental and theoretical study", Energ Environ Sci, 4, 2223-2233 (2011)

[71] J. G. Wen, J. Bareno, C. H. Lei, S. H. Kang, M. Balasubramanian, I. Petrov, and D. P. Abraham, "Analytical electron microscopy of Li1.2Co0.4Mn0.4O2 for lithium-ion batteries", Solid State Ionics, 182, 98-107 (2011)

[72] H. Koga, L. Croguennec, P. Mannessiez, M. Menetrier, F. Weill, L. Bourgeois, M. Duttine, E. Suard, and C. Delmas, "Li1.20Mn0.54Co0.13Ni0.13O2 with Different Particle Sizes as Attractive Positive Electrode Materials for Lithium-Ion Batteries: Insights into Their Structure", J Phys Chem C, 116, 13497-13506 (2012)

[73] K. A. Jarvis, Z. Q. Deng, L. F. Allard, A. Manthiram, and P. J. Ferreira, "Atomic Structure of a Lithium-Rich Layered Oxide Material for Lithium-Ion Batteries:

Evidence of a Solid Solution", Chem Mater, 23, 3614-3621 (2011)

[74] W. S. Yoon, N. Kim, X. Q. Yang, J. McBreen, and C. P. Grey, "6Li MAS NMR and in situ X-ray studies of lithium nickel manganese oxides", J Power Sources, 119, 649-653 (2003)

[75] J. Breger, M. Jiang, N. Dupre, Y. S. Meng, Y. Shao-Horn, G. Ceder, and C. P.

Grey, "High-resolution X-ray diffraction, DIFFaX, NMR and first principles study of disorder in the Li2MnO3-Li[Ni1/2Mn1/2]O2 solid solution", J Solid State Chem, 178, 2575-2585 (2005)

[76] S. H. Kang, P. Kempgens, S. Greenbaum, A. J. Kropf, K. Amine, and M. M.

doi:10.6342/NTU201601970

155

Thackeray, "Interpreting the structural and electrochemical complexity of 0.5Li2MnO3·0.5LiMO2 electrodes for lithium batteries (M = Mn0.5-xNi0.5-xCo2x, 0 <= x <= 0.5)", J Mater Chem, 17, 2069-2077 (2007)

[77] M. M. Thackeray, S. H. Kang, C. S. Johnson, J. T. Vaughey, and S. A. Hackney,

"Comments on the structural complexity of lithium-rich Li1+xM1-xO2 electrodes (M = Mn, Ni, Co) for lithium batteries", Electrochem Commun, 8, 1531-1538 (2006)

[78] T. Ohzuku, M. Nagayama, K. Tsuji, and K. Ariyoshi, "High-capacity lithium insertion materials of lithium nickel manganese oxides for advanced lithium-ion batteries: toward rechargeable capacity more than 300 mA h g-1", J Mater Chem, 21, 10179-10188 (2011)

[79] D. Mohanty, S. Kalnaus, R. A. Meisner, K. J. Rhodes, J. L. Li, E. A. Payzant, D.

L. Wood, and C. Daniel, "Structural transformation of a lithium-rich Li1.2Co0.1Mn0.55Ni0.15O2 cathode during high voltage cycling resolved by in situ X-ray diffraction", J Power Sources, 229, 239-248 (2013)

[80] C. P. Grey, W. S. Yoon, J. Reed, and G. Ceder, "Electrochemical activity of Li in the transition-metal sites of O3 Li[Li(1-2x)/3Mn(2-x)/3Nix]O2", Electrochem.

Solid State Lett., 7, A290-A293 (2004)

[81] K. Kang and G. Ceder, "Factors that affect Li mobility in layered lithium transition metal oxides", Phys Rev B, 74, (2006)

[82] M. M. Thackeray, W. I. F. David, P. G. Bruce, and J. B. Goodenough, "Lithium Insertion into Manganese Spinels", Mater Res Bull, 18, 461-472 (1983)

[83] K. Shizuka, T. Kobayashi, K. Okahara, K. Okamoto, S. Kanzaki, and R. Kanno,

"Characterization of Li1+yNixCo1-2xMnxO2 positive active materials for lithium ion batteries", J Power Sources, 146, 589-593 (2005)

doi:10.6342/NTU201601970

156

[84] A. Rougier, P. Gravereau, and C. Delmas, "Optimization of the composition of the Li1-zNi1+zO2 electrode materials: Structural, magnetic, and electrochemical studies", Journal of the Electrochemical Society, 143, 1168-1175 (1996) [85] Z. H. Lu, L. Y. Beaulieu, R. A. Donaberger, C. L. Thomas, and J. R. Dahn,

"Synthesis, structure, and electrochemical behavior of Li[NixLi1/3-2x/3Mn 2/3-x/3]O2", Journal of the Electrochemical Society, 149, A778-A791 (2002) [86] L. Y. Yu, W. H. Qiu, F. Lian, J. Y. Huang, and X. L. Kang, "Understanding the

phenomenon of increasing capacity of layered 0.65Li[Li1/3Mn2/3]O2· 0.35Li(Ni1/3Co1/3Mn1/3)O2", J Alloy Compd, 471, 317-321 (2009)

[87] A. R. Armstrong, M. Holzapfel, P. Novak, C. S. Johnson, S. H. Kang, M. M.

Thackeray, and P. G. Bruce, "Demonstrating oxygen loss and associated structural reorganization in the lithium battery cathode Li[Ni0.2Li0.2Mn0.6]O2", J Am Chem Soc, 128, 8694-8698 (2006)

[88] M. Lu, H. Cheng, and Y. Yang, "A comparison of solid electrolyte interphase (SEI) on the artificial graphite anode of the aged and cycled commercial lithium ion cells", Electrochim. Acta, 53, 3539-3546 (2008)

[89] S.-H. Lee, H.-G. You, K.-S. Han, J. Kim, I.-H. Jung, and J.-H. Song, "A new approach to surface properties of solid electrolyte interphase on a graphite negative electrode", J. Power Sources, 247, 307-313 (2014)

[90] T. Joshi, K. Eom, G. Yushin, and T. F. Fuller, "Effects of Dissolved Transition Metals on the Electrochemical Performance and SEI Growth in Lithium-Ion Batteries", J. Electrochem. Soc., 161, A1915-A1921 (2014)

[91] H. Zheng, Q. Sun, G. Liu, X. Song, and V. S. Battaglia, "Correlation between dissolution behavior and electrochemical cycling performance for LiNi1/3Co1/3Mn1/3O2-based cells", J. Power Sources, 207, 134-140 (2012)

doi:10.6342/NTU201601970

157

[92] W. Liu, P. Oh, X. Liu, M.-J. Lee, W. Cho, S. Chae, Y. Kim, and J. Cho, "Nickel-Rich Layered Lithium Transition-Metal Oxide for High-Energy Lithium-Ion Batteries", Angewandte Chemie-International Edition, 54, 4440-4457 (2015) [93] Y. Lyu, Y. Liu, and L. Gu, "Surface structure evolution of cathode materials for

Li-ion batteries", Chinese Physics B, 25, (2016)

[94] M. Cheng, W. P. Tang, Y. Li, and K. J. Zhu, "Study on compositions and changes of SEI film of Li2MnO3 positive material during the cycles", Catalysis Today, 274, 116-122 (2016)

[95] P. K. Nayak, J. Grinblat, M. Levi, Y. Wu, B. Powell, and D. Aurbach, "TEM and Raman spectroscopy evidence of layered to spinel phase transformation in layered LiNi1/3Mn1/3Co1/3O2 upon cycling to higher voltages", Journal of Electroanalytical Chemistry, 733, 6-19 (2014)

[96] F. Wu, N. Li, Y. Su, H. Shou, L. Bao, W. Yang, L. Zhang, R. An, and S. Chen,

"Spinel/Layered Heterostructured Cathode Material for High-Capacity and High-Rate Li-Ion Batteries", Advanced Materials, 25, 3722-3726 (2013) [97] F. Lin, I. M. Markus, D. Nordlund, T.-C. Weng, M. D. Asta, H. L. Xin, and M.

M. Doeff, "Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries", Nature Communications, 5, (2014)

[98] M. Gu, I. Belharouak, J. M. Zheng, H. M. Wu, J. Xiao, A. Genc, K. Amine, S.

Thevuthasan, D. R. Baer, J. G. Zhang, N. D. Browning, J. Liu, and C. M. Wang,

"Formation of the Spinel Phase in the Layered Composite Cathode Used in Li-Ion Batteries", ACS Nano, 7, 760-767 (2013)

[99] N. Yabuuchi, K. Yoshii, S.-T. Myung, I. Nakai, and S. Komaba, "Detailed Studies of a High-Capacity Electrode Material for Rechargeable Batteries,

doi:10.6342/NTU201601970

158

Li2MnO3-LiCo1/3Ni1/3Mn1/3O2", Journal of the American Chemical Society, 133, 4404-4419 (2011)

[100] S. Komaba, N. Kumagai, and Y. Kataoka, "Influence of manganese(II), cobalt(II), and nickel(II) additives in electrolyte on performance of graphite anode for lithium-ion batteries", Electrochim. Acta, 47, 1229-1239 (2002) [101] H. Tsunekawa, S. Tanimoto, R. Marubayashi, M. Fujita, K. Kifune, and M. Sano,

"Capacity fading of graphite electrodes due to the deposition of manganese ions on them in Li-ion batteries", J. Electrochem. Soc., 149, A1326-A1331 (2002) [102] S. T. Myung, N. Kumagai, S. Komaba, and H. T. Chung, "Effects of Al doping

on the microstructure of LiCoO2 cathode materials", Solid State Ionics, 139, 47-56 (2001)

[103] V. Subramanian and G. T. K. Fey, "Preparation and characterization of LiNi0.7Co0.2Ti0.05M0.05O2 (M=Mg, Al and Zn) systems as cathode materials for lithium batteries", Solid State Ionics, 148, 351-358 (2002)

[104] M. V. Reddy, T. W. Jie, C. J. Jafta, K. I. Ozoemena, M. K. Mathe, A. S. Nair, S.

S. Peng, M. S. Idris, G. Balakrishna, F. I. Ezema, and B. V. R. Chowdari,

"Studies on Bare and Mg-doped LiCoO2 as a cathode material for Lithium ion Batteries", Electrochim. Acta, 128, 192-197 (2014)

[105] S.-K. Hu, G.-H. Cheng, M.-Y. Cheng, B.-J. Hwang, and R. Santhanam, "Cycle life improvement of ZrO2-coated spherical LiNi1/3Co1/3Mn1/3O2 cathode material for lithium ion batteries", J. Power Sources, 188, 564-569 (2009) [106] A. M. Wise, C. Ban, J. N. Weker, S. Misra, A. S. Cavanagh, Z. Wu, Z. Li, M. S.

Whittingham, K. Xu, S. M. George, and M. F. Toney, "Effect of Al2O3 Coating on Stabilizing LiNi0.4Mn0.4Co0.2O2 Cathodes", Chemistry of Materials, 27, 6146-6154 (2015)

doi:10.6342/NTU201601970

159

[107] Y. Wu, A. V. Murugan, and A. Manthiram, "Surface modification of high capacity layered Li Li0.2Mn0.54Ni0.13Co0.13O2 cathodes by AlPO4", J.

Electrochem. Soc., 155, A635-A641 (2008)

[108] J. Zhang, Z. Li, R. Gao, Z. Hu, and X. Liu, "High Rate Capability and Excellent Thermal Stability of Li+-Conductive Li2ZrO3-Coated LiNi1/3Co1/3Mn1/3O2 via a Synchronous Lithiation Strategy", Journal of Physical Chemistry C, 119, 20350-20356 (2015)

[109] L. Li, Z. Chen, L. Song, M. Xu, H. Zhu, L. Gong, and K. Zhang,

"Characterization and electrochemical performance of lithium-active titanium dioxide inlaid LiNi0.5Co0.2Mn0.3O2 material prepared by lithium residue-assisted method", Journal of Alloys and Compounds, 638, 77-82 (2015)

[110] L. Li, Z. Chen, Q. Zhang, M. Xu, X. Zhou, H. Zhu, and K. Zhang, "A hydrolysis-hydrothermal route for the synthesis of ultrathin LiAlO2-inlaid LiNi0.5Co0.2Mn0.3O2 as a high-performance cathode material for lithium ion batteries", Journal of Materials Chemistry A, 3, 894-904 (2015)

[111] Y. Cho, S. Lee, Y. Lee, T. Hong, and J. Cho, "Spinel-Layered Core-Shell Cathode Materials for Li-Ion Batteries", Advanced Energy Materials, 1, 821-828 (2011)

[112] Y. Cho, P. Oh, and J. Cho, "A New Type of Protective Surface Layer for High-Capacity Ni-Based Cathode Materials: Nanoscaled Surface Pillaring Layer", Nano Letters, 13, 1145-1152 (2013)

[113] J. H. Park, J. H. Cho, S. B. Kim, W. S. Kim, S. Y. Lee, and S. Y. Lee, "A novel ion-conductive protection skin based on polyimide gel polymer electrolyte:

application to nanoscale coating layer of high voltage LiNi1/3Co1/3Mn1/3O2

cathode materials for lithium-ion batteries", J. Mater. Chem., 22, 12574-12581

doi:10.6342/NTU201601970

160

(2012)

[114] X. Liu, H. Li, D. Li, M. Ishida, and H. Zhou, "PEDOT modified LiNi1/3Co1/3Mn1/3O2 with enhanced electrochemical performance for lithium ion batteries", J. Power Sources, 243, 374-380 (2013)

[115] G. T. K. Fey, C. S. Chang, and T. P. Kumar, "Synthesis and surface treatment of LiNi1/3Co1/3Mn1/3O2 cathode materials for Li-ion batteries", Journal of Solid State Electrochemistry, 14, 17-26 (2010)

[116] S. J. Shi, J. P. Tu, Y. Y. Tang, X. Y. Liu, Y. Q. Zhang, X. L. Wang, and C. D. Gu,

"Enhanced cycling stability of Li Li0.2Mn0.54Ni0.13Co0.13O2 by surface modification of MgO with melting impregnation method", Electrochim. Acta, 88, 671-679 (2013)

[117] B. C. Smith, "Fundamentals of Fourier Transform Infrared Spectroscopy,CRC

[117] B. C. Smith, "Fundamentals of Fourier Transform Infrared Spectroscopy,CRC

相關文件