• 沒有找到結果。

Chapter 4. Discussion

4.4 Conclusions

This study, for the first time, identified metabolome for predicting the risk of

low BMD in postmenopausal women. Metabolomics can quantify a large-scale of

metabolites to characterize response to drugs, diet, lifestyle, environmental stimuli and

genetic modulations.15 Future studies exploring gene-metabolite interactions using

liquid chromatograph/mass spectrometry for low abundant metabolites and animal

studies are warranted to shed light on the association between metabolome and BMD

in human.

20

References

1. Prentice A. Diet, nutrition and the prevention of osteoporosis. Public Health Nutr

2004;7:227-43.

2. Dawson-Hughes B, Looker AC, Tosteson AN, Johansson H, Kanis JA, Melton

LJ, 3rd. The potential impact of the National Osteoporosis Foundation guidance

on treatment eligibility in the USA: an update in NHANES 2005-2008.

Osteoporosis international : a journal established as result of cooperation

between the European Foundation for Osteoporosis and the National

Osteoporosis Foundation of the USA 2012;23:811-20.

3. Lin YC, Pan WH. Bone mineral density in adults in Taiwan: results of the

Nutrition and Health Survey in Taiwan 2005-2008 (NAHSIT 2005-2008). Asia

Pac J Clin Nutr 2011;20:283-91.

4. Raisz LG. Clinical practice. Screening for osteoporosis. N Engl J Med

2005;353:164-71.

5. Kanis JA. Diagnosis of osteoporosis and assessment of fracture risk. Lancet

2002;359:1929-36.

6. Garnero P, Hausherr E, Chapuy MC, Marcelli C, Grandjean H, Muller C,

Cormier C, Breart G, Meunier PJ, Delmas PD. Markers of bone resorption

predict hip fracture in elderly women: the EPIDOS Prospective Study. J Bone

21

Miner Res 1996;11:1531-8.

7. Garnero P, Mulleman D, Munoz F, Sornay-Rendu E, Delmas PD. Long-term

variability of markers of bone turnover in postmenopausal women and

implications for their clinical use: the OFELY study. J Bone Miner Res

2003;18:1789-94.

8. McLean RR, Jacques PF, Selhub J, Tucker KL, Samelson EJ, Broe KE, Hannan

MT, Cupples LA, Kiel DP. Homocysteine as a predictive factor for hip fracture

in older persons. N Engl J Med 2004;350:2042-9.

9. van Meurs JB, Dhonukshe-Rutten RA, Pluijm SM, van der Klift M, de Jonge R,

Lindemans J, de Groot LC, Hofman A, Witteman JC, van Leeuwen JP, Breteler

MM, Lips P, Pols HA, Uitterlinden AG. Homocysteine levels and the risk of

osteoporotic fracture. N Engl J Med 2004;350:2033-41.

10. Leboff MS, Narweker R, LaCroix A, Wu L, Jackson R, Lee J, Bauer DC, Cauley

J, Kooperberg C, Lewis C, Thomas AM, Cummings S. Homocysteine levels and

risk of hip fracture in postmenopausal women. J Clin Endocrinol Metab

2009;94:1207-13.

11. Enneman AW, van der Velde N, de Jonge R, Heil SG, Stolk L, Hofman A,

Rivadeneira F, Zillikens MC, Uitterlinden AG, van Meurs JB. The association

between plasma homocysteine levels, methylation capacity and incident

22

osteoporotic fractures. Bone 2012.

12. Gjesdal CG, Vollset SE, Ueland PM, Refsum H, Drevon CA, Gjessing HK, Tell

GS. Plasma total homocysteine level and bone mineral density: the Hordaland

Homocysteine Study. Arch Intern Med 2006;166:88-94.

13. Jimi E, Aoki K, Saito H, D'Acquisto F, May MJ, Nakamura I, Sudo T, Kojima T,

Okamoto F, Fukushima H, Okabe K, Ohya K, Ghosh S. Selective inhibition of

NF-kappa B blocks osteoclastogenesis and prevents inflammatory bone

destruction in vivo. Nat Med 2004;10:617-24.

14. Yuan J, Akiyama M, Nakahama K, Sato T, Uematsu H, Morita I. The effects of

polyunsaturated fatty acids and their metabolites on osteoclastogenesis in vitro.

Prostaglandins Other Lipid Mediat 2010;92:85-90.

15. Beckonert O, Keun HC, Ebbels TM, Bundy J, Holmes E, Lindon JC, Nicholson

JK. Metabolic profiling, metabolomic and metabonomic procedures for NMR

spectroscopy of urine, plasma, serum and tissue extracts. Nat Protoc

2007;2:2692-703.

16. Nicholson JK, Foxall PJ, Spraul M, Farrant RD, Lindon JC. 750 MHz 1H and

1H-13C NMR spectroscopy of human blood plasma. Anal Chem

1995;67:793-811.

17. Nicholson G, Rantalainen M, Maher AD, Li JV, Malmodin D, Ahmadi KR,

23

Faber JH, Hallgrimsdottir IB, Barrett A, Toft H, Krestyaninova M, Viksna J,

Neogi SG, Dumas ME, Sarkans U, The Molpage C, Silverman BW, Donnelly P,

Nicholson JK, Allen M, Zondervan KT, Lindon JC, Spector TD, McCarthy MI,

Holmes E, Baunsgaard D, Holmes CC. Human metabolic profiles are stably

controlled by genetic and environmental variation. Mol Syst Biol 2011;7:525.

18. Keun HC, Ebbels TM, Antti H, Bollard ME, Beckonert O, Schlotterbeck G,

Senn H, Niederhauser U, Holmes E, Lindon JC, Nicholson JK. Analytical

reproducibility in 1H NMR-based metabonomic urinalysis. Chem Res Toxicol

2002;15:1380-6.

19. Dumas ME, Maibaum EC, Teague C, Ueshima H, Zhou B, Lindon JC,

Nicholson JK, Stamler J, Elliott P, Chan Q, Holmes E. Assessment of analytical

reproducibility of 1H NMR spectroscopy based metabonomics for large-scale

epidemiological research: the INTERMAP Study. Analytical chemistry

2006;78:2199-208.

20. Nicholson JK, Lindon JC, Holmes E. 'Metabonomics': understanding the

metabolic responses of living systems to pathophysiological stimuli via

multivariate statistical analysis of biological NMR spectroscopic data.

Xenobiotica 1999;29:1181-9.

21. Fiehn O. Metabolomics--the link between genotypes and phenotypes. Plant Mol

24

Biol 2002;48:155-71.

22. Gibney MJ, Walsh M, Brennan L, Roche HM, German B, van Ommen B.

Metabolomics in human nutrition: opportunities and challenges. Am J Clin Nutr

2005;82:497-503.

23. Long WF, Li L, Chen HQ, Tang Y, He XL, Jing RZ. 1H-NMR-based

metabonomics analysis of plasma from osteoporotic rats induced by ovariectomy.

Sichuan Da Xue Xue Bao Yi Xue Ban 2009;40:843-7.

24. Xue L, Wang Y, Liu L, Zhao L, Han T, Zhang Q, Qin L. A 1HNMR-Based

Metabonomics Study of Postmenopausal Osteoporosis and Intervention Effects

of Er-Xian Decoction in Ovariectomized Rats. Int J Mol Sci 2011;12:7635-51.

25. Lerner UH. Bone remodeling in post-menopausal osteoporosis. J Dent Res

2006;85:584-95.

26. Viant MR. Improved methods for the acquisition and interpretation of NMR

metabolomic data. Biochem Biophys Res Commun 2003;310:943-8.

27. Barton RH, Waterman D, Bonner FW, Holmes E, Clarke R, Nicholson JK,

Lindon JC. The influence of EDTA and citrate anticoagulant addition to human

plasma on information recovery from NMR-based metabolic profiling studies.

Mol Biosyst 2010;6:215-24.

28. Purohit PV, Rocke DM, Viant MR, Woodruff DL. Discrimination models using

25

variance-stabilizing transformation of metabolomic NMR data. OMICS

2004;8:118-30.

29. Eriksson L, Johansson E, Kettaneh-Wold N, Wold S. Introduction to multi-

andmegavariate dta analysis using projection methods (PCA & PLS): Umetrics;

1999.

30. van den Berg RA, Hoefsloot HC, Westerhuis JA, Smilde AK, van der Werf MJ.

Centering, scaling, and transformations: improving the biological information

content of metabolomics data. BMC Genomics 2006;7:142.

31. Xia J, Psychogios N, Young N, Wishart DS. MetaboAnalyst: a web server for

metabolomic data analysis and interpretation. Nucleic Acids Res

2009;37:W652-60.

32. Manolagas SC. From estrogen-centric to aging and oxidative stress: a revised

perspective of the pathogenesis of osteoporosis. Endocr Rev 2010;31:266-300.

33. Cohen SA. Amino acid analysis using precolumn derivatization with

6-aminoquinolyl-N-hydroxysuccinimidyl carbamate. Methods Mol Biol

2000;159:39-47.

34. Sengupta S, Park SH, Patel A, Carn J, Lee K, Kaplan DL. Hypoxia and amino

acid supplementation synergistically promote the osteogenesis of human

mesenchymal stem cells on silk protein scaffolds. Tissue Eng Part A

26

2010;16:3623-34.

35. Frayn KN. Calculation of substrate oxidation rates in vivo from gaseous

exchange. J Appl Physiol 1983;55:628-34.

36. Owen OE, Trapp VE, Skutches CL, Mozzoli MA, Hoeldtke RD, Boden G,

Reichard GA, Jr. Acetone metabolism during diabetic ketoacidosis. Diabetes

1982;31:242-8.

37. Vestergaard P. Discrepancies in bone mineral density and fracture risk in patients

with type 1 and type 2 diabetes--a meta-analysis. Osteoporos Int

2007;18:427-44.

38. Shan PF, Wu XP, Zhang H, Cao XZ, Gu W, Deng XG, Gu C, Liao EY. Bone

mineral density and its relationship with body mass index in postmenopausal

women with type 2 diabetes mellitus in mainland China. J Bone Miner Metab

2009;27:190-7.

39. Ma L, Oei L, Jiang L, Estrada K, Chen H, Wang Z, Yu Q, Zillikens MC, Gao X,

Rivadeneira F. Association between bone mineral density and type 2 diabetes

mellitus: a meta-analysis of observational studies. Eur J Epidemiol

2012;27:319-32.

40. Adami S. Bone health in diabetes: considerations for clinical management. Curr

Med Res Opin 2009;25:1057-72.

27

41. Felson DT, Zhang Y, Hannan MT, Anderson JJ. Effects of weight and body mass

index on bone mineral density in men and women: the Framingham study. J

Bone Miner Res 1993;8:567-73.

42. Frederich RC, Hamann A, Anderson S, Lollmann B, Lowell BB, Flier JS. Leptin

levels reflect body lipid content in mice: evidence for diet-induced resistance to

leptin action. Nat Med 1995;1:1311-4.

43. Thomas T, Gori F, Khosla S, Jensen MD, Burguera B, Riggs BL. Leptin acts on

human marrow stromal cells to enhance differentiation to osteoblasts and to

inhibit differentiation to adipocytes. Endocrinology 1999;140:1630-8.

44. Martin A, de Vittoris R, David V, Moraes R, Begeot M, Lafage-Proust MH,

Alexandre C, Vico L, Thomas T. Leptin modulates both resorption and formation

while preventing disuse-induced bone loss in tail-suspended female rats.

Endocrinology 2005;146:3652-9.

45. Adami S, Braga V, Zamboni M, Gatti D, Rossini M, Bakri J, Battaglia E.

Relationship between lipids and bone mass in 2 cohorts of healthy women and

men. Calcif Tissue Int 2004;74:136-42.

46. Brownbill RA, Ilich JZ. Lipid profile and bone paradox: higher serum lipids are

associated with higher bone mineral density in postmenopausal women. J

Womens Health (Larchmt) 2006;15:261-70.

28

47. Yamaguchi T, Sugimoto T, Yano S, Yamauchi M, Sowa H, Chen Q, Chihara K.

Plasma lipids and osteoporosis in postmenopausal women. Endocr J

2002;49:211-7.

48. Cui LH, Shin MH, Chung EK, Lee YH, Kweon SS, Park KS, Choi JS.

Association between bone mineral densities and serum lipid profiles of pre- and

post-menopausal rural women in South Korea. Osteoporos Int 2005;16:1975-81.

49. Orozco P. Atherogenic lipid profile and elevated lipoprotein (a) are associated

with lower bone mineral density in early postmenopausal overweight women.

Eur J Epidemiol 2004;19:1105-12.

50. Serre CM, Farlay D, Delmas PD, Chenu C. Evidence for a dense and intimate

innervation of the bone tissue, including glutamate-containing fibers. Bone

1999;25:623-9.

51. Skerry TM, Genever PG. Glutamate signalling in non-neuronal tissues. Trends

Pharmacol Sci 2001;22:174-81.

52. Chenu C, Serre CM, Raynal C, Burt-Pichat B, Delmas PD. Glutamate receptors

are expressed by bone cells and are involved in bone resorption. Bone

1998;22:295-9.

53. Behl C, Skutella T, Lezoualc'h F, Post A, Widmann M, Newton CJ, Holsboer F.

Neuroprotection against oxidative stress by estrogens: structure-activity

29

relationship. Mol Pharmacol 1997;51:535-41.

54. Singer CA, Figueroa-Masot XA, Batchelor RH, Dorsa DM. The

mitogen-activated protein kinase pathway mediates estrogen neuroprotection

after glutamate toxicity in primary cortical neurons. J Neurosci

1999;19:2455-63.

55. Zhu X, Liu X, He P, Cao B, Lv Y, Zhang W, Ni X. Metabolomics in serum of

ovariectomised rats and those exposed to 17beta-oestradiol and genistein.

Gynecol Endocrinol 2010;26:760-7.

56. Ma B, Zhang Q, Wang GJ, A JY, Wu D, Liu Y, Cao B, Liu LS, Hu YY, Wang YL,

Zheng YY. GC-TOF/MS-based metabolomic profiling of estrogen

deficiency-induced obesity in ovariectomized rats. Acta Pharmacol Sin

2011;32:270-8.

57. Rapuri PB, Kinyamu HK, Gallagher JC, Haynatzka V. Seasonal changes in

calciotropic hormones, bone markers, and bone mineral density in elderly

women. J Clin Endocrinol Metab 2002;87:2024-32.

58. Frankenfeld CL, McTiernan A, Thomas WK, LaCroix K, McVarish L, Holt VL,

Schwartz SM, Lampe JW. Postmenopausal bone mineral density in relation to

soy isoflavone-metabolizing phenotypes. Maturitas 2006;53:315-24.

30

Figure 1. Flowchart of participant recruitment Participants for statistical

analyses (610)

Lack of blood sample (45) or NMR data (30)

or NMR (30)

Lack of BMD data at spine (51)

Take steroid (3) or have hormone replacement therapy (34)

Women aged 40-55 (773)

31

s o.138

Figure 2. The tertiles of bone mineral density

T1: BMD < 1.138 g/cm2; T2: 1.138 g/cm2 ≤ BMD <1.258 g/cm2; T3: BMD ≥ 1.258 g/cm2.

1.138 1.258

0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

0 5 10 15 20 25 30

Percent

Bone mineral density

Bone Mineral Density (g/cm2)

32

Figure 3. PCA score plots from the analysis of CPMG NMR spectra using women plasma samples

(a) High BMD group: n=399; low BMD group: n=211

(b) Premenopausal women. High BMD group: n=349; low BMD group: n=134 (c) Postmenopausal women. High BMD group: n=45; low BMD group: n=77

High BMD indicates the 2nd and 3rd tertiles of BMD; low BMD indicates the 1st tertile of BMD.

Abbreviations: PCA, principle components analysis; CPMG, Carr-Purcell-Meiboom-Gill;

BMD, bone mineral density.

33

Figure 4. PLS-DA score plots from the analysis of CPMG NMR spectra using women plasma samples

(a) High BMD group: n=399; low BMD group: n=211

(b) Premenopausal women. High BMD group: n=349; low BMD group: n=134 (c) Postmenopausal women. High BMD group: n=45; low BMD group: n=77

High BMD indicates the 2nd and 3rd tertiles of BMD; low BMD indicates the 1st tertile of BMD.

Abbreviations: PCA, principle components analysis; CPMG, Carr-Purcell-Meiboom-Gill;

BMD, bone mineral density.

34

Figure 5. Receiver operating characteristic curves of comparing models for classification of high and low BMD

(a) All participants. Model 1: AUC= 0.59 (95% CI=0.55-0.64), Model 2: AUC=0.60 (95%

CI=0.55-0.65). Glutamine alone: AUC=0.54 (95% CI=0.50-0.59).

(b) Premenopausal women. Model 1: AUC=0.57 (95% CI= 0.52-0.63), Model 2: AUC=0.60 (95% CI=0.55-0.66). Glutamine alone: AUC=0.53 (95% CI: 0.48-0.58).

(c) Postmenopausal women. Model 1: AUC=0.69 (95% CI: 0.67-0.72), Model 2: AUC=0.70 (95% CI: 0.67-0.73). Glutamine alone: AUC=0.65 (95% CI: 0.63-0.68).

Model 1: lactate, acetone, lipid, VLDL, and glutamine.

Model 2: Model 1 plus acetate and glucose.

High BMD indicates the 2nd and 3rd tertiles of BMD; low BMD indicates the 1st tertile of BMD.

Abbreviations: AUC, area under the curve; BMD, bone mineral density; CI, confidence interval;

VLDL, very low density lipoprotein.

35

Figure 6. Acetone distribution by fasting glucose level

(High:

glucose> 100 mg/dL; Low: glucose ≤ 100 mg/dL)

36

Figure 7. Postulated mechanism relates important metabolites with bone

mineral density among postmenopausal women

Acetone is referred to ketone bodies which may be generated during diabetic ketosis36, and then promote to release hormonal factors that suppresses estrogen deficiency and the subsequent bone loss.37-41 Lactate may against bone loss via regulating collagen biosynthesis during osteogenesis.34 Lipid and very low density lipoprotein as well as lipid profiles can be reflected by leptin level which is related to differentiation of stromal cells to osteoblasts and thus prevent further loss of bone mass.42-44 Bone resorption may occur when glutamine interconverts to excess amount of glutamate and then cause bone loss as the composition of osteoclast expresses glutamate receptors.52

37

Table 1. Characteristics of the study population

Variables BMD Waist circumference (cm) 73.6 (0.35) 71.6 (0.44) 0.0008 Diastolic blood pressure (mmHg) 64.9 (0.51) 63.7 (0.64) 0.13

Fasting glucose (mg/dL) 101.4 (1.16) 97.2 (0.61) 0.01

Triglycerides (mg/dL) 94.1 (2.70) 87.3 (3.10) 0.10

High-density lipoprotein cholesterol (mg/dL)

69.8 (0.77) 72.7 (1.25) 0.05

Total cholesterol (mg/dL) 198.4 (1.66) 202.7 (2.27) 0.13 Alkaline phosphatase (IU) 60.2 (0.84) 67.3 (1.20) <0.0001

Creatinine (mg/dL) 0.80 (0.005) 0.78 (0.006) 0.03

Abbreviation: BMD, bone mineral density.

*P-values were obtained from Student’s t tests (normally distributed continuous variables) and Chi-square tests (categorical variables) by comparing participants with high and low BMD.

Number in bold indicates statistically significant finding.

38

Table 2. The PLS-DA parameters and permutation test for differentiating high and low BMD levels

Comparison Groups

PLS-DA parameters Ppermutation testc

No.b R2 Q2

Abbreviations: PLS-DA, partial least squares-discriminant analysis; BMD, bone mineral density.

a High BMD indicates the 2nd and 3rd tertiles of BMD; low BMD indicates the 1st tertile of BMD.

b The number of components based on Q2 indicates the best classifier of PLS-DA using 10-fold cross-validation method.

c Distribute 1000 permutations.

†Predictive capability.

Number in bold indicates statistically significant finding.

39

Table 3. The change of plasma metabolites in postmenopausal women to distinguish high and low BMD

Metabolites Multiplicitya Signal assignmentb δH (ppm) Abbreviations: BMD, bone mineral density; VLDL, very low density lipoprotein; δH, chemical shift; ppm, parts per million.

a s,singlet; d, doublet; t, triplet; m, complex multiplet; ddd, doublet of doublets of doublets.

b Signal assignment provides precise bioanalytical and dynamic information.

c All metabolites with variable importance in projection (VIP) score >1.5.

d High BMD indicates the 2nd and 3rd tertiles of BMD; low BMD indicates the 1st tertile of BMD.

*Pathway information was obtained from KEGG PATHWAY Database (http://www.genome.jp/kegg/).

40

Table 4. Association between plasma metabolites and bone mineral density (T1 vs. T2 + T3)

Abbreviations: AOR, adjusted odds ratio; BMD, bone mineral density; VLDL, very low density lipoprotein; CI, confidence intervals.

a All metabolites with variable importance in projection (VIP) score >1.5.

b High BMD indicates the 2nd and 3rd tertiles of BMD; low BMD indicates the 1st tertile of BMD.

c All models were adjusted for age (continuous), body weight (continuous), height (continuous), waist circumference (continuous), menopausal status (yes/no), creatinine (> median, 79 mg/dL, yes/no), regular exercise (≥2 times/week, yes/no), serum alkaline phosphatase (≥ median, 60 IU, yes/no).

Number in bold indicates statistically significant finding.

Metabolitesa

41

Table 5. Association between plasma metabolites and bone mineral density stratified by menopausal status (T1 vs. T2+T3)

Abbreviations: AOR, adjusted odds ratio; BMD, bone mineral density; VLDL, very low density lipoprotein; CI, confidence intervals.

a All metabolites with variable importance in projection (VIP) score >1.5.

b High BMD indicates the 2nd and 3rd tertiles of BMD; low BMD indicates the 1st tertile of BMD.

c All models were adjusted for age (continuous), body weight (continuous), height (continuous), waist circumference (continuous), menopausal status (yes/no), creatinine (> median, 79 mg/dL, yes/no), regular exercise ≥2 times/week (yes/no), serum alkaline phosphatase (≥ median, 60 UI, yes/no).

Number in bold indicates statistically significant finding.

Metabolitesa

Premenopause Postmenopause p interaction

Low BMD/High BMDb Glutamine 1.32 (0.90-1.95) 1.24 (0.78-1.96) 2.88 (1.45-5.72) 6.04 (1.57-23.21) 0.04 Glucose 0.96 (0.90-1.03) 0.97 (0.90-1.04) 0.95 (0.85-1.06) 1.14 (0.92-1.40) 0.38

42

Table 6. Receiver operating characteristic contrast tests of pairwise comparison between different models to classify high and low BMD

a Model 1 included lactate, acetone, lipid, VLDL, and glutamine; model 2 included variables in model 1 plus acetate and glucose.

*P-values were obtained from Chi-square tests.

Number in bold indicates statistically significant finding.

Contrast models All participants Premenopause Postmenopause P value*

Model 2 vs. Mode 1a 0.38 0.16 0.74

Glutamine alone vs. Model 1 0.05 0.12 0.03

Glutamine alone vs. Model 2 0.03 0.02 0.01

43

Table 7. Model comparisons for the association between plasma metabolites and bone mineral density (T1 vs. T2+T3)

Lactate Acetone Acetate Lipid VLDL Glutamine Glucose

Low BMDa (399) / High BMDa (211) AOR (95% CI)

Model 1b 0.92 (0.81-1.04) 0.90 (0.79-1.02) 0.42 (0.97-1.03) 1.08 (0.44-2.66) 0.88 (0.75-1.04) 1.47 (1.07-2.03) 0.96 (0.91-1.02) Model 2c 0.86 (0.76-0.99) 0.82 (0.71-0.95) 1.55 (1.05-2.30) 0.56 (0.21-1.48) 0.80 (0.67-0.95) 1.67 (1.19-2.35) 0.96 (0.91-1.02) Model 3d 0.99 (0.86-1.15) 0.95 (0.82-1.10) 1.07 (0.70-1.63) 1.04 (0.37-2.90) 0.93 (0.77-1.11) 1.22 (0.84-1.76) 0.99 (0.93-1.06) Model 4e 0.94 (0.80-1.09) 0.92 (0.78-1.08) 1.17 (0.74-1.83) 0.85 (0.29-2.51) 0.89 (0.74-1.09) 1.40 (0.94-2.09) 1.00 (0.93-1.07) Model 5f 0.90 (0.76-1.05) 0.87 (0.74-1.03) 1.32 (0.82-2.10) 0.72 (0.24-2.12) 0.85 (0.69-1.04) 1.55 (1.03-2.33) 0.99 (0.93-1.06) Abbreviations: AOR, adjusted odds ratio; BMD, bone mineral density; VLDL, very low density lipoprotein; CI, confidence intervals.

a High BMD indicates the 2nd and 3rd tertiles of BMD; low BMD indicates the 1st tertile of BMD.

b Model 1: Unadjusted model.

c Model 2: Adjusted for age (continuous), menopausal status (yes/no).

d Model 3: Adjusted variables in model 2 plus body weight (continuous) and height (continuous)

e Model 4: Adjusted variables in model 3 plus serum alkaline phosphatase (≥ median, 60 IU, yes/no) and regular exercise (≥2 times/week, yes/no)

f Model 5: Adjusted variables in model 4 plus waist circumference (continuous) and creatinine (> median, 79 mg/dL, yes/no).

相關文件