• 沒有找到結果。

In this study, subjects participated in simulated long-haul driving experiments on a motion platform in an immersive VR-based environment, during which their brain waves (EEG) and driving behavior were recorded. Driving performance was measured by reaction time (RT) as defined in an event-related lane-departure paradigm. Following strict criteria for artifact rejection in behavioral and EEG data, independent component analysis (ICA) was used to decompose EEG signals into independent brain processes, and power spectra were computed from the activation time course of each independent component. Independent components with similar features, such as topographic maps, dipole sources, and alert baseline power spectra, were grouped into clusters across subjects.

The results show that the power spectra of independent brain processes in the bilateral occipital regions are optimal for monitoring subject’s vigilance states for two reasons: the bilateral occipital components are most prevalent across subjects, and the trends of EEG power spectral changes are most stable across different condi-tions. The tonic power in the alpha band initially rises with increasing RTs, but re-verses to the downward trend when RTs become even longer; however, theta band power increases monotonically with RTs, and the center of mass in the power spectra shifts to lower frequencies at longer RTs. The trends of power spectral changes in the motion sessions are similar to those in the motionless sessions, but the upward and downward trends in alpha band power are steeper in the motion sessions; furthermore, significant power increase occurs at shorter RTs in the mo-tion sessions than those in the momo-tionless sessions. Finally, the rising trends of theta band power are affected by neither kinesthetic stimuli in the motion sessions

This study not only shows results that are consistent with existing studies on drowsy driving, but also reports new findings in conditions that are close to real-life driving. These results may provide insights into the design of drowsiness detection system on the road.

References

[1] National Sleep Foundation (NSF), USA, http://drowsydriving.org/about/

[2] D. Royal, “National Survey of Distracted and Drowsy Driving Attitudes and Behavior: 2002,” National Highway Traffic Safety Administration (NHTSA), U.S.

Department of Transportation, April 2003

[3] NSF, USA, “2009 Sleep in AmericaTM Poll: Summary of Findings,” 2 March 2009

[4] K. Kozak, J. Pohl, W. Birk, J. Greenberg, B. Artz, M. Blommer, L. Cathey, and R.

Curry, “Evaluation of Lane Departure Warnings for Drowsy Drivers,” Proceed-ings of the Human Factors and Ergonomics Society 50th Annual Meeting, pp.

2400-2404, San Francisco, California, USA, 16-20 October 2006

[5] M. Rimini-Doering, T. Altmueller, and U. Ladstaetter, “Effects of Lane Departure Warning on Drowsy Drivers’ Performance and State in a Simulator,” Proceed-ings of the Third International Driving Symposium on Human Factors in Driver Assessment, Training and Vehicle Design, pp. 88-95, Rockport, Maine, USA, 27-30 June 2005

[6] D. K. McGregor and J. A. Stern, “Time on Task and Blink Effects on Saccade Duration,” Ergonomics, Volume 39, Issue 4, pp. 649-660, March 1996

[7] J. C. Popieul, P. Simon, and P. Loslever, “Using Driver’s Head Movements Evolution as a Drowsiness Indicator,” Proceedings IEEE Intelligent Vehicles Symposium 2003, pp. 616-621, 9-11 June 2003

[8] Q. Ji, Z. Zhu, and P. Lan, “Real-Time Nonintrusive Monitoring and Prediction of Driver Fatigue,” IEEE Transactions on Vehicular Technology, Volume 53, Issue 4, pp. 1052-068, 26 July 2004.

[9] C. -T. Lin, R. -C. Wu, S. -F. Liang, W. -H. Chao, Y. -J. Chen, and T. -P. Jung,

“EEG-Based Drowsiness Estimation for Safety Driving Using Independent Component Analysis,” IEEE Transactions on Circuits and Systems, Volume 52, Issue 12, pp. 2726-2738, 12 December 2005

[10] C. -T. Lin, Y. -C. Chen, T. -Y. Huang, T. -T. Chiu, L. -W. Ko, S. -F. Liang. H. -Y.

Hsieh, S. -H. Hsu, and J. -R. Duann, “Development of Wireless Brain Computer Interface with Embedded Multitask Scheduling and its Application on Real-Time Driver’s drowsiness Detection and Warning,” IEEE Transactions on Biomedical Engineering, Volume 55, Issue 5, pp. 1582-1591, May 2008

[11] C. -T. Lin, L. -W. Ko, J. -C. Chiou, J. -R. Duann, R. -S. Huang, S. -F. Liang. T.

-W. Chiu, and T. -P. Jung, “Noninvasive Neural Prostheses Using Mobile and Wireless EEG,” Proceedings of the IEEE, Volume 96, Issue 7, pp. 1167-1183, July 2008

[12] J. Beatty, A. Greenberg, W. P. Deibler, and J. F. O’hanlon, “Operant Control of Occipital Theta Rhythm Affects Performance in a Radar Monitoring Task,”

Science, Volume 183, No. 4127, pp. 871-873, 1 March 1974

[13] R. -S. Huang, T. -P. Jung, A. Delorme, and S. Makeig, “Tonic and Phasic Elec-troencephalographic Dynamics During Continuous Compensatory Tracking,”

NeuroImage, Volume 39, Issue 4, pp. 1896-1909, 15 February 2008

[14] R. -S. Huang, T. -P. Jung, and S. Makeig, “Tonic Changes in EEG Power Spectra during Simulated Driving,” D. D. Schmorrow, I. V. Estabrooke, and M.

Grootjen (Editors): Augmented Cognition, HCII 2009, LNAI 5638, pp. 394-403, San Diego, CA, USA, 22-24 July 2009

[15] J. -L. Jeng, “Electroencephalographic Spectral Changes from Alertness to Drowsiness in a Driving Simulator,” National Chiao Tung University, Master Thesis, October 2007

[16] R. -S. Huang, T. -P. Jung, J. -R. Duann, S. Makeig and M. I. Sereno, “Imaging Brain Dynamics During Continuous Driving Using Independent Component Analysis,” 35th Annual Meeting of the Society for Neuroscience, Abstract, Washington D. C., the USA, 12-16 November 2005

[17] R. -S. Huang, T. -P. Jung, and S. Makeig, “Multi-scale EEG Brain Dynamics during Sustained Attention Tasks,” IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), pp. IV-1173-IV-1176, Honolulu, Hawaii, USA, 4 June 2007

[18] J. Malmivuo and R. Plonsey, Bioelectromagnetism: Principles and Applications of Bioelectric and Biomagnetic Fields, Oxford University Press, USA, 1995 [19] A. Delorme and S. Makeig, “EEGLAB: an Open Source Toolbox for Analysis of

Single-Trial EEG Dynamics Including Independent Component Analysis,”

Journal of Neuroscience Methods, Volume 134, Issue 1, pp. 9-21, 15 March 2004

[20] J. Onton, M. Westerfield, J. Townsend, and S. Makeig, “Imaging Human EEG Dynamics Using Independent Component Analysis,” Neuroscience and Biobehavioral Reviews, Volume 30, Issue 6, pp. 808-822, 2006

[21] T. -P Jung, S. Makeig, T. -W. Lee, M. J. McKeown, G. Brown, A. J. Bell, and T.

J. Sejnowski, “Independent Component Analysis of Biomedical Signals,” The 2nd International Workshop on Independent Component Analysis and Signal Separation, pp. 633-644, 2000.

[22] S. Makeig, A. J. Bell, T. -P Jung, and T. J. Sejnowski., “Independent Compo-nent Analysis of Electroencephalographic Data,” D. Touretzky, M. Mozer, and M. Hasselmo (Editors): Advances in Neural Information Processing Systems 8,

[23] A. Delorme, T. Fernsler, H. Serby, and S. Makeig, EEGLAB Tutorial, 6.01b, Swartz Center for Computational Neuroscience, San Diego, California, USA, 12 April 2006

[24] J. N. Dang, “Preliminary Results Analyzing the Effectiveness of Electronic Sta-bility Control (ESC) Systems,” NHTSA, U.S. Department of Transportation, September 2004

[25] A. Houser, J. Pierowicz, and D. Fuglewicz, “Concept of Operations and Volun-tary Operational Requirements for Lane Departure Warning System (LDWS) On-board Commercial Motor Vehicles,” The Federal Motor Carrier Safety Ad-ministration (FMCSA), U. S. Department of Transportation, July 2005

[26] S. Makeig, “Auditory Event-Related Dynamics of the EEG Spectrum and Ef-fects of Exposure to Tones,” Electroencephalography and Clinical Neurophysi-ology, Volume 86, Issue 4, pp. 283-293, April 1993

[27] T. Ota, R. Toyoshima, and T. Yamauchi, “Measurements by Biphasic Changes of the Alpha Band Amplitude as Indicators of Arousal Level,” International Journal of Psychophysiology, Volume 24, Issues 1-2, pp. 25-37, November 1996

Appendix

A.1 Output Frequency Bins and Time Points of Time-Frequency Transform in the Computing of Tonic Power Spectra

TABLE A1:OUTPUT FREQUENCY BINS

Bins Frequency (Hz)

1~10 2.93 3.91 4.88 5.86 6.84 7.81 8.79 9.77 10.74 11.72 11~20 12.70 13.67 14.65 15.63 16.60 17.58 18.55 19.53 20.51 21.48 21~30 22.46 23.44 24.41 25.39 26.37 27.34 28.32 29.30 30.27 31.25 31~40 32.23 33.20 34.18 35.16 36.13 37.11 38.09 39.06 40.04 41.02

41~44 41.99 42.97 43.95 44.92

TABLE A2:OUTPUT TIME POINTS

Time Points Times (sec)

1~10 -.743 -.739 -.735 -.727 -.723 -.719 -.715 -.707 -.703 -.699

A.2 Clustered Scalp Maps, Alert Baseline Power, Dipole Locations, and Talairach Coordinates of Each Dipole in Each Cluster

A.2.1 The Motionless Datasets A.2.1.1 The Frontal Cluster

Figure A1: The ICA scalp map of each dataset in the frontal cluster (motionless datasets; 8 compo-nents; paired correlation coefficient: 0.84 ± 0.13). The left-top inset is the average scalp map of this cluster, and the others are the scalp map from each dataset in this cluster.

Figure A2: Tonic power spectra of alert trials (trials with shortest 10% RT in each dataset) in the frontal cluster (motionless datasets). The left-top inset is the average spectra of this cluster, and the others are the spectrum of each dataset. In each inset, the blue trace denotes the average spectra of this dataset, the red trace is the average spectrum of the indicated dataset, and the gray traces are the average spectra of the other dataset. The x-axis is frequency in Hz, and the y-axis is the power in dB.

average location of dipoles in this cluster (dashed line: projection lines to the coronal, horizontal, and sagittal planes), and the others are the location of each dipole in this cluster.

TABLE A3:TALAIRACH COORDINATES OF THE FRONTAL CLUSTER (MOTIONLESS D

ATA-SETS)

Talairach Coordinates Dataset Component

X Y Z

s01_061102 6 -11.63 27.29 38.95

s32_061031 10 4.45 15.79 50.67

s32_061031 12 13.02 74.21 29.23

s35_070322 11 -9.65 28.77 20.48

s36_061221 7 -1.68 70.22 14.38

s41_061225 3 -3.98 10.89 31.10

s42_070105 13 2.47 34.47 39.71

s44_070325 5 -3.38 7.49 22.84

Mean -1.30 33.64 30.92

Standard Deviation 7.93 25.55 11.85

A.2.1.2 The Central Cluster

Figure A4: The ICA scalp map of each dataset in the central cluster (motionless datasets; 9 com-ponents; paired correlation coefficient: 0.85 ± 0.15). Other conventions follow Figure A1.

Figure A5: Tonic power spectra of alert trials in the central cluster (motionless datasets). Other con-ventions follow Figure A2.

Figure A6: The locations of dipoles in the central cluster (motionless datasets). Other conventions follow Figure A3.

TABLE A4:TALAIRACH COORDINATES OF THE CENTRAL CLUSTER (MOTIONLESS D

ATA-SETS)

Talairach Coordinates Dataset Component

X Y Z

s01_061102 8 -3.34 -7.52 42.03

s05_061101 3 3.36 -11.72 2.55

s31_061103 10 1.19 -9.62 62.72

s35_070322 8 0.09 7.70 39.85

s36_061221 2 -3.75 -7.30 27.67

s40_070207 3 8.88 -1.82 43.17

s41_061225 9 -5.60 0.76 43.15

s43_070208 8 2.59 -9.02 43.47

s44_070325 7 -1.29 -22.52 45.94

Mean 0.24 -6.79 38.95

Standard Deviation 4.42 8.49 16.33

A.2.1.3 The Parietal Cluster

Figure A7: The ICA scalp map of each dataset in the parietal cluster (motionless datasets; 12 com-ponents; paired correlation coefficient: 0.92 ± 0.06). Other conventions follow Figure A1.

Figure A8: Tonic power spectra of alert trials in the parietal cluster (motionless datasets). Other con-ventions follow Figure A2.

Figure A9: The locations of dipoles in the parietal cluster (motionless datasets). Other conventions follow Figure A3.

TABLE A5:TALAIRACH COORDINATES OF THE PARIETAL CLUSTER (MOTIONLESS D

ATA-SETS)

Talairach Coordinates Dataset Component

X Y Z

s01_061102 7 -9.44 -31.70 24.91

s05_061101 6 9.09 -12.21 27.15

s05_061101 13 9.43 -36.89 44.22

s31_061103 8 -4.35 -37.14 22.28

s32_061031 6 -0.24 -66.16 -1.34

s35_070322 7 5.01 -14.77 12.92

s36_061221 9 4.10 -33.85 38.13

s40_070207 4 0.35 -34.57 10.17

s41_061225 4 -1.84 -43.16 41.15

s42_070105 5 -0.90 -23.94 13.96

s43_070208 5 -4.86 -54.16 25.70

s44_070325 6 -0.87 -55.75 23.71

Mean 0.46 -37.02 23.58

Standard Deviation 5.62 16.12 13.40

A.2.1.4 The Left Somatomotor Cluster

Figure A10: The ICA scalp map of each dataset in the left somatomotor cluster (motionless datasets;

9 components; paired correlation coefficient: 0.88 ± 0.11). Other conventions follow Figure A1.

Figure A11: Tonic power spectra of alert trials in the left somatomotor cluster (motionless datasets).

Other conventions follow Figure A2.

Figure A12: The locations of dipoles in the left somatomotor cluster (motionless datasets). Other conventions follow Figure A3.

TABLE A6:TALAIRACH COORDINATES OF THE LEFT SOMATOMOTOR CLUSTER (M

O-TIONLESS DATASETS)

Talairach Coordinates Dataset Component

X Y Z

s05_061101 10 -29.64 -36.15 32.70

s31_061103 9 -24.53 -39.12 55.70

s32_061031 8 -38.27 -19.53 40.49

s35_070322 13 -33.57 -34.54 34.53

s36_061221 8 -24.78 -16.61 17.69

s40_070207 8 -31.43 -26.20 34.85

s41_061225 10 -29.35 -35.10 32.85

s41_061225 21 -42.87 -3.45 50.33

s44_070325 10 -18.36 -57.47 14.07

Mean -30.31 -29.80 34.80

Standard Deviation 7.43 15.53 13.42

A.2.1.5 The Right Somatomotor Cluster

Figure A13: The ICA scalp map of each dataset in the right somatomotor cluster (motionless datasets;

7 components; paired correlation coefficient: 0.93 ± 0.08). Other conventions follow Figure A1.

Figure A14: Tonic power spectra of alert trials in the right somatomotor cluster (motionless datasets).

Other conventions follow Figure A2.

Figure A15: The locations of dipoles in the right somatomotor cluster (motionless datasets). Other conventions follow Figure A3.

TABLE A7:TALAIRACH COORDINATES OF THE RIGHT SOMATOMOTOR CLUSTER (M

O-TIONLESS DATASETS)

Talairach Coordinates Dataset Component

X Y Z

s01_061102 11 15.69 -40.54 28.77

s31_061103 12 33.29 -53.43 34.04

s32_061031 9 34.76 -28.04 41.79

s36_061221 12 33.84 -21.82 37.99

s40_070207 13 18.77 -64.97 45.23

s41_061225 8 30.22 -26.55 42.74

s43_070208 9 30.53 -31.40 28.95

Mean 28.16 -38.11 37.07

Standard Deviation 7.70 15.85 6.66

A.2.1.6 The Occipital Midline Cluster

Figure A16: The ICA scalp map of each dataset in the occipital midline cluster (motionless datasets;

6 components; paired correlation coefficient: 0.97 ± 0.03). Other conventions follow Figure A1.

Figure A17: Tonic power spectra of alert trials in the occipital midline cluster (motionless datasets).

Other conventions follow Figure A2.

Figure A18: The locations of dipoles in the occipital midline cluster (motionless datasets). Other conventions follow Figure A3.

TABLE A8:TALAIRACH COORDINATES OF THE OCCIPITAL MIDLINE CLUSTER (MOTIONLESS DATASETS)

Talairach Coordinates Dataset Component

X Y Z

s01_061102 5 -1.00 -63.76 -33.74

s32_061031 7 8.47 -74.06 1.25

s35_070322 9 0.15 -63.43 4.86

s36_061221 6 -0.75 -65.71 -23.98

s40_070207 7 -1.36 -96.73 5.34

s44_070325 8 6.07 -76.91 -14.87

Mean 1.93 -73.43 -10.19

Standard Deviation 4.23 12.72 16.52

A.2.1.7 The Bilateral Occipital Cluster

Figure A19: The ICA scalp map of each dataset in the bilateral occipital cluster (motionless datasets;

14 components; paired correlation coefficient: 0.78 ± 0.21). Other conventions follow Figure A1.

Figure A20: Tonic power spectra of alert trials in the bilateral occipital cluster (motionless datasets).

Other conventions follow Figure A2.

Figure A21: The locations of dipoles in the bilateral occipital cluster (motionless datasets). Other conventions follow Figure A3.

TABLE A9:TALAIRACH COORDINATES OF THE BILATERAL OCCIPITAL CLUSTER (M

O-TIONLESS DATASETS)

Talairach Coordinates (Left) Talairach Coordinates (Right) Dataset

Compo-nent X Y Z X Y Z

s01_061102 10 -47.34 -65.34 5.46 -- --

--s05_061101 4 -35.65 -67.11 -5.72 35.91 -67.71 -5.69

s05_061101 11 -29.55 -78.62 -5.93 -- --

--s31_061103 6 -40.09 -78.56 10.98 40.12 -79.23 11.01

s32_061031 3 -45.96 -53.13 8.53 46.43 -53.90 8.57

s32_061031 4 -44.84 -57.52 -10.92 -- --

--s35_070322 3 -33.81 -104.96 -8.04 33.42 -105.52 -8.01

s35_070322 12 -20.74 -94.65 -40.58 -- --

--s36_061221 4 -41.82 -64.36 -9.59 42.13 -65.06 -9.55

s40_070207 2 -28.70 -75.15 2.95 28.80 -75.62 2.97

s41_061225 6 -- -- -- 16.78 -50.94 -20.17

s41_061225 7 -18.29 -47.92 -27.97 -- --

--s42_070105 4 -28.46 -62.56 0.99 28.79 -63.03 1.01

s43_070208 6 -- -- -- 4.87 -35.08 -74.53

Mean -34.60 -70.82 -6.65 30.80 -66.23 -10.49

Standard Deviation 9.70 16.63 15.00 13.08 19.91 25.90 A.2.1.8 The Tangential Occipital Cluster

Figure A22: The ICA scalp map of each dataset in the tangential occipital cluster (motionless

data-sets; 7 components; paired correlation coefficient: 0.87 ± 0.13). Other conventions follow Figure A1.

Figure A23: Tonic power spectra of alert trials in the tangential occipital cluster (motionless datasets).

Other conventions follow Figure A2.

TIONLESS DATASETS)

Talairach Coordinates (Left) Talairach Coordinates (Right) Dataset

Compo-nent X Y Z X Y Z

s01_061102 14 -28.50 -81.91 -18.02 28.52 -82.38 -17.99 s31_061103 13 -32.07 -85.77 20.92 31.96 -86.30 20.95 s36_061221 16 -39.35 -99.34 -2.56 39.05 -99.99 -2.53 s40_070207 12 -17.11 -110.73 -10.77 16.62 -111.01 -10.75

s42_070105 7 -34.28 -68.30 8.45 34.49 -68.87 8.48

s43_070208 11 -34.10 -105.94 -8.65 33.69 -106.51 -8.62 s44_070325 25 -23.17 -109.60 -10.04 22.70 -109.99 -10.02

Mean -29.80 -94.51 -2.95 29.58 -95.01 -2.93

Standard Deviation 7.55 16.16 13.36 7.67 16.10 13.36 A.2.2 The Motion Datasets

A.2.2.1 The Frontal Cluster

Figure A25: The ICA scalp map of each dataset in the frontal cluster (motion datasets; 6 components;

paired correlation coefficient: 0.90 ± 0.12). Other conventions follow Figure A1.

Figure A26: Tonic power spectra of alert trials in the frontal cluster (motion datasets). Other conven-tions follow Figure A2.

Figure A27: The locations of dipoles in the frontal cluster (motion datasets). Other conventions follow Figure A3.

TABLE A11:TALAIRACH COORDINATES OF THE FRONTAL CLUSTER (MOTION DATASETS) Talairach Coordinates

Dataset Component

X Y Z

s05_061019 5 2.98 44.05 -11.69

s31_061020 3 13.27 47.49 -32.96

s35_070115 7 0.41 43.28 7.74

s36_061122 2 -1.16 26.86 18.83

s40_070131 7 2.29 17.33 47.75

s44_070209 5 -1.50 14.67 8.43

Mean 2.71 32.28 6.35

Standard Deviation 5.47 14.52 27.38

A.2.2.2 The Central Cluster

Figure A28: The ICA scalp map of each dataset in the central cluster (motion datasets; 5 components;

paired correlation coefficient: 0.93 ± 0.07). Other conventions follow Figure A1.

Figure A29: Tonic power spectra of alert trials in the central cluster (motion datasets). Other conven-tions follow Figure A2.

Figure A30: The locations of dipoles in the central cluster (motion datasets). Other conventions follow Figure A3.

TABLE A12:TALAIRACH COORDINATES OF THE CENTRAL CLUSTER (MOTION DATASETS) Talairach Coordinates

Dataset Component

X Y Z

s05_061019 6 0.59 -11.30 27.11

s31_061020 11 -3.02 4.88 60.35

s35_070115 9 -0.03 -5.28 46.55

s36_061122 3 2.63 -15.61 33.14

s44_070209 9 -0.56 -21.74 46.65

Mean -0.08 -9.81 42.76

Standard Deviation 2.04 10.18 13.01

A.2.2.3 The Parietal Cluster

Figure A31: The ICA scalp map of each dataset in the parietal cluster (motion datasets; 7 compo-nents; paired correlation coefficient: 0.88 ± 0.10). Other conventions follow Figure A1.

Figure A32: Tonic power spectra of alert trials in the parietal cluster (motion datasets). Other con-ventions follow Figure A2.

Figure A33: The locations of dipoles in the parietal cluster (motion datasets). Other conventions fol-low Figure A3.

TABLE A13:TALAIRACH COORDINATES OF THE PARIETAL CLUSTER (MOTION DATASETS) Talairach Coordinates

Dataset Component

X Y Z

s05_061019 12 5.65 -31.51 40.21

s31_061020 7 -2.32 -15.16 28.21

s35_070115 4 -7.64 -24.59 20.07

s36_061122 17 15.63 -51.02 80.97

s40_070131 4 -4.53 -39.05 30.31

s43_070202 10 -4.50 -13.92 45.61

s44_070209 4 -4.16 -62.21 16.98

Mean -0.27 -33.92 37.48

Standard Deviation 8.14 18.09 21.70

A.2.2.4 The Left Somatormotor Cluster

Figure A34: The ICA scalp map of each dataset in the left somatomotor cluster (motion datasets; 3 components; paired correlation coefficient: 0.91 ± 0.13). Other conventions follow Figure A1.

Figure A35: Tonic power spectra of alert trials in the left somatomotor cluster (motion datasets).

Other conventions follow Figure A2.

Figure A36: The locations of dipoles in the left somatomotor cluster (motion datasets). Other con-ventions follow Figure A3.

TABLE A14:TALAIRACH COORDINATES OF THE LEFT SOMATOMOTOR CLUSTER (MOTION DATASETS)

Talairach Coordinates Dataset Component

X Y Z

s05_061019 9 -22.08 -29.63 27.18

s31_061020 10 -36.26 -17.89 44.73

s36_061122 7 -22.78 -22.12 26.52

Mean -27.04 -23.21 32.81

Standard Deviation 7.99 5.94 10.33

A.2.2.5 The Right Somatomotor Cluster

Figure A37: The ICA scalp map of each dataset in the right somatomotor cluster (motion datasets; 5 components; paired correlation coefficient: 0.83 ± 0.17). Other conventions follow Figure A1.

Figure A38: Tonic power spectra of alert trials in the right somatomotor cluster (motion datasets).

Other conventions follow Figure A2.

Figure A39: The locations of dipoles in the right somatomotor cluster (motion datasets). Other con-ventions follow Figure A3.

TABLE A15:TALAIRACH COORDINATES OF THE RIGHT SOMATOMOTOR CLUSTER (MOTION DATASETS)

Talairach Coordinates Dataset Component

X Y Z

s05_061019 8 25.93 1.54 40.28

s05_061019 17 27.70 -37.31 41.39

s31_061020 9 51.27 -26.21 44.30

s36_061122 9 41.86 0.35 28.96

s43_070202 11 40.34 4.19 30.58

Mean 37.42 -11.49 37.10

Standard Deviation 10.57 18.97 6.88

A.2.2.6 The Occipital Midline Cluster

Figure A40: The ICA scalp map of each dataset in the occipital midline cluster (motion datasets; 3 components; paired correlation coefficient: 0.97 ± 0.03). Other conventions follow Figure A1.

Figure A41: Tonic power spectra of alert trials in the occipital midline cluster (motion datasets). Other conventions follow Figure A2.

Figure A42: The locations of dipoles in the occipital midline cluster (motion datasets). Other conven-tions follow Figure A3.

TABLE A16:TALAIRACH COORDINATES OF THE OCCIPITAL MIDLINE CLUSTER (MOTION DATASETS)

Talairach Coordinates Dataset Component

X Y Z

s05_061019 7 10.78 -44.05 -49.52

s35_070115 10 0.34 -80.06 -20.96

s36_061122 10 -5.78 -77.10 -7.33

Mean 1.78 -67.07 -25.94

Standard Deviation 8.37 19.99 21.53

A.2.2.7 The Bilateral Occipital Cluster

Figure A43: The ICA scalp map of each dataset in the bilateral occipital cluster (motion datasets; 8 components; paired correlation coefficient: 0.89 ± 0.12). Other conventions follow Figure A1.

Figure A44: Tonic power spectra of alert trials in the bilateral occipital cluster (motion datasets).

Other conventions follow Figure A2.

Figure A45: The locations of dipoles in the bilateral occipital cluster (motion datasets). Other con-ventions follow Figure A3.

TABLE A17:TALAIRACH COORDINATES OF THE BILATERAL OCCIPITAL CLUSTER (MOTION DATASETS)

Talairach Coordinates (Left) Talairach Coordinates (Right) Dataset

Compo-nent X Y Z X Y Z

s05_061019 4 -36.68 -68.94 0.58 36.90 -69.55 0.61

s05_061019 18 -50.78 -54.90 4.79 -- --

--s31_061020 6 -22.09 -75.74 3.96 22.18 -76.11 3.98

s35_070115 2 -21.27 -70.66 -9.28 21.48 -71.01 -9.26 s36_061122 4 -26.16 -81.05 -19.79 26.20 -81.48 -19.77 s40_070131 3 -20.83 -77.16 -2.31 20.91 -77.51 -2.30

s43_070202 4 -2.40 -29.54 -46.47 -- --

--s44_070209 8 -- -- -- 9.39 -75.86 -30.57

Mean -25.74 -65.43 -9.79 22.84 -75.26 -9.55

Standard Deviation 14.99 17.92 18.31 8.90 4.37 13.30 A.2.2.8 The Tangential Occipital Cluster

Figure A46: The ICA scalp map of each dataset in the tangential occipital cluster (motion datasets; 6 components; paired correlation coefficient: 0.86 ± 0.14). Other conventions follow Figure A1.

Figure A47: Tonic power spectra of alert trials in the tangential occipital cluster (motion datasets).

Other conventions follow Figure A2.

Figure A48: The locations of dipoles in the tangential occipital cluster (motion datasets). Other con-ventions follow Figure A3.

TABLE A18:TALAIRACH COORDINATES OF THE TANGENTIAL OCCIPITAL CLUSTER (MOTION DATASETS)

Talairach Coordinates (Left) Talairach Coordinates (Right) Dataset

Compo-nent X Y Z X Y Z

s05_061019 20 -5.93 -113.71 -14.99 5.41 -113.80 -14.99 s31_061020 15 -23.29 -109.79 -3.84 22.81 -110.17 -3.82 s35_070115 12 -15.61 -105.62 -27.45 15.25 -105.88 -27.44 s40_070131 10 -18.83 -106.50 30.00 18.35 -106.81 30.02 s43_070202 9 -17.48 -46.45 -33.04 18.15 -46.75 -33.03

s44_070209 13 -- -- -- 3.21 -110.29 -22.85

Mean -16.23 -96.41 -9.87 13.86 -98.95 -12.02

Standard Deviation 6.42 28.11 24.99 7.82 25.73 22.98

相關文件