• 沒有找到結果。

In this study, the doped V ions migrated from the bulk lattice to the TiO2 surface above 300 °C, thus increasing their surface concentration by 7.6 times as the temperature increased to 600 °C. The concentrated V ions at the surface induce V2O5 crystals formed in the TiO2

surface region. The incorporation of V ions into the TiO2 lattice accelerated the phase transformation and resulted in a lower phase transit temperature of 500 °C. The bandgap energy of the TiO2 was greatly reduced from 3.1-3.3 eV to 1.6 eV when 1.00 at.% V ions are doped. The photocatalytic activity of the TiO2 samples for RhB degradation increased with calcination temperatures because of improved crystallinity. Doping trace amounts of V ions enhanced the oxidative activity. However, high concentrations of V ions in the bulk lattice induced severe charge recombination and reduce numbers of effective charge carriers. The pure TiO2 calcined at 600 °C, which comprised of anatase and rutile phase, showed the highest oxidation efficiency for RhB. However, the TiO2 sample calined at 500 °C exhibited the highest activity for CO2 reduction. The high concentrations of V-doped TiO2

increased the yield of CH4 with increased calcination temperature and reached the highest yield of CH4 at 500 °C. Methane yield by high concentrations of V-doped TiO2 was 1.68 times higher than the pure TiO2. The QE of CH4 was reached to 0.66%. However, the initial yield of CH4 was 0.89 times lower than the pure TiO2. This study showed that the V3+ and V4+ ions in the bulk of TiO2 suppress the ability of the electron transfer efficiency because V3+ and V4+ ions acted as recombination centers. However, V2O5, formed by increasing calcination temperature, on TiO2 was helpful to preserve methane from reoxidation because it decreased the ability of oxidation of TiO2. The formation of reduced intermediates was observed to occupy the surface to prevent the following interactions of CO2 and water with the surface charge carries.

68

References

1. Roy, S.C., O.K. Varghese, M. Paulose, and C.A. Grimes, Toward Solar Fuels:

Photocatalytic Conversion of Carbon Dioxide to Hydrocarbons. Acs Nano, 2010. 4(3):

p. 1259-1278.

2. Di Paola, A., E. Garcia-Lopez, S. Ikeda, G. Marci, B. Ohtani, and L. Palmisano, Photocatalytic degradation of organic compounds in aqueous systems by transition metal doped polycrystalline TiO2. Catalysis Today, 2002. 75(1-4): p. 87-93.

3. Klosek, S. and D. Raftery, Visible light driven V-doped TiO2 photocatalyst and its photooxidation of ethanol. Journal of Physical Chemistry B, 2001. 105(14): p.

2815-2819.

4. Kemp, T.J. and R.A. McIntyre, Transition metal-doped titanium(IV) dioxide:

Characterisation and influence on photodegradation of poly(vinyl chloride). Polymer Degradation and Stability, 2006. 91(1): p. 165-194.

5. Bouras, P., E. Stathatos, and P. Lianos, Pure versus metal-ion-doped nanocrystalline titania for photocatalysis. Applied Catalysis B-Environmental, 2007. 73(1-2): p.

51-59.

6. Wu, J.C.S., T.H. Wu, T.C. Chu, H.J. Huang, and D.P. Tsai, Application of optical-fiber photoreactor for CO2 photocatalytic reduction. Topics in Catalysis, 2008. 47(3-4): p.

131-136.

7. Wang, C.J., R.L. Thompson, J. Baltrus, and C. Matranga, Visible Light Photoreduction of CO2 Using CdSe/Pt/TiO2 Heterostructured Catalysts. Journal of Physical Chemistry Letters, 2010. 1(1): p. 48-53.

8. Adachi, K., K. Ohta, and T. Mizuno, Photocatalytic Reduction of Carbon-Dioxide to Hydrocarbon Using Copper-Loaded Titanium-Dioxide. Solar Energy, 1994. 53(2): p.

187-190.

9. Choi, W.Y., A. Termin, and M.R. Hoffmann, The Role of Metal-Ion Dopants in Quantum-Sized TiO2 - Correlation between Photoreactivity and Charge-Carrier Recombination Dynamics. Journal of Physical Chemistry, 1994. 98(51): p.

13669-13679.

10. Wachs, I.E., Y. Chen, J.M. Jehng, L.E. Briand, and T. Tanaka, Molecular structure and reactivity of the Group V metal oxides. Catalysis Today, 2003. 78(1-4): p. 13-24.

11. Bronkema, J.L., D.C. Leo, and A.T. Bell, Mechanistic studies of methanol oxidation to formaldehyde on isolated vanadate sites supported on high surface area anatase.

Journal of Physical Chemistry C, 2007. 111(39): p. 14530-14540.

12. Diebold, U., The surface science of titanium dioxide. Surface Science Reports, 2003.

48(5-8): p. 53-229.

13. Schwarzburg, K. and F. Willig, Diffusion impedance and space charge capacitance in

69

the nanoporous dye-sensitized electrochemical solar cell. Journal of Physical Chemistry B, 2003. 107(15): p. 3552-3555.

14. Sclafani, A. and J.M. Herrmann, Comparison of the photoelectronic and photocatalytic activities of various anatase and rutile forms of titania in pure liquid organic phases and in aqueous solutions. Journal of Physical Chemistry, 1996.

100(32): p. 13655-13661.

15. Skubal, L.R., N.K. Meshkov, and M.C. Vogt, Detection and identification of gaseous organics using a TiO2 sensor. Journal of Photochemistry and Photobiology a-Chemistry, 2002. 148(1-3): p. 103-108.

16. Usubharatana, P., D. McMartin, A. Veawab, and P. Tontiwachwuthikul, Photocatalytic process for CO2 emission reduction from industrial flue gas streams. Industrial &

Engineering Chemistry Research, 2006. 45(8): p. 2558-2568.

17. Linsebigler, A.L., G.Q. Lu, and J.T. Yates, Photocatalysis on TiO2 Surfaces - Principles, Mechanisms, and Selected Results. Chemical Reviews, 1995. 95(3): p.

735-758.

18. Kabra, K., R. Chaudhary, and R.L. Sawhney, Treatment of hazardous organic and inorganic compounds through aqueous-phase photocatalysis: A review. Industrial &

Engineering Chemistry Research, 2004. 43(24): p. 7683-7696.

19. Wold, A., Photocatalytic Properties of TiO2. Chemistry of Materials, 1993. 5(3): p.

280-283.

20. Litter, M.I., Heterogeneous photocatalysis - Transition metal ions in photocatalytic systems. Applied Catalysis B-Environmental, 1999. 23(2-3): p. 89-114.

21. Anpo, M. and M. Takeuchi, The design and development of highly reactive titanium oxide photocatalysts operating under visible light irradiation. Journal of Catalysis, 2003. 216(1-2): p. 505-516.

22. Herrmann, J.M., Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants. Catalysis Today, 1999. 53(1): p.

115-129.

23. Reddy, K.M., B. Baruwati, M. Jayalakshmi, M.M. Rao, and S.V. Manorama, S-, N- and C-doped titanium dioxide nanoparticles: Synthesis, characterization and redox charge transfer study. Journal of Solid State Chemistry, 2005. 178(11): p. 3352-3358.

24. Wang, H. and J.P. Lewis, Second-generation photocatalytic materials: anion-doped TiO2. Journal of Physics-Condensed Matter, 2006. 18(2): p. 421-434.

25. Zhao, G.L., H. Kozuka, H. Lin, and T. Yoko, Sol-gel preparation of Ti1-xVxO2 solid solution film electrodes with conspicuous photoresponse in the visible region. Thin Solid Films, 1999. 339(1-2): p. 123-128.

26. Wu, J.C.S. and C.H. Chen, A visible-light response vanadium-doped titania nanocatalyst by sol-gel method. Journal of Photochemistry and Photobiology

70

a-Chemistry, 2004. 163(3): p. 509-515.

27. Anpo, M., S. Dohshi, M. Kitano, Y. Hu, M. Takeuchi, and M. Matsuoka, The preparation and characterization of highly efficient titanium oxide-based photofunctional materials. Annual Review of Materials Research, 2005. 35: p. 1-27.

28. Fujishima, A. and K. Honda, Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature, 1972. 238(37-38).

29. Davidson, A. and M. Che, Temperature-Induced Diffusion of Probe Vanadium(Iv) Ions into the Matrix of Titanium-Dioxide as Investigated by Esr Techniques. Journal of Physical Chemistry, 1992. 96(24): p. 9909-9915.

30. Rodella, C.B., P.A.P. Nascente, V.R. Mastelaro, M.R. Zucchi, R.W.A. Franco, C.J.

Magon, P. Donoso, and A.O. Florentino, Chemical and structural characterization of V2O5/TiO2 catalysts. Journal of Vacuum Science & Technology A, 2001. 19(4): p.

1158-1163.

31. Zhao, G.L., G.R. Han, M. Takahashi, and T. Yoko, Photoelectrochemical properties of sol-gel-derived Ti1-xVxO2 solid solution film photoelectrodes. Thin Solid Films, 2002.

410(1-2): p. 14-20.

32. Izumi, Y., K. Konishi, T. Miyajima, and H. Yoshitake, Photo-oxidation over mesoporous V-TiO2 catalyst under visible light monitored by vanadium K beta(5,2)-selecting XANES spectroscopy. Materials Letters, 2008. 62(6-7): p. 861-864.

33. Xu, J.J., Y.H. Ao, M.D. Chen, D.G. Fu, and C.W. Yuan, Photocatalytic activity of vanadium-doped titania-activated carbon composite film under visible light. Thin Solid Films, 2010. 518(15): p. 4170-4174.

34. Hoffmann, M.R., J. Choi, and H. Park, Combinatorial doping of TiO(2) with platinum (Pt), chromium (Cr), vanadium (V), and nickel (Ni) to achieve enhanced photocatalytic activity with visible light irradiation. Journal of Materials Research, 2010. 25(1): p. 149-158.

35. Chang, S.-m. and W.-s. Liu, Surface doping is more beneficial than bulk doping to the photocatalytic activity of vanadium-doped TiO2. Applied Catalysis B: Environmental, 2011. 101: p. 333-342.

36. Alyea, E.C., L.J. Lakshmi, and Z. Ju, Spectroscopic and activity studies on vanadia supported on titania and phosphorus-modified titania. Langmuir, 1997. 13(21): p.

5621-5626.

37. Izumi, Y., F. Kiyotaki, N. Yagi, A.M. Vlaicu, A. Nisawa, S. Fukushima, H. Yoshitake, and Y. Iwasawa, X-ray absorption fine structure combined with X-ray fluorescence spectrometry. Part 15. Monitoring of vanadium site transformations on Titania and in mesoporous titania by selective detection of the vanadium K alpha(1) fluorescence.

Journal of Physical Chemistry B, 2005. 109(31): p. 14884-14891.

38. Wachs, I.E., J.M. Jehng, and W. Ueda, Determination of the chemical nature of active

71

surface sites present on bulk mixed metal oxide catalysts. Journal of Physical Chemistry B, 2005. 109(6): p. 2275-2284.

39. Bulushev, D.A., L. Kiwi-Minsker, V.I. Zaikovskii, and A. Renken, Formation of active sites for selective toluene oxidation during catalyst synthesis via solid-state reaction of V2O5 with TiO2. Journal of Catalysis, 2000. 193(1): p. 145-153.

40. Hansen, J.E., Scientific reticence and sea level rise. Environmental Research Letters, 2007. 2(2): p. -.

41. Chisti, Y., Biodiesel from microalgae. Biotechnology Advances, 2007. 25(3): p.

294-306.

42. Galvez, M.E., P.G. Loutzenhiser, I. Hischier, and A. Steinfeld, CO2 splitting via two-step solar thermochemical cycles with Zn/ZnO and FeO/Fe3O4 redox reactions:

Thermodynamic analysis. Energy & Fuels, 2008. 22(5): p. 3544-3550.

43. Bamberger, C.E. and P.R. Robinson, Thermochemical Splitting of Water and Carbon-Dioxide with Cerium Compounds. Inorganica Chimica Acta-Articles, 1980.

42(1): p. 133-137.

44. Inoue, T., A. Fujishima, S. Konishi, and K. Honda, Photoelectrocatalytic Reduction of Carbon-Dioxide in Aqueous Suspensions of Semiconductor Powders. Nature, 1979.

277(5698): p. 637-638.

45. Halmann, M., Photoelectrochemical Reduction of Aqueous Carbon-Dioxide on P-Type Gallium-Phosphide in Liquid Junction Solar-Cells. Nature, 1978. 275(5676):

p. 115-116.

46. Anpo, M., H. Yamashita, Y. Ichihashi, and S. Ehara, Photocatalytic Reduction of CO2 with H2O on Various Titanium-Oxide Catalysts. Journal of Electroanalytical Chemistry, 1995. 396(1-2): p. 21-26.

47. Sayama, K. and H. Arakawa, Photocatalytic Decomposition of Water and Photocatalytic Reduction of Carbon-Dioxide over ZrO2 Catalyst. Journal of Physical Chemistry, 1993. 97(3): p. 531-533.

48. Lo, C.C., C.H. Hung, C.S. Yuan, and J.F. Wu, Photoreduction of carbon dioxide with H-2 and H2O over TiO2 and ZrO2 in a circulated photocatalytic reactor. Solar Energy Materials and Solar Cells, 2007. 91(19): p. 1765-1774.

49. Halmann, M., M. Ulman, and B. Aurianblajeni, Photochemical Solar Collector for the Photoassisted Reduction of Aqueous Carbon-Dioxide. Solar Energy, 1983. 31(4): p.

429-431.

50. Tseng, I.H., W.C. Chang, and J.C.S. Wu, Photoreduction of CO2 using sol-gel derived titania and titania-supported copper catalysts. Applied Catalysis B-Environmental, 2002. 37(1): p. 37-48.

51. Mizuno, T., K. Adachi, K. Ohta, and A. Saji, Effect of CO2 pressure on photocatalytic reduction of CO2 using TiO2 in aqueous solutions. Journal of Photochemistry and

72

Photobiology a-Chemistry, 1996. 98(1-2): p. 87-90.

52. Lacombe, S., H. Cardy, N. Soggiu, S. Blanc, J.L. Habib-Jiwan, and J.P. Soumillion, Diffuse reflectance UV-Visible spectroscopy for the qualitative and quantitative study of chromophores adsorbed or grafted on silica. Microporous and Mesoporous Materials, 2001. 46(2-3): p. 311-325.

53. Uvarov, V. and I. Popov, Metrological characterization of X-ray diffraction methods for determination of crystallite size in nano-scale materials. Materials Characterization, 2007. 58(10): p. 883-891.

54. Surnev, S., M.G. Ramsey, and F.P. Netzer, Vanadium oxide surface studies. Progress in Surface Science, 2003. 73(4-8): p. 117-165.

55. Yamashita, H., Y. Ichihashi, M. Takeuchi, S. Kishiguchi, and M. Anpo, Characterization of metal ion-implanted titanium oxide photocatalysts operating under visible light irradiation. Journal of Synchrotron Radiation, 1999. 6: p. 451-452.

56. Silversmit, G., J.A. van Bokhoven, H. Poelman, A.M.J. van der Eerden, G.B. Marin, M.F. Reyniers, and R. De Gryse, The structure of supported and unsupported vanadium oxide under calcination, reduction and oxidation determined with XAS.

Applied Catalysis a-General, 2005. 285(1-2): p. 151-162.

57. Bordage, A., E. Balan, J.P.R. de Villiers, R. Cromarty, A. Juhin, C. Carvallo, G. Calas, P.V.S. Raju, and P. Glatzel, V oxidation state in Fe-Ti oxides by high-energy resolution fluorescence-detected X-ray absorption spectroscopy. Physics and Chemistry of Minerals, 2011. 38(6): p. 449-458.

58. J. Wong, F.W.L., R. P. Messmer and D. H. Maylotte, K-edge absorption spectra of selected vanadium compounds. Physical review B, 1984. 30(10): p. 5596-5611.

59. Izumi, Y., K. Konishi, D.M. Obaid, T. Miyajima, and H. Yoshitake, X-ray absorption fine structure combined with X-ray fluorescence spectroscopy. Monitoring of vanadium sites in mesoporous titania, excited under visible light by selective detection of vanadium K beta(5,2) Fluorescence. Analytical Chemistry, 2007. 79(18): p.

6933-6940.

60. Silversmit, G., H. Poelman, I. Sack, G. Buyle, G.B. Marin, and R. De Gryse, An in-situ reduction/oxidation XAS study on the EL10V8 VOx/TiO2(Anatase) powder catalyst.

Catalysis Letters, 2006. 107(1-2): p. 61-71.

61. Frank, P., E.J. Carlson, R.M.K. Carlson, B. Hedman, and K.O. Hodgson, The uptake and fate of vanadyl ion in ascidian blood cells and a detailed hypothesis for the mechanism and location of biological vanadium reduction. A visible and X-ray absorption spectroscopic study. Journal of Inorganic Biochemistry, 2008. 102(4): p.

809-823.

62. Rodella, C.B. and V.R. Mastelaro, Structural characterization of the V2O5/TiO2 system obtained by the sol-gel method. Journal of Physics and Chemistry of Solids,

73

2003. 64(5): p. 833-839.

63. Balikdjian, J.P., A. Davidson, S. Launay, H. Eckert, and M. Che, Sintering and phase transformation of V-loaded anatase materials containing bulk and surface V species.

Journal of Physical Chemistry B, 2000. 104(38): p. 8931-8939.

64. Bentrup, U., A. Bruckner, C. Rudinger, and H.J. Eberle, Elucidating structure and function of active sites in VOx/TiO2 catalysts during oxyhydrative scission of 1-butene by in situ and operando spectroscopy. Applied Catalysis a-General, 2004. 269(1-2): p.

237-248.

65. Li, C.Z., B.Z. Tian, F. Gu, H.B. Jiang, Y.J. Hu, and J.L. Zhang, Flame sprayed V-doped TiO(2) nanoparticles with enhanced photocatalytic activity under visible light irradiation. Chemical Engineering Journal, 2009. 151(1-3): p. 220-227.

66. Gratzel, M. and R.F. Howe, Electron-Paramagnetic Resonance Studies of Doped Tio2 Colloids. Journal of Physical Chemistry, 1990. 94(6): p. 2566-2572.

67. Chary, K.V.R., G. Kishan, T. Bhaskar, and H. Sivaraj, Structure and reactivity of vanadium oxide catalysts supported on anatase TiO2. Journal of Physical Chemistry B, 1998. 102(35): p. 6792-6798.

68. Howe, R.F. and M. Gratzel, Electron-Paramagnetic-Res Study of Hydrated Anatase under Uv Irradiation. Journal of Physical Chemistry, 1987. 91(14): p. 3906-3909.

69. Nakaoka, Y. and Y. Nosaka, ESR Investigation into the effects of heat treatment and crystal structure on radicals produced over irradiated TiO2 powder. Journal of Photochemistry and Photobiology a-Chemistry, 1997. 110(3): p. 299-305.

70. Hurum, D.C., K.A. Gray, T. Rajh, and M.C. Thurnauer, Recombination pathways in the Degussa P25 formulation of TiO2: Surface versus lattice mechanisms (vol 109B, pg 980, 2005). Journal of Physical Chemistry B, 2005. 109(11): p. 5388-5388.

71. Kumar, C.P., N.O. Gopal, T.C. Wang, M.S. Wong, and S.C. Ke, EPR investigation of TiO2 nanoparticles with temperature-dependent properties. Journal of Physical Chemistry B, 2006. 110(11): p. 5223-5229.

72. Coronado, J.M., A.J. Maira, J.C. Conesa, K.L. Yeung, V. Augugliaro, and J. Soria, EPR study of the surface characteristics of nanostructured TiO2 under UV irradiation.

Langmuir, 2001. 17(17): p. 5368-5374.

73. Martin, S.T., C.L. Morrison, and M.R. Hoffmann, Photochemical Mechanism of Size-Quantized Vanadium-Doped TiO2 Particles. Journal of Physical Chemistry, 1994.

98(51): p. 13695-13704.

74. Hibino, M., M. Ugaji, A. Kishimoto, and T. Kudo, Preparation and Lithium Intercalation of a New Vanadium-Oxide with a 2-Dimensional Structure. Solid State Ionics, 1995. 79: p. 239-244.

75. Oliveri, G., G. Ramis, G. Busca, and V.S. Escribano, Thermal-Stability of Vanadia-Titania Catalysts. Journal of Materials Chemistry, 1993. 3(12): p. 1239-1249.

74

76. del Val, S., M.L. Granados, J.L.G. Fierro, J. Santamaria-Gonzalez, A.J. Lopez, and T.

Blasco, alpha-TiP-supported vanadium oxide catalysts: Influence of calcination pretreatments on structure and performance for o-xylene oxidation. Journal of Catalysis, 2001. 204(2): p. 466-478.

77. Amores, J.M.G., V.S. Escribano, and G. Busca, Anatase Crystal-Growth and Phase-Transformation to Rutile in High-Area TiO2, MoO3-TiO2 and Other Tio2-Supported Oxide Catalytic-Systems. Journal of Materials Chemistry, 1995. 5(8):

p. 1245-1249.

78. Balikdjian, J.P., A. Davidson, S. Launay, H. Eckert, and M. Che, Sintering and phase transformation of V-loaded anatase materials containing bulk and surface species (vol 104B, pg 8931, pg 2000). Journal of Physical Chemistry B, 2001. 105(49): p.

12432-12432.

79. Choi, J., H. Park, and M.R. Hoffmann, Effects of Single Metal-Ion Doping on the Visible-Light Photoreactivity of TiO2. Journal of Physical Chemistry C, 2010. 114(2):

p. 783-792.

80. Luan, Z.H. and L. Kevan, Electron spin resonance and diffuse reflectance ultraviolet-visible spectroscopies of vanadium immobilized at surface titanium centers of titanosilicate mesoporous TiMCM-41 molecular sieves. Journal of Physical Chemistry B, 1997. 101(11): p. 2020-2027.

81. Zheng, S., L. Gao, Q.H. Zhang, W.P. Zhang, and J.K. Guo, Preparation, characterization and photocatalytic properties of singly and doubly titania-modified mesoporous silicate MCM-41 by varying titanium precursors. Journal of Materials Chemistry, 2001. 11(2): p. 578-583.

82. Li, Y., T.J. White, and S.H. Lim, Low-temperature synthesis and microstructural control of titania nano-particles. Journal of Solid State Chemistry, 2004. 177(4-5): p.

1372-1381.

83. Yu, J.G., H.G. Yu, B. Cheng, X.J. Zhao, J.C. Yu, and W.K. Ho, The effect of calcination temperature on the surface microstructure and photocatalytic activity of TiO2 thin films prepared by liquid phase deposition. Journal of Physical Chemistry B, 2003. 107(50): p. 13871-13879.

84. Li, Y., W.N. Wang, Z.L. Zhan, M.H. Woo, C.Y. Wu, and P. Biswas, Photocatalytic reduction of CO2 with H2O on mesoporous silica supported Cu/TiO2 catalysts.

Applied Catalysis B-Environmental, 2010. 100(1-2): p. 386-392.

85. Varghese, O.K., M. Paulose, T.J. LaTempa, and C.A. Grimes, High-Rate Solar Photocatalytic Conversion of CO2 and Water Vapor to Hydrocarbon Fuels. Nano Letters, 2009. 9(2): p. 731-737.

86. Ikeue, K., S. Nozaki, M. Ogawa, and M. Anpo, Photocatalytic reduction of CO2 with H2O on Ti-containing porous silica thin film photocatalysts. Catalysis Letters, 2002.

75

80(3-4): p. 111-114.

87. Coronado, J.M., A.J. Maira, A. Martinez-Arias, J.C. Conesa, and J. Soria, EPR study of the radicals formed upon UV irradiation of ceria-based photocatalysts. Journal of Photochemistry and Photobiology a-Chemistry, 2002. 150(1-3): p. 213-221.

88. Manivannan, A., G. Glaspell, and P. Dutta, Synthesis of nanocrystalline TiO2 particles and their structural characteristics. Journal of Cluster Science, 2008. 19(2): p.

391-399.

76

Appendix A. XPS Analysis

(a)

1000 800 600 400 200 0

-500 0 500 1000 1500 2000 2500 3000 3500 4000 4500

Intensity

eV 1.00 at.% V-TiO2-200 oC

(b)

470 465 460 455

0 2000 4000 6000

Intensity

eV 1.00 at.% V-TiO2-200 oC

Appendix A-1 The XPS spectra of the 1.00 at.% V-doped TiO2 at 200 °C. (a) survey and (b) Ti (2p).

77

(a)

1000 800 600 400 200 0

-500 0 500 1000 1500 2000 2500 3000 3500 4000 4500

Intensity

eV 1.00 at.% V-TiO2-700 oC

(b)

470 465 460 455

0 2000 4000 6000

Intensity

eV 1.00 at.% V-TiO2-700 oC

Appendix A-2 The XPS spectra of the 1.00 at.% V-doped TiO2 at 700 °C. (a) survey and (b) Ti (2p).

78

(a)

1000 800 600 400 200 0

-500 0 500 1000 1500 2000 2500 3000 3500 4000 4500

4.00 at.% V-TiO2-200 oC

intensity

eV

(b)

470 465 460 455

0 2000 4000

Intensity

eV 4.00 at.% V-TiO

2-200 oC

Appendix A-3 The XPS spectra of the 4.00 at.% V-doped TiO2 at 200 °C. (a) survey and (b) Ti (2p).

79

Appendix B. EPR Analysis

2.1 2.0 1.9

600 oC 500 oC

300 oC 400 oC

200 oC

Intensity

g-factor

Appendix B-1 EPR spectra of pure TiO2 at different calcination temperature at 77K in the dark.

80

Appendix C. Degradation of RhB

(a)

Appendix C-1 The degradation of 0.01 mM RhB by (a)the pure TiO2 and (b)the 0.01 at.%

TiO2.

81

0 5 10 15 20 25 30

0.5 0.6 0.7 0.8 0.9 1.0

C/C 0

time(min) 900 oC

700 oC 200 oC 300 oC 600 oC 400 oC 500 oC

Appendix C-2 The degradation of 0.01 mM RhB by 1.00 at.% TiO2.

82

Appendix D. Calibration Curve

Appendix D-1 The calibration curve of CH4.

相關文件