• 沒有找到結果。

We have demonstrated a novel compact, low cost, non-planar, and multi-reentrant two-mirror ring cavity by using one gain medium and two spherical couplers which the amplitude noise can be maintained at 0.3%. The laser cavity is compact which the volume can be as small as 1.46 cm3 and suitable for applications in cases where unidirectional propagation is required. Numerical simulation in polarization is also performed. In the numerical simulation, the factors which affect the polarization state within the cavity were considered, the thermally induced optical axis rotation in the gain medium is also derived, and the equivalent temperature-dependent dielectric tensor of the gain medium at various pump powers was determined, which enable Jones matrix analysis on the polarization in the non-planar ring laser cavity.

We not only prove that the multi-reentrant laser system is feasible experimentally, but also use fundamental laser theory to find the relation among cavity length, number of points, number of circulation, and the distance between center of gain medium and optical axis. The exact solution we obtained is experimentally verified with good agreement. A comparison between exact solution and paraxial approximation is also performed. The beam paths observing from the top, side, and end view are analyzed for various multi-reentrant laser cavities. The stability of the cavity is numerically analyzed and experimentally verified with good agreement, too. The differences in cavity configuration between TEM01 mode and the figure-8 mode are also compared.

This ring cavity configuration can produce single frequency IR and green laser effectively. It is also applicable to trace gas sensing, mode locked laser, as well as lasergyro. In the aspect of the Q-switched high power pulse laser, the timing jitter

problem can be improved significantly. The timing jitter is reduced around more than thirtieth (1/30) compare to the typical linear cavity. In the future, one of our studies is utilizing our optical coating technique and this multi-reentrant cavity to demonstrate a compact mode-locked laser with dispersion compensated output couplers.

Appendix A

Considering the cavity configuration shown in Fig. A1, the laser beam bounces back and forth between the two cavity mirrors, M1 and M2, and obeys the reflection law. With the assumption that all the laser spots at the mirrors have the same distance from the optical axis, we can assign the coordinates for three consecutive reflection points as,

It is also clear from Fig. A1(b) that, using Pythagorean theorem, the following equation holds:

Plugging (A1) into (A2), we obtain

( )

A3

In one bounce and return between M1 and M2, the laser beam rotates in the x-y plane by a 2ϕ angle. Assuming the beam completes a round trip with N bounce and 1 back, the constrain below on ϕ should be followed, 1

( )

2 1 2 M

( )

A4

N ϕ = π

where M is an integer. Substituting (A4) into (A3), we obtain

( )

A5 2 cos

cos 2

2 2 π θ

N M R

L = −

Figure A1. Beam path in (a) 3D view, (b) side view, and (c) end view.

y z x

3

1 2

M1

M2

(a)

L x

z 1 2

3

L L x

z

L

M1 M2

m2 m1

(b)

1 2

3 2ϕ1

(c)

References

[1] T. Baer, “Large amplitude fluctuations due to longitudinal mode coupling in diode pumped intracavity doubled Nd:YAG lasers,” J. Opt. Soc. Amer. B. 3 (1986) 1175.

[2] M. Oka and S. Kubota, ”Stable intracavity doubling of orthogonal linearly polarized modes in diode-pumped Nd:YAG lasers,” Opt. Lett., 13 (1988) 805.

[3] W. J. Koziovsky, C. D. Nabors, and R. L. Byer, ”Second-harmonic generation of a continuous wave diode pumped Nd:YAG laser using an externally resonant cavity,” Opt. Lett., 12 (1987) 1014.

[4] C. L. Tang, H. Statz, and G. Demars, “Regular spiking and single mode operation of ruby laser,” Appl. Phys. Lett. 2 (1963) 222.

[5] C. Pedersen, P. L. Hansen, P. Buchhave, and T. Skettrup, “Single-frequency diode-pumped Nd:YAG prism laser with use of a composite laser crystal,”

Appl. Opt. 36 (1997) 6780.

[6] K. I. Martin, W. A. Clarkson, and D. C. Hanna, “Stable, high-power, single-frequency generation at 532nmfrom a diode-bar-pumped Nd:YAG ring laser with an intracavity LBO frequency doubler,” Appl. Opt. 36 (1997) 4149.

[7] J. J. Zayhowski and A. Mooradian, “Single-frequency microchip Nd lasers,”

Opt. Lett. 14 (1989) 24.

[8] D. A. Draegert, “Efficient single-longitudinal-mode Nd:YAG laser,” IEEE J.

Quantum Electron. 8 (1972) 235.

[9] R. Polloni and O. Svelto, “Static and dynamic behavior of a single mode Nd:YAG laser,” IEEE J. Quantum Electron. 4 (1968) 481.

[10] Y. V. Troitskii and N. D. Goldina, “Separation of one mode of a laser,” JETP Lett. 7 (1968) 36.

[11] S. A. Collins and R. G. White, “Interferometer laser mode selector,” Appl. Opt.

2 (1963) 448.

[12] P. W. Smith, M. V. Schneider, and H. G. Danielmeyer, “High power single frequency lasers using thin metal films mode selection filters,” Bell Syst. Tech.

J. 48 (1969) 1405.

[13] W. Culshaw and J. Kannelaud, “Two component mode filters for optimum single frequency operation of Nd:YAG lasers,” IEEE J. Quantum Electron. 7 (1971) 381.

[14] H. G. Danielmeyer and E. H. Turner, “Electrooptic elimination of spatial hole burning in lasers,” Appl. Phys. Lett. 17 (1970) 519.

[15] H. P. Barber, “Coherence length extension of He-Ne lasers,” Appl. Opt. 7 (1968) 559.

[16] T. Kushida, H. M. Marcos, and J. E. Geusic, “Laser transition cross section and fluorescence branching ratio for Nd3+ in yttrium aluminum garnet,” Phys. Rev.

167 (1968) 289.

[17] W. W. Rigrod and A. M. Johnson, “Resonant prism mode selector for gas lasers,” IEEE J. Quantum Electron. 3 (1967) 644.

[18] H. G. Danielmeyer, “Stabilized efficient single frequency Nd:YAG laser,” IEEE J. Quantum Electron. 6 (1970) 101.

[19] P. W. Smith, “Stabilized, single frequency output from a long laser cavity,”

IEEE J. Quantum Electron. 1 (1965) 343.

[20] R. Scheps and J. Myers, “A single frequency Nd:YAG ring laser pumped by laser diodes,” IEEE J. Quantum Electron. 26 (1990) 413.

[21] T. J. Kane and R. L. Byer, “Monolithic unidirectional single-mode Nd:YAG ring laser,” Opt. Lett. 10 (1985) 65.

[22] M. D. Selker, T. J. Johnston, G. Frangineas, J. L. Nightingale, and D. K. Negus,

“> 8.5 watts of single frequency 532 nm light from a diode pumped intra-cavity doubled ring laser,” Conf. on Lasers and Electro-Optics, CA, U.S.A., 1996, paper CPD-21.

[23] P. L. Huang, C. R. Weng, H. Z. Cheng, and S. L. Huang, “A passively Q-switched laser constructed by a two-mirror reentrant ring cavity,” Jpn. J.

Appl. Phys. 40 (2001) L508.

[24] G. T. Maker, G. P. A. Malcolm, and A. I. Ferguson, “Single frequency diode pumped Nd:YAG ring laser with no intracavity elements,” Opt. Lett. 22 (1993) 1813.

[25] H. Z. Cheng, P. L. Huang, S. L. Huang, and F. J. Kao, “Reentrant two-mirror ring resonator for generation of a single-frequency green laser,” Opt. Lett. 25 (2000) 542.

[26] A. H. Rosenthal, “Regenerative circulatory multiple-beam interferometry for the study of light propagation effects,” J. Opt. Soc. Amer. 52 (1962) 1143.

[27] S. Ezekiel and S. R. Balsamo, “Passive ring resonator laser gyroscope,” Appl.

Phys. Lett. 30 (1977) 478.

[28] H. Lefevre, The fiber optic gyroscope (Norwood, MA, Artech House, 1993) [29] K. Taguchi, K. Fukushima, A. Ishitani, and M. Ikeda, “Proposal of a

semiconductor ring laser gyroscope,” Opt. and Quantum Electron. 31 (1999) 1219.

[30] D. Kaur, A. M. de Souza, J. Wanna, S. A. Hammad, L. Mercorelli, and D. S.

Perry, “Multipass cell for molecular beam absorption spectroscopy,” Appl. Opt.

29 (1990) 119.

[31] D. Nickel, D. Kuhlke, and D. von der Linde, “Multipass dye-cell amplifier for

high-repetition-rate femtosecond optical pulses,” Opt. Lett. 14 (1989) 36.

[32] J. Altmann, R. Baumgart, and C. Weitkamp, “Two-mirror multipass absorption cell,” Appl. Opt. 20 (1981) 995.

[33] G. W. Haggquist and K. R. Naqvi, “A simple method for prolonging the effective pathlength in laser kinetic spectroscopy,” Rev. Sci. Instrum. (1994) 2188.

[34] New Focus catalog, 8 (1997) 34.

[35] T. H. Maiman, “Stimulated optical radiation in ruby masers,” Nature, 187 (1960) 493.

[36] T. H. Maiman, “Optical and microwave-optical experiments in Ruby,” Phys.

Rev. Lett. 4 (1960) 564.

[37] T. H. Maiman, “Stimulated optical emission in fluorescent solids, I, theoretical considerations,” Phys. Rev. Lett. 123 (1961) 1145.

[38] T. H. Maiman, R. H. Hoskins, I. J. D’Haenens, C. K. Asawa, and V. Evtuhov,

“Optical and microwave-optical experiments in Ruby,” Phys. Rev. Lett. 123 (1967) 1151.

[39] W. Koechner, Solid state laser engineering (Springer Verlag, New York, 1996).

[40] R. Newman, “Excitation of the Nd3+ fluorescence in CaWO4 by recombination radiation in GaAs,” J. Appl. Phys. 34 (1963) 437.

[41] R. J. Keyes and T. M. Quist, “Injection luminescent pumping of CaF2:U3+ with GaAs diode lasers,” Appl. Phys. Lett. 4 (1964) 50.

[42] D. R. Scifres, R. D. Burnham, and W. Streifer, “Phase locked semiconductor laser array,” Appl. Phys. Lett. 33 (1978) 1015.

[43] Laser Focus World “The laser marketplace,” January (1996) 62.

[44] Laser Focus World “Laser enhanced bonding produces strong seams,” August (1995) 32.

[45] E. C. H. Parker, Physics of molecular beam epitaxy (Plenum Press, New York, 1985).

[46] H. C. Casey, Jr., and M. B. Panosh, Heterostructure lasers (Academic Press, New York, 1978).

[47] H. C. Casey, Jr., and M. B. Panosh, “Composition dependence of the direct GA1-xAlxAs and indirect energy gaps,” J. Appl. Phys. 40 (1969) 4910.

[48] H. C. Casey, Jr., D. D. Sell, and M. B. Panosh, “Refractive index of AlxGA1-xAs between 1.2 and 1.8eV,” Appl. Phys. Lett. 24 (1974) 63.

[49] D. D. Sell, H. C. Casey, Jr., and K. W. Wecht, “Concentration dependence of the refractive index for n-type and p-type GaAs between 1.2 and 1.8eV,” J.

Appl. Phys. 45 (1974) 2650.

[50] W. Streifer, D. R. Scifres, G. L. Harnagel, D. F. Welch, J. Berger, M. Sakamoto,

“Advances in diode laser pumps,” IEEE J. Quantum Electron. 24 (1988) 883.

[51] J. Hecht, The laser guidebook (McGraw Hill, New York, 1991).

[52] R. Trebino, “Achromatic N-prism beam expanders: optimal configurations,”

Appl. Opt. 24 (1985) 1130.

[53] A. A. Kaminski, Laser crystals, in springer series in optical sciences (Springer Verlag, New York, 1981).

[54] D. R. Herriott, “Applications of laser light,” Sci. Am. 219 (1968) 141.

[55] C. W. Wang, Y. L. Weng, P. L. Huang, H. Z. Cheng, and S. L. Huang,

“Passively Q-switched quasi three level laser and its intracavity frequency doubling,” Appl. Opt. 41 (2002) 1075.

[56] P. H. Berning and A. F. Turner, “Induced transmission in absorbing films applied to band pass filter design,” J. Opt. Soc. Am. 47 (1957) 230.

[57] H. K. Pulker, Coating on glass (Elsevier, 1984).

[58] A. Musset and A. Thelen, Multilayer antireflection coatings (North Holland, Amsterdam, 1966).

[59] H. A. Macleod, Introduction to thin-film optical coatings and filters (Thin Film Center Inc, Tucson, Arizona, 1995).

[60] M. Born and E. Wolf, Principle of optics (Pergamon, Oxford, 1975).

[61] P. H. Berning, Physics of thin films (Academic Press, New York, 1963).

[62] H. A. Macleod, Thin-film optical filters (Adam Hilger Ltd, Bristol, 1986).

[63] Z. Knittl, Optics of thin films (Wiley, London, 1976).

[64] S. D. Smith, “Design of multilayer filters by considering two effective interfaces,” J. Opt. Soc. Am. 48 (1958) 43.

[65] J. H. Apfel, “Graphics in optical coating design,” Appl. Opt. 11 (1972) 1303.

[66] L. I. Epstein, “The design of optical filters,” J. Opt. Soc. Am. 42 (1952) 806.

[67] R. R. Willey, Practical design and production of optical thin films (Marcel Decker Inc., New York, 1996).

[68] A. Thelen, Design of optical interference coatings (McGraw Hill, New York 1989).

[69] H. K. Pulker, “Characterizations of optical thin films,” Appl. Opt. 18 (1979) 1969.

[70] W. L. Wolfe, ed., Handbook of optics (McGraw Hill, New York, 1976).

[71] M. Welch, “Vacuum evaporation technology for optical thin films,” Lasers Optron. 6 (1989) 69.

[72] A. Thelen, “Equivalent layers in multilayer filters,” J. Opt. Soc. Am. 56 (1966) 1533.

[73] J. T. Cox, G. Hass, and A. Thelen, “Triple-layer antireflection coatings on glass for the visible and near infrared,” J. Opt. Soc. Am. 52 (1962) 965.

[74] J. T. Cox, “Special type of double-layer antireflection coating for infrared optical materials with high refractive index,” J. Opt. Soc. Am. 51 (1961) 1406.

[75] M. C. Ohmer, “Design of three-layer equivalent films,” J. Opt. Soc. Am. 68 (1978) 137.

[76] I. Szafranek and I. Lubezky, “Broad, double-band antireflection coatings on glasses for 1.06 µm and visible or ultraviolet radiation: design and experiment,” Proceeding of the SPIE, 401 (1983) 138.

[77] L. B. Lockhart and P. King, “Three-layered reflection-reducing coatings,” J.

Opt. Soc. Am. 37 (1947) 689.

[78] P. W. Baumeister and J. M. Stone, “Broad-band multilayer film for fabry-perot interferometers,” J. Opt. Soc. Am. 46 (1956) 228.

[79] R. M. Wood, Laser damage in optical materials (Adam Hilger, Boston, 1986).

[80] T. W. Walker, A. H. Guenther, and P. Nielsen, “Pulsed laser induced damage to thin film optical coatings Part II: theory,” IEEE J. Quantum Electron. 17 (1981) 2053.

[81] E. W. Van Stryland, M. J. Soileau, A. L. Smirl, and W. E. Williams,

“Pulse-width and focal-volume dependence of laser-induced breakdown,” Phys.

Rev. B23 (1981) 2144.

[82] T. Mcminn, S. Seitel, and M. Babb, “Laser damage of YAG surfaces, laser induced damage in optical materials: 1988,” NIST Spec. Publ. 775 (1989) 321.

[83] W. H. Lowdermilk and D. Milam, “Laser induced surface and coating damage,”

IEEE J. Quantum Electron. 17 (1981) 1888.

[84] Evaporation Chemicals and Sputtering Targets, (EM Industries, Inc., Hawthrone, New York, 1986).

[85] 李正中,“薄膜光學與鍍膜技術”,藝軒出版社,1999。

[86] P. Baumeister, “The transmittance and degree of polarization of quarter-wave stacks at non-normal incidence,” Optica Acta 8 (1961) 105.

[87] Z. Knittl, “Control of polarization effects by internal antireflection,” Appl. Opt.

20 (1981) 105.

[88] H. Demiryont, J. R. Sites, and Kent Geib, “Effects of oxygen content on the optical properties of tantalum oxide films deposited by ion-beam sputtering,”

Appl. Opt. 24 (1985) 490.

[89] E. Aktulga, “Optical parameters of a weakly absorbing film on a nonabsorbing substrate by spectrophotometric transmissivity,” Ph.D. Thesis, Department of Physics, Istanbul U., Istanbul, Turkey.

[90] R. Swanepoel, “Determination of the thickness and optical constants of amorphous silicon,” Phys. E: Sci. Instrum., 16 (1983) 1214.

[91] 工研院光電所光學元件部,台中精機廠股份有限公司專業鍍膜人才培訓課

程,90 年 5 月。

[92] G. M. Davis, I. Yokohama, S. Sudo, and K. Kubodera, “1.3 mµ Nd:YAG crystal fiber amplifiers,” IEEE Photon. Technol. Lett. 3 (1991) 459.

[93] S. Ishibashi and K. Naganuma, “Diode pumped Cr4+:YAG single crystal fiber laser” in Advence Solid-States Lasers, OSA Tech. Dig., Davos, Switzerland (2000) MD4-1/103.

[94] A. Guenther and T. Humphrevs, “Physical aspects of laser-induced damage in optical materials,” SPIE, 401 (1983) 247.

[95] 周采璇,“高效率摻 釹釔鋁石榴石晶體光纖雷射之研製” ,國立中山大學光 電工程研究所碩士論文,2002。

[96] C. Y. Lo, P. L. Huang, T. S. Chou, L. M. Lee, T. Y. Chang, S. L. Huang, L. C.

Lin, H. Y. Lin, and F. C. Ho, “Efficient Nd:Y3Al5O12 crystal fiber laser,” Jpn. J.

Appl. Phys. 41 (2002) L1228.

[97] R. G. Smith, “Theory of intracavity optical second harmonic generation,” IEEE J. Quantum Electron. 6 (1970) 215.

[98] C. J. Kennedy and J. D. Barry, “Stability of an intracavity frequency doubled Nd:YAG laser,” IEEE J. Quantum Electron. 10 (1974) 596.

[99] J. D. Barry and C. J. Kennedy, “Thermo optical instabilities and bistable behavior with the frequency doubled Nd:YAG laser,” J. Appl. Phys. 48 (1977) 2518.

[100] R. R. Rice, J. R. Teague, and J. E. Jackson, “The effects of optical absorption in Ba2NaNb5O15 on internal frequency doubled operation of Nd:YAG,” J. Appl.

Phys. 49 (1978) 5750.

[101] M. A. Karr, “Nd:YAlG-Ba2NaNb5O15 0.66-µm harmonic source,” J. Appl.

Phys. 42 (1971) 4517.

[102] T. Baer, “Large amplitude fluctuations due to longitudinal mode coupling in diode pumped intracavity doubled Nd:YAG lasers,” J. Opt. Soc. Am. B. 3 (1986) 1175.

[103] D. A. Draegert, “Efficient single-longitudinal-mode Nd:YAG laser,” IEEE J.

Quantum Electron. 8 (1972) 235.

[104] H. G. Danielmeyer, “Electro-optic elimination of spatial hole burning in lasers,”

Appl. Phys. Lett. 17 (1970) 519.

[105] T. J. Kane and R. L. Byer, “Monolithic, unidirectional single-mode Nd:YAG ring laser,” Opt. Lett. 10 (1985) 65.

[106] J. L. Nightingale and J. K. Johnson, “Single frequency ring laser with two reflecting surface,” U.S. patent 5,052,815 (October 1, 1991).

[107] A. R. Clobes, M. J. Brienza, “Single frequency traveling wave Nd:YAG kaser,”

Appl. Phys. Lett. 21 (1972) 265.

[108] C. Pedersen, P. L. Hansen, P. Buchhave, and T. Skettrup, “Single-frequency diode-pumped Nd:YAG prism laser with use of a composite laser crystal,”

Appl. Opt. 36 (1997) 6780.

[109] K. I. Martin, W. A. Clarkson, and D. C. Hanna, “Stable, high-power, single-frequency generation at 532nmfrom a diode-bar-pumped Nd:YAG ring laser with an intracavity LBO frequency doubler,” Appl. Opt. 36 (1997) 4149.

[110] J. J. Zayhowski and A. Mooradian, “Single-frequency microchip Nd lasers,” Opt.

Lett. 14 (1989) 24.

[111] T. Sasaki, T. Kojima, A. Yokotani, O. Oguri, and S. Nakai, “Single longitudinal mode operation and second harmonic generation of Nd:YAG microchip lasers,”

Opt. Lett. 16 (1991) 1665.

[112] K. Wallmeroyh and P. Peuser, “High power, cw single frequency, TEM00, diode laser pumped Nd:YAG laser,” Electron. Lett. 24 (1988) 1086.

[113] G. J. Kintz and T. Baer, “Single frequency operation in solid state laser material with short absorption depths,” IEEE J. Quantum Electron. 26 (1990) 1457.

[114] R. Scheps and J. Myers, “A single frequency Nd:YAG ring laser pumped by laser diodes,” IEEE J. Quantum Electron. 26 (1990) 413.

[115] M. D. Selker, T. J. Johnston, G. Frangineas, J. L. Nightingale, and D. K. Negus,

“>8 watts of single frequency 532 nm light from a diode-pumped intra-cavity doubled ring laser,” Conf. on Lasers and Electro-Optics, CA, U.S.A., 1996, paper CPD-21.

[116] P. L. Huang, C. R. Weng, H. Z. Cheng, and S. L. Huang, “A passively Q-switched laser constructed by a two-mirror reentrant ring cavity,” Jpn. J. Appl.

Phys. 40 (2001) L508.

[117] G. T. Maker, G. P. A. Malcolm, and A. I. Ferguson, “Single frequency diode pumped Nd:YAG ring laser with no intracavity elements,” Opt. Lett. 22 (1993) 1813.

[118] H. Z. Cheng, P. L. Huang, S. L. Huang, and F. J. Kao, “Reentrant two-mirror ring resonator for generation of a single-frequency green laser,” Opt. Lett. 25 (2000) 542.

[119] S. L. Huang, Y. H. Chen, P. L. Huang, J. Y. Yi, and H. Z. Cheng, “Multi-reentrant non-planar ring laser cavity,” IEEE J. Quantum Electron. 38 (2002) 1301.

[120] K. J. Kuhn, Laser Engineering (Prentice Hall, Upper Saddle River, 1998).

[121] Christian Hentschel, Fiber Optics Handbook (HP, 1988).

[122] H. J. R. Dutton, Understanding Optical Communications (IBM, 1998).

[123] D. Chen, C. L. Fincher, D. A. Hinkley, R. A. Chodzko, T. S. Rose, and R. A.

Fields, “Semimonolithic Nd:YAG ring resonator for generating cw single frequency output at 1.06µm,” Opt. Lett. 20 (1995) 1283.

[124] P. L. Huang, H. Z. Cheng, and S. L. Huang, “Timing jitter reduction of passively Q-switched laser by a reentrant two-mirror ring cavity” Conf. on Lasers and Electro-Optics: CA, U.S.A., 2000, paper CThM2.

[125] I. Freitag, A. Tunnermann, and H. Welling, “Passively Q-switched Nd:YAG ring lasers with high average output power in single frequency operation,” Opt. Lett.

22 (1997) 706.

[126] Y. D. Golyaev, K. N. Evtyukhov, L. N. Kaptsov and S. P. Smyshlyaev, “Spatial and polarization characteristics of radiation from a cw neodymium doped garnet laser with a nonplanar ring resonator,” Sov. J. Quantum Electron. 11 (1981) 1421.

[127] H. Kiriyama, T. Yoshida, N. Srinivasan, H. Matsui, K. Nishida, M. Yamanaka, Y. Izawa, T. Yamanaka and S. Nakai, “Thermal Birefringence Effect on the Performance of a Laser-Diode Pumped Solid-State Laser,” Jpn. J. Appl. Phys. 36 (1997) 7197.

[128] S. Z. Kurtev, O. E. Denchev and S. D. Savov, “Effects of thermally induced birefringence in high-output-power electro-optically Q-switched Nd:YAG lasers and their compensation” Appl. Opt. 32 (1993) 278.

[129] C. L. Tang, H. Statz, and G. deMars, Jr., “Spectral output and spiking behavior of solid-state lasers,” J. Appl. Phys. 34 (1963) 2289.

[130] S. M. Jarrett and J. F. Young, “High-efficiency single-frequency cw ring dye laser,” Opt. Lett. 4 (1979) 176.

[131] R. L. Fork, B. I. Greene, and C. V. Shank, “Generation of optical pulses shorter than 0.1 psec by colliding pulse mode locking,” Appl. Phys. Lett. 38 (1981) 671.

[132] W. W. Chow, J. Gea-Banacloche, L. M. Pedrotti, V. E. Sanders, W. Schleich, and M. O. Scully, “The ring laser gyro,” Rev. Mod. Phys. 57 (1985) 61.

[133] K. Taguchi, K. Fukushima, A. Ishitani, and M. Ikeda, “Proposal of a semiconductor ring laser gyroscope,” Opt. and Quantum Electron. 31 (1999) 1219.

[134] A. E. Siegman, Lasers (University Science Books, California, 1986).

[135] D. Kaur, A. M. de Souza, J. Wanna, S. A. Hammad, L. Mercorelli, and D. S.

Perry, “Multipass cell for molecular beam absorption spectroscopy,” Appl. Opt.

29 (1990) 119.

[136] D. Nickel, D. Kuhlke, and D. von der Linde, “Multipass dye-cell amplifier for high-repetition-rate femtosecond optical pulses,” Opt. Lett. 14 (1989) 36.

[137] J. Altmann, R. Baumgart, and C, Weitkamp, “Two-mirror multipass absorption cell,” Appl. Opt. 20 (1981) 995.

[138] G. W. Haggquist and K. R. Naqvi, “A simple method for prolonging the effective pathlength in laser kinetic spectroscopy,” Rev. Sci. Instrum. (1994) 2188.

[139] J. A. Arnaud, “Non-orthogonal optical waveguides and resonators,” Bell Sys.

Tech. J. (1970) 2311.

[140] P. K. Tien, J. P. Gordon, and J. R. Whinnery, “Fousing of a light beam of gussian field distribution in continuous and periodic lens-like media,” Proc. IEEE. 53 (1965) 129.

[141] D. Herriot, H. Kogelnik, and R. Kompfner, “Off-axis paths in spherical mirror interferometers,” Appl. Opt. 3 (1964) 523.

[142] A. Yariv, Optical Electronics in Modern Communications. New York: Oxford University Press, 5th ed. (1997), ch. 2.2.

[143] 陳穎慧,“多次再入射之雙鏡式環型共振腔雷射的研究” ,國立中山大學光 電工程研究所碩士論文,2001。

[144] X. Zhang, S. Zhao, Q. Wang, Q. Zhang, L.Sun, and S. Zhang, “Optimization of Cr4+-doped saturable absorber Q-switched lasers,” IEEE J. Quantum Electron.

33 (1997) 2286.

[145] Y. Bai, N. Wu, J. Zhang, J. Li, J. Xu, and P. Deng, “Passively Q-switched Nd:YVO4 laser with a Cr4+:YAG crystal saturable absorber,” Appl. Opt. 36 (1997) 2468.

[146] R. S. Afzal, A. W. Yu, J. J. Zayhowski, and T. Y. Fan, “Single mode high peak power passively Q-switched diode pumped Nd:YAG laser,” Opt. Lett. 22 (1997) 1314.

[147] Y. Shimony, Z. Burshtein, and Y. Kalisky, “Cr4+:YAG as passive Q-switch and brewster plate in a pulsed Nd:YAG laser,” IEEE J. Quantum Electron. 31 (1995) 1738.

[148] J. J. Zayhowski and C. Dill III, “Diode-pumped passively Q-switched picosecond microchip lasers,” Opt. Lett. 19 (1994) 1427.

[149] R. Fluck, B. Braun, U. Keller, E. Gini, and H. Melchior, OSA Trends in Optics and Photonics Series: Advanced Solid-State Lasers. 10 (1997) 141.

[150] J. J. Degnan, “Optimization of passively Q-switched lasers,” IEEE J. Quantum Electron. 31 (1995) 1890.

[151] A. Agnesi, S. Dell’Acqua, and G. C. Reali, “1.5 Watt passively Q-switched diode-pumped cw Nd:YAG laser,” Opt. commun. 133 (1997) 211.

[152] A. Agnesi, S. Dell’Acqua, and G. C. Reali, “High performance Cr4+:YAG Q-switched CW diode pumped Nd:YAG laser,” Optical and Quant. Elec. 29 (1997) 429.

[153] S. L. Huang, T. Y. Tsui, C. H. Wang, and F. J. Kao, “Timing jitter reduction of a passively Q-switched laser,” Jpn. J. Appl. Phys. 38 (1999) 239.

[154] 崔宗元,“被動式 Q 開關 Nd:YAG/Cr4+:YAG 雷射研究” ,國立中山大學光

電工程研究所碩士論文,1998。

[155] 王健鴻,“外加雷射調制之被動式 Q 開關 Nd:YAG/Cr4+:YAG 雷射研究” , 國立中山大學光電工程研究所碩士論文,1999。

[156] W. Koechner, Solid-State Laser Engineering (Springer-Verlag, Berlin, 1999).

Biography

姓名:黃碧鈴 (Huang, Pi-Ling) 性別:女

出生年月日:民國六十四年一月二十二日 籍貫:台灣省台南市

學經歷:台灣省立台南女子高級中學 (1990.6-1993.6) 私立文化大學物理系畢業(1993.9-1997.6) 國立中山大學光電工程研究所(1997.8-2003.6) 博士論文題目:雙球面鏡之多次再入射環型共振腔雷射之研

究及應用

The study and application of multi-reentrant

two-spherical-mirror ring lasers

Publication List

I. SCI listed paper:

[1] P. L. Huang, C. J. Weng, H. T. Tuan, S. C. Pei, Y. H. Chang, and S. L. Huang

“Polarization analysis of a non-planar and reentrant ring laser cavity”, Jpn. J.

Appl. Phys. Vol.42 (2003).

[2] C. Y. Lo, P. L. Huang, T. S. Chou, L. M. Lee, T. Y. Chang, S.-L. Huang, L. C.

Lin, H. Y. Lin, and F. C. Ho, “Efficient Nd:Y3Al5O12 crystal fiber laser,” Jpn. J.

Appl. Phys. vol. 41 (2002) pp. L1228.

[3] S. L. Huang, Y. H. Chen, P. L. Huang, J. Y. Yi, and H. Z. Cheng,

“Multi-Reentrant Nonplanar Ring Laser Cavity,” IEEE J. Quantum Electron.

vol. 38 (2002) pp. 1301.

[4] C. W. Wang, Y. L. Weng, P. L. Huang, H. Z. Cheng, and S. L. Huang,

“Passively Q-switched quasi-three-level laser and its intracavity frequency doubling,” Appl. Opt., vol. 41 (2002) pp.1075.

[5] P. L. Huang, C. R. Weng, H. Z. Chang, and S. L. Huang, “A passively Q-switched laser constructed by a two-mirror reentrant ring cavity,” Jpn. J.

Appl. Phys. vol. 40 (2001) pp. L508.

[6] H. Z. Chang, P. L. Huang, and S. L. Huang, “Reentrant two-mirror ring resonator for generation of a single-frequency green laser,” Opt. Lett., vol. 25 (2000) pp. 542.

[7] S. L. Huang, W. L. Wu, and P. L. Huang, “Measurement of temperature gradient in diode-laser-pumped high-power solid-state laser by low-coherence reflectometry,” Appl. Phys. Lett., vol. 73 (1998) pp. 3342.

II. Conference paper:

[1] P. L. Huang and S. L. Huang, “The analysis of polarization in a non-planar ring laser,” Conf. on Lasers and Electro-Optics, paper CFM, Baltimore, Maryland, U.S.A., 2003.

[2] J. Y. Yi, P. L. Huang, H. T. Tuan, and S. L. Huang, “Planar and non-planar multi-reentrant 2-mirror ring cavities,” Conf. on Lasers and Electro-Optics, paper CThO12, Long-beach, U.S.A., 2002.

[3] C. Y. Lo, T. S. Chou, P. L. Huang, L. M. Lee, and S. L. Huang, “High-efficient Nd:YAG crystal fiber laser,” Conf. on Lasers and Electro-Optics, paper CTuP6 Long-beach, U.S.A., 2002.

[4] P. L. Huang, C. J. Weng, H. T. Tuan, S. C. Pei, and S. L. Huang “Polarization

Taiwan, 2002.

[5] P. L. Huang, Y. L. Weng, C. W. Wang, H. Z. Cheng, and S. L. Huang,

“Passively Q-switched three-level laser and its intracavity frequency-doubling,”

The 4th Pacific Rim Conference on Lasers and Electro-Optics, paper WI1-1, Chiba, Makuhari Messe, Japan, 2001.

[6] J. Y. Yi, P. L. Huang, H. T. Tuan, Y. H. Chen, S. L. Huang, “Multi-reentrant ring laser cavity,” Optics and Photonics Taiwan, paper FD2-2, Taiwan, 2001.

[7] C. Y. Lo, T. S Chou, P. L. Huang, L. M. Lee, and S. L. Huang, L. C. Lin, C. S.

Chang, H. Y. Lin, and F. C. Ho, “Diode laser pumped crystal fiber lasers with

Chang, H. Y. Lin, and F. C. Ho, “Diode laser pumped crystal fiber lasers with