• 沒有找到結果。

Conclusions and Future Work

3-1 Conclusions

A facile and reproducible approach for preparing Au-CdS core-shell nanocrystals with controllable shell thickness was developed. The photoinduced charge separation property was demonstrated and revealed in the as-synthesized Au-CdS nanocrystals due to the difference in band structures between Au and CdS. A pronounced photoinduced charge separation took place at the interface of Au and CdS, resulting in the electron-charged Au core and the hole-enriched CdS shell. The electron-charging of Au core in Au-CdS nanocrystals was revealed with the corresponding XPS analysis and photocurrent measurement. Time-resolved PL data showed that a higher electron-transfer rate constant was observed for Au-CdS nanocrystals with thicker CdS shell. On the other hand, the hole-enriched CdS shell of Au-CdS nanocrystals upon light illumination was characterized with a photocatalytic process. The photocatalytic activity of Au-CdS nanocrystals was found to increase with increasing shell thickness, consistent with the result of electron-transfer rate constant variation.

To further improve the recyclability and durability, Zn was doped into the shell of Au-CdS to produce Au-Cd1-xZnxS nanocrystals that showed relatively high long-term stability in photocatalysis. The present synthetic route can be readily extended to obtain other sulfide-semiconductor-coated Au nanocrystals such as Au-ZnS. The as-obtained Au-ZnS nanocrystals showed promising potential as efficient photoanode in relevant photoelectrochemical processes such as photocatalytic methanol oxidation.

The present study also gives rise to a new class of highly efficient metal-semiconductor hybrid photocatalysts which may effectively utilize the solar power.

3-2 Future Work

Though the potential of Au-ZnS nanocrystals as photoanode in photoelectrochemical cell has been successfully demonstrated, the serious photocorrosion when subjected to white light illumination is a big concern. The durability of Au-ZnS nanocrystals in the photoelectrochemical processes should be further improved to enhance their practical significance. Besides, to comprehend the charge transfer behavior for Au-ZnS nanocrystals, the interfacial charge carrier dynamics are needed to be studied by using time-resolved PL and transient absorption spectroscopy in the future.

References

1. (a) Mokari, T.; Aharoni, A.; Popov, I.; Banin, U., Angew. Chem., Int. Ed. 2006, 45, 8001-8005; (b) Pacholski, C.; Kornowski, A.; Weller, H., Angew. Chem., Int.

Ed. 2004, 43, 4774-4777; (c) Carbone, L.; Kudera, S.; Giannini, C.; Ciccarella, G.; Cingolani, R.; Cozzoli, P. D.; Manna, L., J. Mater. Chem. 2006, 16, 3952-3956; (d) Saunders, A. E.; Popov, I.; Banin, U., J. Phys. Chem. B 2006, 110, 25421-25429; (e) Yang, J.; Elim, H. I.; Zhang, Q.; Lee, J. Y.; Ji, W., J. Am. Chem.

Soc. 2006, 128, 11921-11926; (f) Shi, W.; Zeng, H.; Sahoo, Y.; Ohulchanskyy, T.

Y.; Ding, Y.; Wang, Z. L.; Swihart, M.; Prasad, P. N., Nano Lett. 2006, 6, 875-881; (g) Mokari, T.; Sztrum, C. G.; Salant, A.; Rabani, E.; Banin, U., Nat.

Mater. 2005, 4, 855-863; (h) Mokari, T.; Rothenberg, E.; Popov, I.; Costi, R.;

Banin, U., Science 2004, 304, 1787-1790.

2. (a) Halpert, J. E.; Porter, V. J.; Zimmer, J. P.; Bawendi, M. G., J. Am. Chem. Soc.

2006, 128, 12590-12591; (b) Saunders, A. E.; Koo, B.; Wang, X.; Shih, C.-K.;

Korgel, B. A., ChemPhysChem 2008, 9, 1158-1163.

3. (a) Shi, W.; Zeng, H.; Sahoo, Y.; Ohulchanskyy, T. Y.; Ding, Y.; Wang, Z. L.;

Swihart, M.; Prasad, P. N., Nano Lett. 2006, 6, 875-881; (b) Pellegrino, T.; Fiore, A.; Carlino, E.; Giannini, C.; Cozzoli, P. D.; Ciccarella, G.; Respaud, M.;

Palmirotta, L.; Cingolani, R.; Manna, L., J. Am. Chem. Soc. 2006, 128, 6690-6698; (c) Wang, H.; Brandl, D. W.; Le, F.; Nordlander, P.; Halas, N. J., Nano Lett. 2006, 6, 827-832; (d) Yu, H.; Chen, M.; Rice, P. M.; Wang, S. X.;

White, R. L.; Sun, S., Nano Lett. 2005, 5, 379-382; (e) Zhang, L.; Dou, Y.-H.; Gu, H.-C., J. Colloid Interface Sci. 2006, 297, 660-664.

4. (a) Subramanian, V.; Wolf, E. E.; Kamat, P. V., J. Phys. Chem. B 2003, 107,

7479-7485; (b) Jakob, M.; Levanon, H.; Kamat, P. V., Nano Lett. 2003, 3, 353-358; (c) Subramanian, V.; Wolf, E. E.; Kamat, P. V., J. Am. Chem. Soc. 2004, 126, 4943-4950.

5. (a) Bard, A. J.; Fox, M. A., Acc. Chem. Res. 1995, 28, 141-145; (b) Bao, N.;

Shen, L.; Takata, T.; Lu, D.; Domen, K., Chem. Lett. 2006, 35, 318-319; (c) Fujishima, A.; Honda, K., Nature 1972, 238, 37-38; (d) Lewis, N. S.; Nocera, D.

G., Proc. Natl. Acad. Sci. 2006, 103, 15729-15735; (e) Lewis, N. S., Science 2007, 315, 798-801.

6. Gratzel, M., Nature 2001, 414, 338-344.

7. (a) Mills, A.; Davies, R. H.; Worsley, D., Chem. Soc. Rev. 1993, 22, 417-425; (b) Sunada, K.; Kikuchi, Y.; Hashimoto, K.; Fujishima, A., Environ. Sci. Technol.

1998, 32, 726-728. 11290-11294; (c) Gooding, A. K.; Gomez, D. E.; Mulvaney, P., ACS Nano 2008, 2, 669-676.

12. (a) Salgueirino-Maceira, V.; Correa-Duarte, M. A.; Spasova, M.; Liz-Marzan, L.

M.; Farle, M., Adv. Funct. Mater. 2006, 16, 509-514; (b) Jeong, U.; Teng, X.;

Wang, Y.; Yang, H.; Xia, Y., Adv. Mater. 2007, 19, 33-60; (c) Salgueirino-Maceira, V.; Correa-Duarte, M. A., Adv. Mater. 2007, 19, 4131-4144.

13. (a) Kamat, P. V., J. Phys. Chem. C 2007, 111, 2834-2860; (b) Glaspell, G.; Hassan,

15. (a) Oldfield, G.; Ung, T.; Mulvaney, P., Adv. Mater. 2000, 12, 1519-1522; (b) Hirakawa, T.; Kamat, P. V., Langmuir 2004, 20, 5645-5647; (c) Sakai, H.; Kanda, T.; Shibata, H.; Ohkubo, T.; Abe, M., J. Am. Chem. Soc. 2006, 128, 4944-4945.

16. (a) Subramanian, V.; Wolf, E.; Kamat, P. V., J. Phys. Chem. B 2001, 105, 11439-11446; (b) Subramanian, V.; Wolf, E. E.; Kamat, P. V., Langmuir 2003, 19, 469-474; (c) Lahiri, D.; Subramanian, V.; Shibata, T.; Wolf, E. E.; Bunker, B. A.;

Kamat, P. V., J. Appl. Phys. 2003, 93, 2575-2582.

17. (a) Lee, J.-C.; Sung, Y.-M.; Kim, T. G.; Choi, H.-J., Appl. Phys. Lett. 2007, 91, 530-4537; (b) Periyat, P.; Pillai, S. C.; McCormack, D. E.; Colreavy, J.; Hinder, S. J., J. Phys. Chem. C 2008, 112, 7644-7652.

Guo, L., Mater. Res. Bull. 2008, 43, 437-446.

21. Lin, G.; Zheng, J.; Xu, R., J. Phys. Chem. C 2008, 112, 7363-7370.

22. Wang, W.; Zhu, W.; Xu, H., J. Phys. Chem. C 2008, 112, 16754-16758.

23. (a) Yao, W.-T.; Yu, S.-H.; Liu, S.-J.; Chen, J.-P.; Liu, X.-M.; Li, F.-Q., J. Phys.

Chem. B 2006, 110, 11704-11710; (b) Janet, C. M.; Viswanath, R. P., Nanotechnology 2006, 17, 5271-5277; (c) Jang, J. S.; Joshi, U. A.; Lee, J. S., J.

Phys. Chem. C 2007, 111, 13280-13287; (d) Li, Y.; Hu, Y.; Peng, S.; Lu, G.; Li,

Yoshida, A., Chem. Phys. Lett. 2004, 385, 319-322; (c) Jing, D.; Guo, L., J. Phys.

Chem. C 2007, 111, 13437-13441; (d) Zong, X.; Yan, H.; Wu, G.; Ma, G.; Wen, F.;

Wang, L.; Li, C., J. Am. Chem. Soc. 2008, 130, 7176-7177; (e) Li, G.-S.; Zhang, D.-Q.; Yu, J. C., Environ. Sci. Technol. 2009, 43, 7079-7085; (f) Kannaiyan, D.;

Kim, E.; Won, N.; Kim, K. W.; Jang, Y. H.; Cha, M.-A.; Ryu, D. Y.; Kim, S.;

Kim, D. H., J. Mater. Chem. 2010, 20, 677-682.

26. Kamat, P. V., J. Phys. Chem. C 2008, 112, 18737-18753.

27. Chen, W.-T.; Hsu, Y.-J., Langmuir 2010, 26, 5918-5925.

28. (a) Brown, P.; Kamat, P. V., J. Am. Chem. Soc. 2008, 130, 8890-8891; (b) Farrow, B.; Kamat, P. V., J. Am. Chem. Soc. 2009, 131, 11124-11131; (c) Williams, G.;

Kamat, P. V., Langmuir 2009, 25, 13869-13873.

29. (a) Kongkanand, A.; Tvrdy, K.; Takechi, K.; Kuno, M.; Kamat, P. V., J. Am.

Chem. Soc. 2008, 130, 4007-4015; (b) Tvrdy, K.; Kamat, P. V., J. Phys. Chem. A

2009, 113, 3765-3772; (c) Zhang, J.; Bang, J. H.; Tang, C.; Kamat, P. V., ACS Nano 2010, 4, 387-395; (d) Chakrapani, V.; Tvrdy, K.; Kamat, P. V., J. Am. Chem.

Soc. 2010, 132, 1228-1229.

30. (a) Khan, S. U. M.; Al-Shahry, M.; Ingler, W. B., Jr., Science 2002, 297, 2243-2245; (b) Nakamura, R.; Tanaka, T.; Nakato, Y., J. Phys. Chem. B 2004, 108, 10617-10620.

(b) Sheeney-Haj-Ichia, L.; Pogorelova, S.; Gofer, Y.; Willner, I., Adv. Funct.

Mater. 2004, 14, 416-424.

34. (a) Turkevich, J.; Stevenson, P. C.; Hillier, J., Discuss. Faraday Soc. 1951, 11, 55-75; (b) Ji, X.; Song, X.; Li, J.; Bai, Y.; Yang, W.; Peng, X., J. Am. Chem. Soc.

2007, 129, 13939-13948.

35. (a) Templeton, A. C.; Pietron, J. J.; Murray, R. W.; Mulvaney, P., J. Phys. Chem.

B 2000, 104, 564-570; (b) Zhong, Z.; Patskovskyy, S.; Bouvrette, P.; Luong, J. H.

T.; Gedanken, A., J. Phys. Chem. B 2004, 108, 4046-4052.

36. For bulk fcc Au, d(111)=0.2355 nm from JCPDS 04-0784.

37. For bulk wurtzite CdS, d(002)=0.3367 nm from JCPDS 06-0314.

38. Eustis, S.; El-Sayed, M. A., Chem. Soc. Rev. 2006, 35, 209-217.

39. (a) Njoki, P. N.; Lim, I. I. S.; Mott, D.; Park, H.-Y.; Khan, B.; Mishra, S.;

Sujakumar, R.; Luo, J.; Zhong, C.-J., J. Phys. Chem. C 2007, 111, 14664-14669;

(b) Chen, H.; Kou, X.; Yang, Z.; Ni, W.; Wang, J., Langmuir 2008, 24, 5233-5237.

40. The detailed SPR calculation method is descibed in the Supporting Information.

41. (a) Liz-Marzan, L. M.; Giersig, M.; Mulvaney, P., Langmuir 1996, 12, 4329-4335; (b) Salgueirino-Maceira, V.; Caruso, F.; Liz-Marzan, L. M., J. Phys.

Chem. B 2003, 107, 10990-10994.

42. Shevchenko, E. V.; Bodnarchuk, M. I.; Kovalenko, M. V.; Talapin, D. V.; Smith, R. K.; Aloni, S.; Heiss, W.; Alivisatos, A. P., Adv. Mater. 2008, 20, 4323-4329.

43. Adenier, A.; Chehimi, M. M.; Gallardo, I.; Pinson, J.; Vila, N., Langmuir 2004, 20, 8243-8253.

44. Cavalleri, O.; Oliveri, L.; Dacca, A.; Parodi, R.; Rolandi, R., Appl. Surf. Sci.

2001, 175-176, 357-362.

50. Chen, W.-T.; Yang, T.-T.; Hsu, Y.-J., Chem. Mater. 2008, 20, 7204-7206.

51. (a) James, D. R.; Liu, Y. S.; De, M. P.; Ware, W. R., Chem. Phys. Lett. 1985, 120, 460-5; (b) Posokhov, Y. O.; Ladokhin, A. S., Anal. Biochem. 2006, 348, 87-93.

52. (a) Chae, W.-S.; Ko, J.-H.; Hwang, I.-W.; Kim, Y.-R., Chem. Phys. Lett. 2002,

365, 49-56; (b) Sadhu, S.; Chowdhury, P. S.; Patra, A., J. Lumin. 2007, 126, J. Appl. Phys. 2006, 99, 064103-4.

55. (a) Kim, D. S.; Park, Y. S., Chem. Eng. J. 2006, 116, 133-137; (b) Li, J.; Li, L.;

Zheng, L.; Xian, Y.; Jin, L., Electrochim. Acta 2006, 51, 4942-4949; (c) Sun, S.;

Wang, W.; Zhang, L.; Zhou, L.; Yin, W.; Shang, M., Environ. Sci. Technol. 2009, 43, 2005-2010.

56. (a) Chen, C.; Zhao, W.; Li, J.; Zhao, J.; Hidaka, H.; Serpone, N., Environ. Sci.

Technol. 2002, 36, 3604-3611; (b) Lei, P.; Chen, C.; Yang, J.; Ma, W.; Zhao, J.;

Ling, Z., Environ. Sci. Technol. 2005, 39, 8466-8474.

57. Konstantinou, I. K.; Albanis, T. A., Appl. Catal., B 2004, 49, 1-14.

58. (a) Antoun, T.; Brayner, R.; Al, T. S.; Fievet, F.; Chehimi, M.; Yassar, A., Eur. J.

Inorg. Chem. 2007, 1275-1284; (b) Hota, G.; Idage, S. B.; Khilar, K. C., Colloids Surf., A 2007, 293, 5-12.

59. (a) Reber, J. F.; Meier, K., J. Phys. Chem. 1984, 88, 5903-13; (b) Meissner, D.;

Memming, R.; Kastening, B., J. Phys. Chem. 1988, 92, 3476-83.

60. Meissner, D.; Memming, R.; Kastening, B., J. Phys. Chem. 1988, 92, 3476-3483.

61. Bass, M., Handbook of Optics, Third Edition Volume IV. McGraw Hill Professional: 2009.

62. (a) Palomares, E.; Clifford, J. N.; Haque, S. A.; Lutz, T.; Durrant, J. R., J. Am.

Chem. Soc. 2002, 125, 475-482; (b) Lee, E. J.; Bitner, T. W.; Ha, J. S.; Shane, M.

J.; Sailor, M. J., J. Am. Chem. Soc. 1996, 118, 5375-5382.

63. Tsuji, I.; Kato, H.; Kudo, A., Angew. Chem. 2005, 117, 3631-3634.

64. Nash, T., Biochem. J. 1953, 55, 416-421.

65. (a) Marugán, J.; Hufschmidt, D.; López-Muñoz, M.-J.; Selzer, V.; Bahnemann, D., Appl. Catal., B 2006, 62, 201-207; (b) Du, Y.; Rabani, J., J. Phys. Chem. B 2003, 107, 11970-11978; (c) Ismail, A. A.; Bahnemann, D. W.; Bannat, I.; Wark, M., J. Phys. Chem. C 2009, 113, 7429-7435.

66. Pradhan, S.; Ghosh, D.; Chen, S., ACS Appl. Mater. Interfaces 2009, 1, 2060-2065.

相關文件