• 沒有找到結果。

Conclusions and Prospects

Chapter 7

Conclusions and Prospects

In this dissertation, I report the fabrication and characterization of superhydrophobic surface as a microdevice, which was used to study cell-substrate interaction. First, I developed two ways to prepare polymeric superhydrophobic microdevice. The first one is to combine spin-coated and oxygen plasma treatment on the fluoropolymer, which become more hydrophobic by increasing etching time. After 12 minutes etching process, the fluoropolymer become superhydrophobic surface with water angle more than 160∘.

Second, the nanoimprint process was used to create nanostructures on the devices, which included many thermal soluble polymers. The stamps were formed by silicon substrates, which were fabricated by nanosphere lithography and inductively coupled plasma reactive ion etching process. These stamps were used to imprint nanostructures on hydrophobic coatings, such as Teflon, over the device surfaces. The water contact angle as high as 167°

has been obtained by the second approach. This approach was highly reproducible to make nanostructure on polymer. Then, these superhydrophobic pattern surfaces were used as substrate for the cell cultures of HeLa, NIH3T3, and CHO cells. It was found that these cell lines did not adhere to the flat fluropolymer surfaces. However, the number of NIH3T3 and CHO cells adhered on the surfaces increase with the surface roughness. Such nanostructure materials could be used as the scaffold for selected cell growth. The transfection efficiency was also enhanced when cells were attached on superhydrophobic surface. Finally, the switchable surface fabricated by superhydrophobic coating and electrowetting effect was used to pattern two different types of cells on the same chip.

Chapter 7 Conclusions and Prospects

nanoporous inside microfludic channel system. The primary results obtained in this dissertation and prospects are summarized as follows:

(1) I have developed two techniques to impart superhydrophobic property to the surfaces of devices. In the first approach, oxygen plasma treatment was used to roughen the Teflon coating whose surface water contact angle could be tuned form 120o to 168o by varying the oxygen plasma treatment time. However, the application of the oxygen plasma process is limited to fluoropolymers. In the second approach, nanoimprint process was used to create nanostructures on thedevice surfaces where the water contact angle as high as 167o was obtained. In principle, the nanoimprint process can be applied to all types of hydrophobic coatings.

(2) The superhydrophobic surfaces were found to exhibit short-term resistance to the protein adsorption. However, the superhydrophobic surfaces could accumulate more fibronectins than the flat surface of the same materials. When the patterned superhydrophobic surfaces were used in the cell culture, it was observed that the cells attached preferentially on the roughened area allowing the formation of cell microarrays. The biocompatibility of the fluoropolymer was improved by converting the fluoropolymers into the superhydrophobic materials. It was also found that the transfection efficiency of the CHO cells and NIH 3T3 cells was greatly improved on the superhydrophobic surfaces. Therefore, we conclude that the patterned superhydrophobic surfaces could be used as cell microarrays with the advantages of improved cell adhesion, nature separation of colonies and enhanced transfection efficiency.

(3) I have demonstrated a novel cell patterning technique using the switchable superhydrophobic surfaces. It has been shown that each element on the switchable superhydrophobic microarray could be addressed individually and different types of

Chapter 7 Conclusions and Prospects

functional biomolecules could be selectively deposited on the microarray. It has also been demonstrated that two different types of cells could be cultured on the same chip at any desired area.

(4) I have constructed well-ordered nanoporous structures inside the micro.uidic channels using self-assembly process of colloidal nanoparticles. It was found that the cavity size of these nanoporous structures was the same as the diameter of the original colloidal nanoparticles whereas the size of the interconnecting pores was found to be about 10% of the cavity size. The influence of the nanostructures to the DNA molecules was measured on a single molecular level where the time dependent stretch-recoil behavior of the λ-phage DNAwas recorded. The average length for λ-phage DNA molecules was found to be larger in the 300 nm cavity than those measured in the 570 nm cavity. The mobility of both λ-phage and M13mp18 DNA molecules was measured as a function of applied field. It was found that the electrophoretic mobility for the smaller M13mp18 DNA molecules was smaller than the much larger λ-phage DNA molecules, which indicated that the well-ordered nanoporous structures could be used to construct integrated nanofluidic system for the separation of large biomolecules.

References

[4] M. V. Merritt, M. Mrksich, G. M. Whitesides, Principles of tissue engineering.

Austin:R.G. Landes Co. 211 (1997).

[10] A. Nakajima, A. Fujishima, K. Hashimoto, T. Watanabe, Adv. Mater. 11, 1365 (1999).

[11] T. Sun, H. Tan, D. Han, Q. Fu, L. Jiang, Small 1, 959 (2005).

[12] J. Y. Shiu, C. W. Kuo, P. Chen, C. Y. Mou, Chem. Mater. 16, 561 (2004).

[13] N. A. Patankar, Langmuir 19, 1249 (2003).

[14] L. Feng, S. Li, Y. Li, H. Li, L. Zhang, J. Zhai, Y. Song, B. Liu, L. Jiang, D. Zhu, Adv. Mater. 14, 1857 (2002).

[15] Z.-Z. Gu, H. Uetsuka, K. Takahashi, R. Nakajima, H. Onishi, A. Fujishima, O. Sato, Angew. Chem., Int. Ed. 42, 894 (2003).

References

[16] D. O. H. Teare, C. G. Spanos, P. Ridley, E. J. Kinmond, V. Roucoules, J. P. S.

Badyal, Chem. Mater. 14, 4566 (2002).

[17] K. Tsujii, T. Yamamoto, T. Onda, S. Shibuchi, Angew. Chem., Int. Ed. 36, 1001

[21] M. Morra, E. Occhiello, F. J. Garbassi, Colloid Inerface Sci.132, 504 (1989).

[22] H. Li, X. Wang, Y. Song, Y. Liu, Q. Li, L. Jiang, D. Zhu, Angew. Chem., Int. Ed.

[26] Z. Yoshimitsu, A. Nanajima, T. Watanabe, K. Hashimoto, Langmuir 18, 5818 (2002).

[27] W. Chen, A. Y. Fadeev, M. C. Hsieh, D. Oner, J. Youngblood, T. J. McCarthy, Langmuir 15, 3395 (1999).

[28] D. Oner, T. J. McCarthy, Langmuir 16, 777 (2000).

[29] A. Nakajima, A. Fujishima, K. Hashimoto, T. Watanabe, Adv. Mater. 11, 1365 (1999)

[30] U. C. Fischer, H. P. Zingsheim, J. Vac. Sci. Technol. 19, 881 (1981).

[31] J. C. Hulteen, R. P. Van Duyne, J. Vac. Sci. Technol. A 13, 1553 (1995).

[32] C. L. Haynes, R. P. Van Duyne, J. Phys. Chem. B 105, 5599 (2001).

References

[34] M. Morra, E. Occhiello, F. Garbassi, Langmuir 5, 872 (1989).

[35] J. P. Youngblood, T. J. McCarthy, Macromolecules 32, 6800 (1999).

[36] C. Neinhuis, W. Barthlott, Annals of Botany 79, 667 (1997).

[36] W. Barthlott, C. Neinhuis, Planta 202, 1 (1997).

[37] A. Nakajima, A. Fujishima, K. Hashimoto, T. Watanabe, Adv. Mater. 11, 1365 (1999).

[38] N. A. Patankar, Langmuir 19, 1249 (2003).

[39] T. L. Sun, H. Tan, D. Han, Q. Fu, L. Jiang, Small 1, 959 (2005).

[40] L. Feng, S. H. Li, Y. S. Li, H. J. Li, L. J. Zhang, J. Zhai, Y. L. Song, B. Liu, L.

Jiang, D. B. Zhu,Adv. Mater. 14, 1857 (2002).

[41] Z. Z. Gu, H. Uetsuka, K. Takahashi, R. Nakajima, H. Onishi, A. Fujishima, O. Sato, Angew. Chem Intl. Ed. 42, 894 (2003).

[42] D. O. H. Teare, C. G. Spanos, P. Ridley, E. J. Kinmond, V. Roucoules, J. P. S.

Badyal, S. A. Brewer,S. Coulson, C. Willis, Chem. Mater. 14, 4566 (2002).

[43] K. Tsujii, T. Yamamoto, T. Onda, S. Shibuichi, Angew. Chem. Intl. Ed. 36, 1011 (1997).

[44] H. Y. Erbil, A. L. Demirel, Y. Avci, Y. Avc, O. Mert, Science 299, 1377 (2003).

[45] I. Woodward, W. C. E. Schofield, V. Roucoules, J. P. S. Badyal, Langmuir 19, 3432 (2003).

[46] M. Morra, E. Occhiello, F. Garbassi, J. Colloid Interface Sci. 132, 504 (1989).

[47] H. J. Li, X. B. Wang, Y. L. Song, Y. Q. Liu, Q. S. Li, L. Jiang, D. B. Zhu, Angew.

Chem. Intl. Ed. 40, 1743 (2001).

[48] L. Feng, S. H. Li, H. J. Li, J. Zhai, Y. L. Song, L. Jiang, D. B. Zhu, Angew. Chem.

Intl. Ed. 41,1221 (2002).

[49] S. Shibuichi, T. Onda, N. Satoh, K. Tsujii, J. Phys. Chem. 100, 19512 (1996).

References

[51] F. Walther, P. Davydovskaya, S. Zurcher, M. Kaiser, H. Herberg, A. M. Gigler, R.

W. Stark,J. Micromech. Microeng. 17, 524 (2007).

[52] J. Chauvin, T. Kawai, M. Irie, Jap. J. Appl. Phys. Part 1 40, 2518 (2001).

[61] a) Z.-Z.Gu, H. Uetsuka, K. Takahashi, R. Nakajima, H. Onishi, A. Fujishima, O.

Sato, Angew. Chem. Int. Ed. 42, 894 (2003). b) H.Y. Erbil, A.L. Demirel, Y. Avci, O. Mert, Science 299, 1377 (2003). c)H. Li, X. Wang, Y. Song, Y. Liu, Q. Li, L.

Whang, P. Chen. J. Adh. Sci. Technol. 22, 1883 (2008).

[63] J. Y. Shiu, P. Chen, Adv. Funct. Mater. 17, 2680 (2007).

[64] R. Anton, M. V. Gyorgy, L. Thomas, Biotechnology Annual Review 13, 1387 (2007).

References (2003). b) A. I. Teixeira, G. A. Mckie, J. D. Foley, P. J. Bertics, Biomaterials 27, 3945 (2006). c) H. Chen, L. Yuan, W. Song, Z. Wu, D. Li, Prog. Polym. Sci. 33, 1059 (2008). d) H. Gan, K. Tang, T. Sun, M. Hirtx, Y. Li, L. Chi. S. Butz, H.

Fuchs, Angew. Chem. Int. Ed. 48, 5282 (2009).

[70] N. A. Patankar, Langmuir 19, 1249 (2003).

References

[77] G. MacBeath, S. L. Schreiber, Science 289, 1760 (2000) [78] D. S. Wilson, S. Nock, Angew. Chem. Int. Ed. 42, 494 (2003)

[79] L. M. Demers, D. S. Ginger, S. J. Park, Z. Li, S. W. Chung, C. A. Mirkin, Science 296, 1836 (2002)

[80] A. Bruckbauer, D. Zhou, L. Ying, Y. E. Korchev, C. Abell, D. Klenerman, J. Am.

Chem. Soc. 125, 9834 (2003)

[81] T. Okamoto, T. Suzuki, N. Yamamoto, Nat. Biotech. 18, 438 (2000)

[82] S. A. Brook, N. Dontha, C. B. Davis, J. K. Stuart, G. O’Neill, W. G.. Kuhr, Anal.

[86] J. P. Renault, A. Bernard, D. Juncker, B. Michel, H. R. Bosshard, E. Delamarche, Angew. Chem. Int. Ed. 41, 2320 (2002)

[87] J. Ziauddin, D. M. Sabatini, Nature, 411, 107 (2001). (1999) (b) N. A. Patankar, Langmuir 19, 1249 (2003)

[92] See for example (a) Z. -Z. Gu, H. Uetsuka, K. Takahashi, R. Nakajima, H. Onishi, A. Fujishima, O. Sato, Angew. Chem. Int. Ed. 42, 894 (2003) (b) D. O. H. Teare, C.

G. Spanos, P. Ridley, E. J. Kinmond, V. Roucoules, J. P. S. Badyal, Chem. Mater.

References

14, 4566 (2002) (c) K. Tsujii, T. Onda, T. Yamamoto, S. Shibuichi, Angew. Chem.

Int. Ed. 36, 1011 (1997) (d) H. Y. Erbil, A.L. Demirel, Y. Avci, O. Mert, Science 299, 1377 (2003) (e) M. Morra, E. Occhiello, F. Garbassi, Langmuir 5, 872 (1989) (f) H. Li, X. Wang, Y. Song, Y. Liu, Q. Li, L. Jiang, D. Zhu, Angew. Chem. Int. Ed.

40, 1743 (2002) (g) L. Feng, S. Li, H. Li, J. Zhai, Y. Song, L. Jiang, D. Zhu, Angew.

Chem. Int. Ed. 41, 1221 (2002)

[93] (a) J. Lahann, S. Mitragotri, T. -N. Tran, H. Kaido, J. Sundaram, I. S. Choi, S.

Hoffer, G. A. Somorjai, R. Langer, Science 299, 371 (2003) (b) B. Gallardo, V. K.

Guta, F. D. Eagerton, L. I. Jong, V. S. Craig, R. R. Shah, N. L. Abbott, Science 283, 57 (1999) (c) R. A. Hayes, B. J. Feenstra, Nature 425, 383 (2003) (d) K.

Ichimura, S. -K. Oh, M. Nakagawa, Science 288, 1624 (2000) (e) S. Minko, M.

Muller, M. Motornov, M. Nitschke, K. Grundke, M. Stamm, J. Am. Chem. Soc.

125, 3896 (2003) (f) C.S. Chen, M. Mrksich, S. Huang, G. M. Whitesides, D. E.

Ingber, Science 276, 1425 (1997)

[94] J.Y. Shiu, P. Chen, Adv. Func. Mater. 17, 2680 (2007)

[95] Y.C. Chan, Y.K. Lee, Y. Zohar, J. Micrimech. Microeng. 16, 699 (2006).

[96] J. Han, H.G. Craighead, J. Vac. Sci. Technol. A 17, 2142 (1999).

[97] J.T.Mannion, C.H. Reccius, J.D. Cross, H.G. Graighead, Biophys. J. 90, 4538 (2006).

[98] Y.W. Lin, M.F. Huang, H.T. Chang, Electrophoresis 26, 320 (2005).

[99] C.F. Chou, O. Bakajin, S.W.P. Turner, T.A.J. Duke, S.S. Chan, E.C. Cox, H.G.

Craighead,R.H. Austin, Proc. Natl. Acad. Sci. U.S.A. 96, 13762 (1999).

[100] L.R. Huang, J.O. Tegenfeldt, J.J. Kraeft, J.C. Sturn, R.H. Austin, E.C. Cox, Nat.

References

[106] P. Jiang, J.F. Bertone, K.S. Hwang, V.L. Colvin, Chem. Mater. 11 2132 (1999).

[107] S.M. Yang, G.A. Ozin, Chem. Commun. 24 2507 (2000).

[108] S.M. Yang, H. Miguez, G.A. Ozin, Adv. Funct. Mater. 12 425 (2002).

[109] G.A. Ozin, S.M. Yang, Adv. Funct. Mater. 11 95 (2001).

[110] M. Tabuchi, M. Ueda, N. Kaji, Y. Yamasaki, Y. Nagasaki, K. Yoshikawa, K.

Kataoka, Y. Baba, Nat. Biotechnol. 22 337 (2004).

[111] D. Nykypanchuk, H.H. Strey, D.A. Hoagland, Science 297 987 (2002).

[112] H. Zhang, M.J. Wirth, Anal. Chem. 77 1237 (2005).

[113] Y. Zeng, D.J. Harrison, Electrophoresis 27 3747 (2006).

[114] S. Zheng, E. Ross, M.A. Legg, M.J. Wirth, J. Am. Chem. Soc. 128 9016 (2006).

[115] Y. Zeng, D.J. Harrison, Anal. Chem. 79 2289 (2007).

[116] J.Y. Shiu, C.W. Kuo, P. Chen, J. Am. Chem. Soc. 126 8096 (2004).

[117] J.Y. Shiu, P. Chen, Adv. Mater. 17 1866 (2005).

[118] C.W. Kuo, J.Y. Shiu, K.H.Wei, P. Chen, J. Chromatogr. A 1162 175 (2007).

[119] T. Sikanen, S. Tuomikoski, R.A. Ketola, R. Kostiainen, S. Franssila, T. Kotiaho, Lab Chip 5 888 (2005).

List of Publications

# Journal Publications

1. Jau-Ye Shiu, Chiung Wen Juo, Wha-Tzong Whang and Peilin Chen*, "Addressable Cell Microarrays via Switchable Superhydrophobic Surfaces" (Invited Paper) J. Adhes. Sci.

Technol. 2009, 22 (Accepted)

2. Jau-Ye Shiu, Wha-Tzong Whang and Peilin Chen*, "Superhydrophobic Coatings for Microdevices" (Invited Paper) J. Adhes. Sci. Technol. 2008, 22, 1883

3. Jau-Ye Shiu, Wha-Tzong Whang* and Peilin Chen*, "Behavior of single DNA molecules in the well-ordered nanopores" J. Chromatogr. A, 2008, 1206, 72

4. Chiung-Wen Kuo, Jau-Ye Shiu, Kung Hwa Wei, and Peilin Chen*, ”Functionalized Silver Nanowires for Live Cell Study” Chem. Lett., 2008, 37, 610

5. Po-Hung Shih, Jau-Ye Shiu, Po-Chiao Lin, Chun-Cheng Lin, Teodor Veres, Peilin Chen*, “On Chip Sorting of Bacterial Cells Using Sugar-Encapsulated Magnetic Nanoparticles”, J. Appl. Phys. 2008, 103, 07A316 (This worked was selected by Virtual Journal of Biological Physics Research 2008, 15, 6) .

6. J.Y. Shiu, P. Chen*, “Addressable Protein Patterning via Switchable Superhydrophobic Microarrays” Adv. Func. Mater. 2007, ,17, 2680

7. C. W. Kuo, J.Y. Shiu, K, H. Wei and P. Chen*, “Monolithic Integration of Well-Ordered Nanoporous Structures in the Microfluidic Channels for Bioseparation” J. Chromatorg.

A, 1162, 175, 2007.

8. J.Y. Shiu, P. Chen*, “Active Patterning Using an Addressable Microfluidic Network”

Adv. Mater., 17, 1869, 2005.

9. J.Y. Shiu, C.W. Kuo, P. Chen*, “Actively Controlled Self-Assembly of Colloidal Crystals in Microfluidic Networks by Electrocapillary Forces” J. Am. Chem. Soc., 126, 8096, 2004.

10. J.Y. Shiu, C.W. Kuo, P. Chen*, C.Y. Mou, “Fabrication of Tunable Superhydrophobic Surfaces by Nanosphere Lithography” Chem. Mater., 16, 561. 2004.

11. C.W. Kuo, J.Y. Shiu, P. Chen*, G.A. Somorjai, “Fabrication of Size-Tunable Large-Area Periodic Silicon Nanopillar Arrays with Sub-10 nm Resolution” J. Phys. Chem. B, 107, 9950, 2003.

12. C.W. Kuo, J.Y. Shiu, Y.H. Cho, P. Chen*, “Fabrication of Large-Area Periodic Nanopillar Arrays for Nanoimprint Lithography Using Polymer Colloid Masks” Adv.

Mater., 15, 1065, 2003.

13. C.W. Kuo, J.Y. Shiu, P. Chen*, “Size and Shape Controlled Fabrication of Large-Area Periodic Nanopillar Arrays” Chem. Mater., 15, 2917, 2003

# Patent

1. 可定址微流裝置及其方法 TW I296607

2. 快速切換超親水、超疏水表面 TW I265945

Resume

Jau-Ye Shiu

Personal Details

Name Jau-Ye Shiu Citizenship Taiwan (TW)

Address 128 Academia Road, Section 2, Nankang, Taipei 115, Taiwan tel. +886227898000ext55

email jyshiu@gate.sinica.edu.tw

Current Positions

2006 - Ph. D candidate, Department of Materials Science and Engineering, National Chiao-Tung University, Taiwan (NCTU)

2003- Research assistant, Research Center for Applied Sciences (RCAS), Academia Sinica, Taipei, Taiwan

Education

M.Sc. Physics (2002-2004), Department of Physics, National Chung Cheng University, Taiwan

B.Sc. Physics (1998-2002), Department of Physics, Chinese Culture University, Taiwan

Research Interests

• Micro- and Nano-fluidic System Fabrication (Switchable Surfaces).

• Nanostructured surfaces for biological applications.

Research skills

I am well versed with Scanning electron Microscope (SEM), Confocal Raman Miscrocope, Atomic force microscopy(AFM), Scannig Tunneling electron Microscopy(STEM), X-ray Photoelectron spectroscopy(XPS) and clean room machines.

Research Publications

1. Jau-Ye Shiu, Chiung Wen Juo, Wha-Tzong Whang and Peilin Chen*, "Addressable Cell Microarrays via Switchable Superhydrophobic Surfaces" (Invited Paper) J. Adhes.

Sci. Technol. 2009, 22 (Accepted)

2. Jau-Ye Shiu, Wha-Tzong Whang and Peilin Chen*, "Superhydrophobic Coatings for Microdevices" (Invited Paper) J. Adhes. Sci. Technol. 2008, 22, 1883

3. Jau-Ye Shiu, Wha-Tzong Whang* and Peilin Chen*, "Behavior of single DNA molecules in the well-ordered nanopores" J. Chromatogr. A, 2008, 1206, 72

4. Chiung-Wen Kuo, Jau-Ye Shiu, Kung Hwa Wei, and Peilin Chen*, ”Functionalized Silver Nanowires for Live Cell Study” Chem. Lett., 2008, 37, 610

5. Po-Hung Shih, Jau-Ye Shiu, Po-Chiao Lin, Chun-Cheng Lin, Teodor Veres, Peilin Chen*, “On Chip Sorting of Bacterial Cells Using Sugar-Encapsulated Magnetic Nanoparticles”, J. Appl. Phys. 2008, 103, 07A316 (This worked was selected by Virtual Journal of Biological Physics Research 2008, 15, 6) .

6. J.Y. Shiu, P. Chen*, “Addressable Protein Patterning via Switchable Superhydrophobic Microarrays” Adv. Func. Mater. 2007, ,17, 2680

7. C. W. Kuo, J.Y. Shiu, K, H. Wei and P. Chen*, “Monolithic Integration of Well-Ordered Nanoporous Structures in the Microfluidic Channels for Bioseparation”

J. Chromatorg. A, 1162, 175, 2007.

8. J.Y. Shiu, P. Chen*, “Active Patterning Using an Addressable Microfluidic Network”

Adv. Mater., 17, 1869, 2005.

9. J.Y. Shiu, C.W. Kuo, P. Chen*, “Actively Controlled Self-Assembly of Colloidal Crystals in Microfluidic Networks by Electrocapillary Forces” J. Am. Chem. Soc., 126, 8096, 2004.

10. J.Y. Shiu, C.W. Kuo, P. Chen*, C.Y. Mou, “Fabrication of Tunable Superhydrophobic Surfaces by Nanosphere Lithography” Chem. Mater., 16, 561. 2004.

11. C.W. Kuo, J.Y. Shiu, P. Chen*, G.A. Somorjai, “Fabrication of Size-Tunable Large-Area Periodic Silicon Nanopillar Arrays with Sub-10 nm Resolution” J. Phys.

Chem. B, 107, 9950, 2003.

12. C.W. Kuo, J.Y. Shiu, Y.H. Cho, P. Chen*, “Fabrication of Large-Area Periodic Nanopillar Arrays for Nanoimprint Lithography Using Polymer Colloid Masks” Adv.

Mater., 15, 1065, 2003. C.W. Kuo, J.Y. Shiu, P.

13. Chen*, “Size and Shape Controlled Fabrication of Large-Area Periodic Nanopillar Arrays” Chem. Mater., 15, 2917, 2003

Research Awards

2004 Best post award, Actively Controlled Self-Assembly of Colloidal Crystals by Electrocapillary Effect, Materials Research Society (MRS) fall meeting, US

2004 Paper reported by scientific magazine, Lab on a Chip, August, volume 4, No. 4 2004 Paper reported by scientific magazine, MRS BULLETIN, April, volume 29, No. 4

相關文件