• 沒有找到結果。

¾ The interaction between the copper ions and hydroxyl groups may further stabilize the hybrid structure. Cu(II)-pHEMA and Cu(0)-pHEMA hybrid exhibits superior thermal stability to that pHEMA of by an enhancement of the decomposition temperature.

¾ The metallic Cu nanoparticle shows improved crystallinity as water concentration increased. The Cu size is increased from an average of ~10 nm to 25 nm in diameter as the molar ratio of H2O/HEMA increased from 2 to 6.

¾ The Cu nanoparticle embedded within the pHEMA matrix is present in a form of primary particle without appreciable aggregation. The tendency of cluster formation of the Cu nanoparticles and further developing into particle network structures seem to become more pronounced as the molar ratio of H2O/HEMA was reduced.

¾ While increasing the H2O/HEMA ratio, the network of the pHEMA is prone to developing a spacious volume for copper nanoparticles to nucleate and grow to a certain size, resulting in a porous structure which provided more spacious volume for the growth of Cu nanoparticles.

¾ The higher starting H2O/HEMA molar ratio, the greater extent of the porous structure in the final hybrid obtained, and a greater tendency to form connective Cu nanoparticle network within the matrix phase observed.

¾ The copper developed in the Cu(0)-pHEMA hybrid is a mixture of mainly metallic Cu(0) and a small fraction of CuO, after in-situ chemical reduction. The presence of small amount of divalent CuO suggests an incomplete reduction reaction of Cu(II) ions in the matrix.

¾ The crystallinity of the resulting Cu nanoparticles have little influence on release mechanism.

¾ After a 48 h incubation with 6 ppm copper ion Cu(II) results in a progressive increase of cell numbers which reaches 121% of the control. Without the use of ECGS in medium, the proliferation of HUVEC was still stimulated by the copper, with an increase of cell numbers reaching 106% of the control.

¾ Cu(II) released from the hybrids showed inhibition effect on human smooth muscle

¾ The neat pHEMA and Cu(0)-pHEMA hybrids showed negatively charged at pH 7.4 and became more negative with an increasing incorporation of the Cu(0) nanoparticle.

¾ The incorporation of nano copper particles into pHEMA matrix increases the interface interaction between the solid film and aqueous solution.

Reference

[1] A. S.Hoffman, J Control. Release 1987, 6, 297.

[2] R. Langer, Science 2001, 293, 58.

[3] R. Langer and J. P. Vacanti, Science 1993, 260, 920.

[4] N. A. Peppas, J. Z. Hilt, A. Khademhosseini and R. Langer, Adv. Mater. 2006, 18, 1345.

[5] F. Brandl, F. Sommer and A. Goepferich, Biomaterials 2007, 28, 134.

[6] S. Brahim, D. Narinesingh and A. Guiseppi-Elie, Biomacromolecules 2003, 4, 497.

[7] S. Lahooti, M. V. Sefton, Tissue. Eng. 2000, 6, 139.

[8] M. F. Refojo, J. Polym. Sci. Part A1 Polym. Chem. 1967, 5, 3103.

[9] S. S. Ischenko, V. F. Rosovitskii, A. B. Pridatko, N. V. Babkina, E. V. Lebedev. J.

Appl. Chem. 1998, 11, 1929.

[10] S. Miyazaki, H. Endo, T. Karino, K. Haraguchi and M. Shibayama, Macromolecules 2007, 40, 4287-4295.

[11] O. Okay and W. Oppermann, Macromolecules 2007, 40, 3378.

[12] T. Ogoshi, Y. Takashima, H. Yamaguchi and A. Harada, J. Am. Chem. Soc. 2007, 129, 4878.

[13] L. Meng, Y. Lu, X. Wang, J. Zhang, Y. Duan and C. Li, Macromolecules 2007, 40, 2981-2983.

[14] K. N. M. K. N. Y. Shoichiro Yano, J. Appi. Polym. Sci. 1994, 54, 163.

[15] L.E. Vera-Avila, E. Garcia-Salgado, M.P.G. de Llasera, A. Pena-Alvarez, Analy.

Biochem. 2008, 373, 272.

[16] S. A. Pellice, D. P. Fasce, R. J. J. Williams, J. Appl. Polym. Sci. 2007, 105, 2351.

[17] C. Ohtsuki, T. Miyazaki, M. Kamitakahara and M. Tanihara, J. Eur. Ceram. Soc.

2007, 27, 1527.

[18] G. Giavaresi, P. Torricelli, P. M. Fornasari, R. Giardino, R. Barbucci and G.

Leone, Biomaterials 2005, 26, 3001.

[19] C. K. Sen, S. Khanna, M. Venojarvi, P. Trikha, E. C. Ellison, T. K. Hunt, S. Roy, Am. J. Physiol, Heart Circ. Physiol. 2002, 282, H1821.

[20] G. F. Hu, J. Cell. Biochem. 1998, 69, 326.

[21] H. Hoffman, B. McAuslan, D. Robertson, E. Burnett, Exp. Cell Res. 102(2), 1976, 269.

[22] J. M. Bastidas and T. Simancas, Biomaterials 1997, 18, 247.

[23] O. Wichterle and D. Lim, Nature 1960, 185, 117.

[24] C. Ohtsuki, T. Miyazaki and M. Tanihara, Mater. Sci. Eng. C 2002, 22, 27.

[27] I. Gursel, C. Balcik, Y. Arica, O. Akkus, N. Akkas and V. Hasirci, Biomaterials 1998, 19, 1137.

[28] B. D. Johnson, D. J. Beebe and W. C. Crone, Mater. Sci. Eng. C 2004, 24, 575.

[29] P. Kortesuo, M. Ahola, M. Kangas, A. Yli-Urpo, J. Kiesvaara and M. Marvola, Int. J. Pharm. 2001, 221, 107.

[30] B. Kabra, S. H. Gehrke, S. T. Hwang, W. Ritschel, G.. Kabra, J. Appl. Polym. Sci.

1991, 42, 2409.

[31] J. Wang, W. Wu, European Polymer Journal 2005, 41, 1143.

[32] X. Lou, C. V. Coppenhagen, Polym. Int. 2001, 50, 319.

[33] C. D. Young, J. R. Wu, T. L. Tsou, J. Memb. Sci. 1998, 146, 83.

[34] H. Tsukeshiba, M. Huang, Y. H. Na, T. Kurokawa, R. Kuwabara, Y. Tanaka, H.

Furukawa, Y. Osada and J. P. Gong, J. Phys. Chem. B 2005, 109, 16304.

[35] S. H. Baek and B. K. Kim, Colloid Surf. A: Physicochem. Eng. Aspects 2003, 220, 191.

[36] K. Haraguchi, R. Farnworth, A. Ohbayashi and T. Takehisa, Macromolecules 2003, 36, 5732.

[37] P. G. Emmanuel, Adv. Mater. 1996, 8, 29.

[38] D. L. T. Norman Herron, Adv. Mater. 1998, 10, 1173.

[39] Z. Wang and T. J. Pinnavaia, Chem. Mater. 1998, 10, 3769.

[40] G. Carotenuto, Y.-S. Her, E. Matijevic, Ind Eng Chem Res 1996, 35, 2929.

[41] M. Lira-Cantu, P. Gomez-Romero, Chem. Mater. 1998, 10, 698.

[42] J. J. Tunney, C. Detellier, Chem. Mater. 1996, 8, 927.

[43] Y. Wang, N. Herron, Chem. Phys. Lett. 1992, 200, 71.

[44] R. D. Maggio, L. Fambri, R. Campostrini, J. Sol-Gel Sci. Tech. 2003, 26, 339.

[45] L. David, J. F. Gerard, J. P. Pascault, G. Vigier, P. Hajji, J. Polym. Sci. B: Polym.

Phys. 1999, 37, 3172.

[46] K.-D. S. No-Hyung Park, J. Appl. Polym. Sci 1999, 71, 1597.

[47] E. J. A. Pope, M. Asami, J. D. Mackenzie, J. Mater. Res. 1989, 4, 1018.

[48] M. N. Bruce, Adv. Mater. 1993, 5, 422.

[49] P . Judeinstein, C. Sanchez, J. Mater. Chem. 1996, 6, 511.

[50] Y. Chujo, R. Tamaki, MRS Bull. 2001, 26, 389.

[51] J . WEN, G. L. WILKES, Chem. Mater. 1996, 8, 1667.

[52] Z. H. Huang, K. Y. Qiu, Polymer 1997, 38, 521.

[53] R. O. R. Costa, W. L. Vasconcelos, J. Non-Cryst. Sol. 2002, 304, 84.

[54] B. A. Weisenberg, D.L. Mooradian, J. Biomed. Mater. Res. Part A 2002, 60, 283.

[55] H. M. Chen, X.M. Tian, H. Zou, Artif. Cells Blood Substit. Biotechnol. 1998, 26, 431.

[56] R. M. Laine, J. Mater. Chem. 2005, 15 (35&36), 3725.

[57] S. Jedlicka, J. McKenzie, S. Leavesley, K. Little, T. Webster, J. Paul Robinson, D.

Nivens, J. Rickus, J. Mater. Chem. 2006, 16, 3221.

[58] C. J. Brinker, G. W. Scherer. Sol–gel science. vol. 1. New York: Academic Press;

1989 pp. 97–152.

[59] R. D. Maggio, F. Rossi, L. Fambri, J. Non-Cryst. Sol. 2004, 345, 591.

[60] B. Samuneva, P. Djambaski, E. Kashchieva, G. Chernev, L. Kabaivanova, E.

Emanuilova, I. M. M. Salvado, M. H. V. Fernandes, A. Wu, J. Non-Cryst. Sol.

2008, 354, 733.

[61] P. Bosch, F. D. Monte, J. L. Mateo, D. Levy, J.Polym. Sci.A: Polym.Chem. 1996, 34, 3289.

[62] Y. Wei, D. Jin, C.Yang, M. C. Kels, K.Y. Qiu, Mater. Sci. Engng. C 1998, 6, 91.

[63] T. Xie, C. Zhou, S. Feng, H. Wang, J. Appl.Polym. Sci. 2000, 75, 379.

[64] R. O. R. Costa, L. Wander, J. Non-Cryst. Sol. 2002, 304, 84.

[65] S. L. Huang, W. K. Chin, W. P. Yang, Polymer 2005, 46, 1865.

[66] T. Teranishi, M. Hosoe, M. Miyake, Adv. Mater. 1997, 9, 65.

[67] T. Teranishi, M. Miyake, Chem. Mater. 1998, 10, 594.

[68] M. M. Maye, S. C. Chun, L. Han, D. Rabinovich, C. J. Zhong, J. Am. Chem. Soc.

2002, 124, 4958.

[69] D.Y. Godovsky, Advan. Polym. Sci. 2000, 153, 163.

[70] T. Vossmeyer, E. Deionno, J. R. Heath, Angew. Chem. Int. Ed. 1997, 36, 1080.

[71] K. Mohomed, T. G. Gerasimov, H. Abourahma, M. J. Zaworotko, J. P. Harmon Mater. Sci. Engng. A 2005, 409, 227.

[72] J. J. Michels, M. J. O’Connell, P. N. Taylor, J. S. Wilson, F. Cacialli, H. L.

Anderson, Chem. Eur. J. 2003, 9, 6167.

[73] S. Dad, P. Hodge, S.D. Kamau, React. Funct. Polym. 2003 54, 131.

[74] K. Matyjazewski , J. H. Xia, Chem. Rev. 2001, 101, 2921. Macromol. Rapid. Commun. 2005, 26, 1784.

[79] C. Wang , N. T. Flynn, R. Langer, Adv. Mater. 2004, 16(13), 1074.

[80] Y. Xiang, D. Chen, Eur. Polym. J. 2007, 43, 4178.

[81] Y. Qiu, K. Park, Adv. Drug Deliv. Rev. 2001, 53, 321.

[82] N. A. Peppas, R. Gurny, E. Doelker, P. Buri, J. Membr. Sci. 1980, 7(3), 241.

[83] B. Narasimhan, R. Langer, J. Control. Release 1997, 47, 13.

[85] L. Yang, R. Fassihi, J. Control. Release 1997, 44, 135.

[86] N. A. Peppas, A. R. Khare, Adv. Drug. Deliv. Rev. 1993, 11, 1.

[87] P. Colombo, Adv. Drug. Deliv. Rev. 1993, 11, 37.

[88] G. Astarita, G.C. Sarti, Polym. Eng. Sci. 1978, 18, 388.

[89] G. W. R. Davidson, N. A. Peppas, J. Control. Release, 1986, 3, 243.

[90] N. M.Franson, N. A.Peppas, J. Appl. Polym. Sci. 1983, 28, 1299.

[91] C. S. Brazel, A. Nikolaos, Polymer 1999, 40, 3383.

[92] S. Lu, S. Kristi, J Control. Release 1999, 57, 291.

[93] R. W. Korsmeyer, E. von Meerwall, N. A.Peppas, J. Polym. Sc.i: Polym. Phys.

1986, 24, 409.

[94] H.B. Hopfenberg, H. L.Frisch, Polym. Lett. 1969,7 ,405.

[95] T. K. Kwei, T. T. Wang, H. M. Zupko, Macromolecules 1972, 5, 645.

[96] N. A. Peppas, Hydrogels in Medicine and Pharmacy; CRC: Boca Raton, FL, 1986.

[97] R. Yoshida, K. Sakai, T. Okano, Y. Sakurai, Adv. Drug. Delivery. Rev. 1993, 11, 85.

[98] S. Ueda, T. Hata, S. Asakura, H. Yamaguchi, M. Kotani, Y. Ueda, J. Drug Target.

1994, 2, 35.

[99] B. G. Stubbe, K. Braeckmans, F. Horkay, W. E. Hennink, S. C. De Smedt, J.

Demeester, Macromolecules 2002, 35, 2501.

[100]H. Hongyan, L. X. Cao, J. Lee, J. Control. Release 2004, 95, 391.

[101]A. Gallardo, C. Parejo, J. S. Roma´n, J. Control. Release 2001, 71, 127.

[102]L. Sartore, I. Perone, P. Ferruti, R. Latini, R. Barnasconi, J. Biomater. Sci. Polym.

Ed. 1997, 8, 741.

[103]I. Nozawa, Y. Suzuki, S. Sato, K. Sugibayashi, Y. Morimoto, J. Biomed. Mater.

Res. 1991, 25, 577.

[104] A. D’Emanuele, Clin. Pharmacokinet. 1996, 41, 241.

[105] T. Okano, Y. H. Bae, H. Jacobs, S. W. Kim, J. Control. Release 1990, 11, 255.

[106]R. Dinarvand, M. Ansari, J. Membr. Sci. 2003, 223, 217.

[107]S. Y. Lin, C. J. Ho, M. J. Li, J. Control. Release 2001, 73, 293.

[108]A. K. Bajpai, D. D. Mishra, J. Mater. Sci: Mater Med 2004 15, 583.

[109]E. Kulik, Y. Ikada, J. Biomed. Mater. Res. 1996, 30, 295.

[110]M. Morra, J. Biomater. Sci., Polym. Ed. 2000,11, 547.

[111]Y. Iwasaki, Y. Aiba, N. Morimoto, Y. Nakabayashi, K. Ishihara, J. Biomed. Mater.

Res. 2000, 52, 701.

[112]T. Okano, S. Nishiyama, I. Shinohara, T. Akaike, Y. Sakurai, K. Kataoka, T.

Tsuruta, J. Biomed. Mater. Res. 1981, 15, 393.

[113]N. Yui, K. Sanui, N. Ogata, K. Kataoka, T. Okano, Y. Sakurai. J. Biomed. Mater.

Res. 1986, 20, 929.

[114]D. L. Coleman, D. E. Gregonis, J. D. Andrade, J. Biomed. Mater. Res. 1982, 16, 381.

[115]J. P. Montheard, M. Chatzopoulos, D. Chappard, J. Macromol. Sci. Polym. Rev.

1992, 32, 1.

[116]C. Ohtsuki, T. Miyazaki, M. Tanihara, Mater. Sci. Engng. C 2002, 22, 27.

[117]J. Song, E. Saiz, C, R. Bertozzi, J. Eur. Ceram. Soc. 2003, 23, 2905.

[118]C. D. Young, J. R. Wu, T. L. Tsou, Biomaterials 1998, 19, 1745.

[119]I. Gursel, C. Balcik, Y. Arica, O. Akkus, N. Akkas, V. Hasirci, Biomaterials 1998, 19, 1137.

[120]B. D. Johnson, D. J. Beebe, W. C. Crone, Mater. Sci. Eng. C 2004, 24, 575.

[121]B. Kabra, S. H. Gehrke, S. T. Hwang, W. Ritschel, J. Appl. Polym. Sci. 1991, 42 2409.

[122]G. W. Boss, N. M. Scharenborg, A. A. Poot, G. H. M. Engbergs, T. Beugeling, W.

G. van Aken, J. Feijen, J. Biomed. Mater. Res. 1999, 47, 279.

[123]C. W. Chung, H. W. Kim, Y. B. Kim, Y. H. Rhee, J. Biol. Macromol. 2003, 32, 17.

[124]E. Brynda, M. Houska, M. Jirouskova, J. E. Dyr, J. Biomed. Mater. Res. 2000, 2, 249.

[125]X. F. Li, C. F. Chen, Z. F. Li, H. Q. Gu, M. Z. Lu, Y. Z. Han, X. B. Liu, Die Makromolekulare Chemie. 2003, 187(2), 367.

[126]V. Sirolli, S. D. Stante, S. Stuard, L. Liberato, L. Amoroso, P. Cappelli, M.

Bonomini, Int. J. Artif. Organs 2000, 23, 356.

[127]Y. C. Nho, O. H. Kwon, Radiation Phy. Chem. 2003, 66, 299.

[128]A. K. Bajpai, S. Kankane, J. Mater. Sci.: Mater. Med. 2008, 19, 1921.

[129]A. K. Bajpai, S. Kankane, J. Appl. Polym. Sci. 2007, 104, 1559.

[130]K. Rezwan, L. P. Meier, L. J. Gauckler, Biomaterials 2005, 26, 4351.

[131]W. K. Lee, J. S. Ko, H. M. Kim, J. Colloid. Interface Sci. 2002, 246, 70.

[132]A. K. Bajpai, D. D. Mishra, J. Appl. Polym. Sci. 2008, 107, 541.

[133]B. K. Oh, M. E. Meyerhoff, Biomaterials 2004, 25(2), 283.

[134]Y. D. Wu, A. P. Rojas, G. W. Griffith, A. M. Skrzypchak, N. Lafayette, R. H.

Bartlett, M. E. Meyerhoff, Sensors And Actuators B-Chemical 2007, 121(1), 36.

[135]C. C. Shih, C. M. Shih, Y. Y. Su, R. A. Gerhardt, S. J. Lin, J. Biomed. Mater. Res.

Part A 2005, 74A: 325.

[136]M. C. Yang, T. Y. Liu, J. Membr. Sci. 2003, 226, 119.

[137]M. Miyajima, A. Koshika, J.i. Okada, M. Ikeda, J. Control. Release 1999, 60, 199.

[139]J. M. Bastidas, E. Cano, N. Mora, Contraception 2000, 61(6), 395.

[140]C. C Hu, S. Y. Wang, C. L. Li, C. J. Chuang, K. L. Tung, J. Chem. Eng. Jpn.

2006, 39,1283.

[141]S. X. Lu, K. S. Anseth, J. Control. Release 1999, 57, 291.

[142]J. D. Cho, H. T. Ju, J. W. Hong, J. Polym. Sci. Pol. Chem. 2005, 43, 658.

[143]D. S. Kim, K. M. Lee, J. Appl. Polym. Sci. 2004, 92, 1955.

[144]J. E. Elliott, J. W. Anseth, C. N. Bowman, Chem. Eng. Sci. 2001, 56, 3173.

[145]M. Taira, H. Suzuki, H. Toyooka, M. Yamaki, J. Mater. Sci. Lett. 1994, 13, 68.

[146]W. S. Kim, Y. C. Jeong, J. K. Park, Optics Express. 2006, 14, 8967.

[147]P. Bosch, F. DelMonte, J.L. Mateo, D. Levy, J. Polym. Sci. Pol. Chem. 1996, 34, 3289.

[148]F. Branda, A. Costantini, G. Luciani, L. Ambrosio, J. Biomed. Mater. Res. Part A 2001, 57, 79.

[149]S. M. Murphy, C. J. Hamilton, B. J. Tighe, Polymer 1998, 29, 1887.

[150]A. Barnes, P. H. Corkhill, B.J. Tighe, Polymer 1988, 29, 2191.

[151]M. Tanaka, A. Mochizuki, J. Biomed. Mater. Res. Part A 2004, 68A, 684.

[152]M. Tanaka, A. Mochizuki, N. Ishii, T. Motomura, T. Hatakeyama, Biomacromolecules 2002, 3, 36.

[153]E. Hirota, K. Ute, M. Uehara, T. Kitayama, M. Tanaka, A. Mochizuki, J. Biomed.

Mater. Res. 2006, Part A 76A, 540.

[154]R. Baker, Controlled release of biologically active agents, John Wiley & Sons, New York.

[155]M. Wasiucionek, M.W. Breiter, J. Non-Cryst. Sol. 1997, 220(1), 52.

[156]S. L. Huang, W. K. Chin, W. P. Yanga, Polymer 2005, 46(6), 1865.

[157]R. O. R. Costa, W. L. Vasconcelos, J. Non-Cryst. Sol. 2002, 304(1-3), 84.

[158]X. L. Ji, S.C. Jiang, X. P. Qiu, D.W. Dong, D.H. Yu, B. Z. Jiang, J. Appl. Polym.

Sci. 2003, 88(14), 3168.

[159]J. Zhang, X.X. Xu, Z.C. Wu, R.J. Yang, C.Z. Zhang, Spectroscopy and Spectral Analysis 2006, 26(1), 37.

[160]J. Hjartstam, T. Hjertberg, J. Appl. Polym. Sci. 1999, 72(4), 529.

[161]B. Schrader, Infrared and Raman spectroscopy:methods and applications, Weinheim,1995

[162]J. E. Elliott, J. W. Anseth, C. N. Bowman, Chem. Eng. Sci. 2001, 56(10), 3173.

[163]J. D. Cho, H. T. Ju, J. W. Hong, J. Polym. Sci. Part A1 Polym. Chem. 2005, 43(3), 658.

[164]R. Baker, Controlled release of biologically active agents, John Wiley & Sons, New York.

[165]S. Z. Cai, X. P. Xia, C. H. Zhu, C. S. Xie, J. Biomed. Materi. Res. Part B 2007,

80B(1), 220.

[166]Y. Y. Liu, T. H. Tung, T. Y. Liu, S. Y. Chen, D. M. Liu, Acta Biomaterialia, 2008 (in print).

[167]K. D. F. Vlugt-Wensink, X. L. Jiang, G. Schotman, G. Kruijtzer, A. Vredenberg, J.

T. Chung, Z. B. Zhang, C. Versluis, D. Ramos, R. Verrijk, W. Jiskoot, D. J. A.

Crommelin, W. E. Hennink, Biomacromolecules 2006, 7(11), 2983.

[168]S. Belfer, A. Bottino, G. Capannelli, J. Appl. Polym. Sci. 2005, 98(1), 509.

[169]A. Perkowska, H. Maluszynska, J. Mol. Struct. 1999, 508(1-3), 111.

[170]S. Deki, K. Akamatsu, T. Yano, M. Mizuhata, A. Kajinami, J. Mater. Chem. 1998, 8(8), 1865.

[171]Y. Hu, Y. Z. Wu, J. Y. Cai, Y. F. Ma, B. Wang, K. Xia, X. Q. He, Int. J.

Molecular Sci. 2007, 8(1), 1.

[172]P. L. Ritger, N.A. Peppas, J. Control. Release 1987, 5(1), 37.

[173]J. S. Ahn, H. K. Choi, M. K. Chun, J. M. Ryu, J. H. Jung, Y. U. Kim, C. S. Cho, Biomaterials 2002, 23(6), 1411.

[174]L. Y. Huang, M. C. Yang, Colloids Surf. B: Biointerfaces 2008, 61(1), 43.

[175]P. M. Gullino, M. Ziche, G. Alessandri, Gangloosides, Cancer Metastaasis Reviews 1990, 9, 239

[176]B. R. McAuslan, G.A. Gole, Trans Ophthalmol Soc 1980, 354.

[177]M. Ziche, J. Jones, P.M. Gullino, J. Natl. Cancer Inst. 1982, 69, 475.

[178]J. Folkman, M. Klagsbrun, J. Sasse, M. Wadzinski, D. Ingber, I. Vlodavsky, Am.

J. Pathol. 1988, 130, 393.

[179]R. K. Dey, A. R. Ray, J. Macromol. Sci., Chem. 2005, A42, 351.

[180]T. Goda, K. Ishihara, Expert Review of Medical Devices 2006, 3, 167.

[181]A. Bolz, M. Amon, C. Ozbek, B. Heublein, M. Schaldach, Texas Heart Institute Journal 1996, 23, 162.

[182]P. Baurschmidt, M. Schaldach, Ann. Biomed. Eng. 1977, 1, 261.

[183]Y. Liu, Z. Li, Z. He, D. Chen, S. Pan, Surf. Coat. Technol. 2007, 201, 6851.

[184]B. D. Ratner, Biomaterials, In Press, Corrected Proof

[185]I. Topala, N. Dumitrascu, V Pohoata, Plasma Chem. Plasma Process. 2007, 27, 95.

[186]H. P. Zhang,G .M. Annich, J. Miskulin, K. Stankiewicz, K. Osterholzer, S .I.

Merz, R. H. Bartlett, J. Am. Chem. Soc. 2003, 125: 5015.

[187]C. Huang, C. Z. Yang, Appl. Phys. Lett. 1999, 74: 1692.

[188]J. Wang, Q. W. Zhang, F. Saito, Colloids Surf. A-Physicochemical And Engineering Aspects 2007, 302, 494.

[189]G. Merga , R. Wilson R, G. Lynn, B. H. Milosavljevic, D. Meisel, J. Phys. Chem.

[190]J. M. Grunkemeier, W. B. Tsai, T. A.Horbett, J. Biomed. Materi. Res. 1998, 41, 657.

[191]G. A. Skarja, J. L. Brash, J. Biomed. Materi. Res. 1997, 34, 439.

[192]F. C. Kung, J.J. Chang, M. C. Yang , Polym. Adv. Tech. 2007, 18, 286.

[193]E. Hirota, K. Ute , M. Uehara, T. Kitayama, M. Tanaka, A. Mochizuki, J.

Biomed. Materi. Res. Pt. A 2006, 76A, 540.

[194]Y. H. Kim, D. K. Han, K. D. Park and S. H. Kim, Biomaterials 2003, 24, 2213.

[195]V. Chandrasekhar, A. Athimoolam, V. Krishnan, R. Azhakar, C. Madhavaiah and S. Verma: Eur. J. Inorg. Chem. 2005, 1482.

[196]S. Srinivasan and P. N. Sawyer, Correlation of the surface charge characteristics of polymer with their antithrombogenic characteristics. In: A. Rembaum, Shen M, editors, Biomedical polymers, New York: Marcel Dekker 1971, p. 51.

[197]Y. Tabata, Y. Matsui and Y. Ikada, J. Control. Release 1998, 56, 135.

[198]L. D. Burke,T.G. Ryan, J. Electrochem. Soc. 1990, 37, 1358.

[199]L. D. Burke,G.M. Bruton, J. A. Collins, Electrochem. Acta 1998, 44, 1467.

[200]A. W. Adamson, Physical Chemistry of Surfaces, 3rd ed.,John Wiley, New York, 1976, p. 244.

[201]J. G. Diodati, A. A. Quyyumi, N. Hussain, L. K. Keefer, Thromb. Haemost. 1993, 70, 654.

[202]L. J. Ignarro, G. M. Buga, K. S. Wood, R. E. Byrns, G. Chaudhuri, Proc. Natl.

Acad. Sci. U.S.A. 1987, 84, 9265.

[203]M. Radomski, R. Palmer, S. Moncada, Proc. Natl. Acad. Sci. U.S.A. 1990, 87, 5193.

[204]P. L. Feldman, O. W. Griffith, D. J. Stuehr, Chem. Eng. News 1993,71, 26.

[205]K. Wong, X. B. Li, Transfus. Apheresis Sci. 2004, 30, 29.

[206]J. P. Wallis, Transfus. Med. 2005, 15, 1

[207]J. S. Stamler, O. Jaraki, J. Osborne, D. I. Simon, J. Keaney, J. Vita, D. Singel, C.R. Valeri, J. Loscalzo, Proc. Natl. Acad. Sci. U.S.A. 1992, 89, 7674.

[208]D. Giustarini, A. Milzani, R. Colombo, I. Dalle-Donne, R. Rossi, Clin. Chim.

Acta 2003, 330, 85.

[209]D. Jourd’heuil, K. Hallen, M. Feelisch, M.B. Grisham, Free Radic. Biol. Med.

2000, 28, 409.