• 沒有找到結果。

Design of the QVCO

在文檔中 中 華 大 學 (頁 43-75)

Chapter 4

Fig 4.1 shows a 5-GHz Quadrature VCO circuit. It consists of four main parts: a source of negative transconductance (g

m

), an LC-tank circuit, a current source, and output buffers.

4-2 QVCO design follow

Fig 4.2 QVCO design follow

(1)Determine the oscillation frequency and satisfied IEEE 802.11a low and middle band. Modulate inductance and capacitance to achieve high Q characteristic of the resonator.

(2)Determine the PMOS and NMOS size and satisfied the lowest noise figure (NF).

(3)Determine the bias circuit and output buffer.

(4)check performance (5)Layout

(6)LPE

(7)re-simulation (8)Tapeout

4-3 QVCO simulation

4-3-1 Resonator simulation

We obtain the higher Q resonator, so we prior the Q of one inductor:

m27 freq=

m27=7.018 x=115.000000

12.00GHz m28 freq=

m28=8.763 x=105.000000

12.00GHz m29 freq=

m29=10.645 x=95.000000

12.00GHz m30 freq=

m30=12.599 x=85.000000

12.00GHz m27 freq=

m27=7.018 x=115.000000

12.00GHz m28 freq=

m28=8.763 x=105.000000

12.00GHz m29 freq=

m29=10.645 x=95.000000

12.00GHz m30 freq=

m30=12.599 x=85.000000

12.00GHz

2 4 6 8 10 12 14 16 18

0 20

10 15

5 18

freq, GHz

Q2

m27 m28 m29 m30

x=rad=65um~115um higher rad, lower inductance

Fig 4.3 Q of the inductor.

In Fig 4.3, rad represents the radius of the inductor. A large radius has a large inductance (radius: m27 > m28 > m29 > m30). A large inductance has a low Q factor.

In order that increase Q of the resonator, we to try increase Q of the inductor best.

C C_Buffer C=0.2224 pF

C C_cross_couple_pair C=0.085 pF

TSMC_CM018RF_NMOS_RF M2

nr=64 w r=8 um lr=0.5 um Type=1.8V triple-w ell TSMC_CM018RF_NMOS_RF

M1

nr=64 w r=8 um lr=0.5 um Type=1.8V triple-w ell

DC_Feed DC_Feed1

V_DC SRC1 Vdc=0.9 V

VAR VAR1 vtune=0.96

EqnVar

DC_Feed DC_Feed3 V_DC SRC3 Vdc=0.9 V TSMC_CM018RF_JUNCAP_W40 D3

nr=jv

V_DC SRC2 Vdc=vtune V

DC_Feed DC_Feed2 TSMC_CM018RF_JUNCAP_W40 D1

nr=jv TSMC_CM018RF_INDS3_SYM L4

lay=6 rad=x um nr=2 w =30 um

TSMC_CM018RF_INDS3_SYM L5

lay=6 rad=x um nr=2 w =30 um

VAR VAR3 jv=18 x=128

Eqn Var

DC_Feed DC_Feed4 V_DC SRC4 Vdc=1.8 V

Term Term1 Z=50 Ohm Num=1

TF TF1 T=1.00

m18 indep(m18)=

m18=2.503E-11 5.145E9 m18 indep(m18)=

m18=2.503E-11 5.145E9

2. 0 E 9 4. 0 E 9 6. 0 E 9 8. 0 E 9 1. 0 E 10 1. 2 E 10 1. 4 E 10 1. 6 E 10 1. 8 E 10

0. 0 2. 0 E 10

-4E-10 -3E-10 -2E-10 -1E-10 0

-5E-10

1E-10 m18

indep(slope)

sl op e

Eqn k2=m18*(19.7192*indep(m18)) indep(k2)

5145000000.000000 k2

2.539599

(a) (b)

Fig 4.4 (a) The resonator of VCO in this work. (b) Q of the resonator.

Before designing the resonator, it is known that oscillation frequency is decided by total inductance of the resonator and total capacitance, in addition, this circuit uses the varactor to reach the specification that the voltage control oscillation frequency, so preserve oscillation frequency in 5.15GHz.

VAR VAR1 vtune=1

Eqn Var

VAR VAR3 jv=43 x=128

Eqn Var

DC_Feed DC_Feed1

V_DC SRC1 Vdc=0.9 V

DC_Feed DC_Feed3 V_DC SRC3 Vdc=0.9 V TSMC_CM018RF_JUNCAP_W40 D3

nr=jv

V_DC SRC2 Vdc=vtune V

DC_Feed DC_Feed2 TSMC_CM018RF_JUNCAP_W40 D1

nr=jv

TSMC_CM018RF_INDS3_SYM L5

lay=6 rad=x um nr=2 w=30 um TSMC_CM018RF_INDS3_SYM L4

lay=6 rad=x um nr=2 w=30 um Term

Term1 Z=50 Ohm Num=1

TF TF1 T=1.00

m18 indep(m18)=

m18=1.635E-11 5.155E9 m18 indep(m18)=

m18=1.635E-11 5.155E9

2.0E9 4.0E9 6.0E9

0.0 7.0E9

-4E-10 -3E-10 -2E-10 -1E-10 0 1E-10

-5E-10 2E-10

m18

indep(slope)

slo pe

Eqn k2=m18*(19.7192*indep(m18)) indep(k2)

5155000000.000000

k2 1.662296

(a) (b)

Fig 4.5 (a) Traditional resonator structure. (b) Q of the traditional resonator.

Right compared with Fig. 4.5 by Fig. 4.4, in the same inductance value, 2.539 of the

resonant is higher than traditional resonant by 1.662 after improving.

The resonant after improving has three advantages :

[1] Because inductor is not a symmetrical component, symmetry difference of the resonant structure after so relatively Fig. 4.4 is improved for the law of receiving of the traditional resonant cavity of Fig. 4.5 (a), improve resonant after to it constrains to be can restrain harmonic.

[2] Can know in Fig. 4.6, the characteristic with high qualitative factor of resonant originally designed, so relatively high frequency in the adjustable range is taken, the resonant after improving can get a lower phase place .

[3] In the resonant originally designed, two NMOS capacitor contact in series, and connect with the resonant in parallel. NMOS capacitor works in Accumulation region, as the little noise voltage in the varactor and NMOS capacitor [16] [17].

The change of the voltage correctly of NMOS capacitor is contrary to change of the voltage of varactor (as Fig. 4.7 shows). Therefore reduce FM of the noise, in order to reduce the phase noise.

m18 indep(m18)=

m18=2.588E-11 5.255E9 m18 indep(m18)=

m18=2.588E-11 5.255E9

5.0E9 7.0E9

-3E-10 -2E-10 -1E-10 0

-4E-10 1E-10

m18 indep(m18)=

m18=2.709E-11 5.355E9 m18 indep(m18)=

m18=2.709E-11 5.355E9

5.0E9 7.0E9

-3E-10 -2E-10 -1E-10 0

-4E-10 1E-10

m18 indep(m18)=

m18=2.467E-11 5.155E9 m18 indep(m18)=

m18=2.467E-11 5.155E9

5.0E9 7.0E9

-4E-10 -3E-10 -2E-10 -1E-10 0

-5E-10 1E-10

indep(slope)

sl op e

m18

Eqn k2=m18*(19.7192*indep(m18)) indep(k2)

5155000000.000000 k2 2.507286

indep(slope)

sl op e

m18 m18

indep(slope)

sl op e

Eqnk2=m18*(19.7192*indep(m18)) Eqn k2=m18*(19.7192*indep(m18)) indep(k2)

5255000000.000000 k2 indep(k2)

5355000000.000000 k2

2.681412 2.860689

(a) (b) (c)

Fig 4.6 (a)f=5.15GHz (b)f=5.25GHz (c)f=5.35GHz

m34 indep(m34)=

m34=3.608E-13 freq=5.150000GHz

1.800 m35

indep(m35)=

m35=3.016E-13 freq=5.150000GHz

1.800 m34 indep(m34)=

m34=3.608E-13 freq=5.150000GHz

1.800 m35

indep(m35)=

m35=3.016E-13 freq=5.150000GHz

1.800

1.5

1.0 2.0

2.8E-13 3.8E-13

_20050823_ind_C_jv..vtune

_2 005 0823 nd_C_j v. .C y _i

m35

vd

Cy

m34 NMOS capacitor

junction varactor

Fig 4.7 NMOS capacitor and varactor versus vtune.

4-3-2 Complementary cross-coupled oscillator simulation

Because complementary cross-coupled pair offers negative conductance mainly, and noise include flicker noise, shot noise, thermal noise that the initiative component generate. Hence, we are choosing NMOS and PMOS of the cross-coupled pair, will consider according to the size of noise figure of transistor.

And then, noise figure of simulation NMOS and PMOS transistors.

m1 indep(m1)=

m1=7.392 freq=5.250000GHz

19.000 m1 indep(m1)=

m1=7.392 freq=5.250000GHz

19.000

10 20 30 40 50 60

0 70

8 10 12 14 16

6 18

aa15..SP.x

aa 15. .nf (1)

m1

aa25..SP.x

aa 25. .nf (1)

aa35..SP.x

aa 35. .nf (1)

aa45..SP.x

aa 45. .nf (1)

SP.x

nf (1)

aa65..SP.x

aa 65. .nf (1)

aa75..SP.x

aa 75. .nf (1)

aa80..SP.x

aa 80. .nf (1)

NMOS-RF length=0.18um

watch frequency=5.25GHz nf(1) of NMOS-RF V.S

nr=1~64

@wr=1.5um~8um sweep

(a)

m1 indep(m1)=

m1=7.392

freq=5.250000GHz 0.180

m2 indep(m2)=

m2=13.399

freq=5.250000GHz 0.500 m1 indep(m1)=

m1=7.392

freq=5.250000GHz 0.180

m2 indep(m2)=

m2=13.399

freq=5.250000GHz 0.500

0.20 0.25 0.30 0.35 0.40 0.45

0.15 0.50

8 10 12

6

14 m2

NMOS noise figure

@wr=1.5um & nr=19 watch

length:0.18um~0.5um

SP.x

nf (1)

m1

(b)

Fig 4.8 (a)NF versus nr of NMOS; (b)NF versus length of NMOS

In Fig. 4.8 (a ), we can see wr and nr of NMOS transistor, the relation between it and noise figure, then we get, in nr =19 and wr =1.5, there is minimum noise figure. And

then can know that the bigger length is , noise figure is the bigger by Fig. 4.8 (b).

PMOS Length:0.18um sweep:wr=1.5um~5.5um nr=1~64

m2 indep(m2)=

m2=4.397 freq=5.250000GHz

64.000 m4 indep(m4)=

m4=10.698 freq=5.250000GHz

10.000

m6 indep(m6)=

m6=5.963 freq=5.250000GHz

37.000

m1 indep(m1)=

m1=3.546 freq=5.250000GHz

0.500 m3 indep(m3)=

m3=3.546 freq=5.250000GHz

0.500

m5 indep(m5)=

m5=3.546 freq=5.250000GHz

0.500

m7 indep(m7)=

m7=3.546 freq=5.250000GHz

0.500

m2 indep(m2)=

m2=4.397 freq=5.250000GHz

64.000 m4 indep(m4)=

m4=10.698 freq=5.250000GHz

10.000

m6 indep(m6)=

m6=5.963 freq=5.250000GHz

37.000

m1 indep(m1)=

m1=3.546 freq=5.250000GHz

0.500 m3 indep(m3)=

m3=3.546 freq=5.250000GHz

0.500

m5 indep(m5)=

m5=3.546 freq=5.250000GHz

0.500

m7 indep(m7)=

m7=3.546 freq=5.250000GHz

0.500

10 20 30 40 50 60

0 70

5 10 15

0 20

bb15..SP.x

bb1 5. .nf (1) m4

m6 m2

bb25..SP.x

bb2 5. .nf (1)

bb35..SP.x

bb3 5. .nf (1)

bb45..SP.x

bb4 5. .nf (1)

bb55..SP.x

bb5 5. .nf (1)

bb65..SP.x

bb6 5. .nf (1)

bb75..SP.x

bb7 5. .nf (1)

bb80..SP.x

bb8 0. .nf (1)

m1 m3 m5 m7

(a)

m1 indep(m1)=

m1=1.760

freq=5.250000GHz 0.180 m1 indep(m1)=

m1=1.760

freq=5.250000GHz 0.180

0.20 0.25 0.30 0.35 0.40 0.45

0.15 0.50

2.0 2.5 3.0 3.5

1.5 4.0

SP.x

nf (1)

m1

PMOS wr=8um nr=64um

length:0.18um~0.5um

(b)

Fig 4.9 (a)NF versus nr of PMOS; (b)NF versus length of PMOS

In Fig 4.9 can know , width of the same PMOS, width =wr *nr, the wr is smaller, noise figure is the lower. So, the relation determines size of NMOS and PMOS according to this finally.

In decide complementary cross-coupled pair and after adding resonator, because complementary cross-coupled pair has parasitic capacitance, so will increase capacitance of total in resonator, will cause oscillation frequency to drop, while fine tune. Behind is it produce to ask parasitic capacitance of complementary cross-coupled pair again, is it answer to take the place of resonator to fine tune.

4-3-3 PMOS current mirror & output Buffer simulation

785 mV vin 1.02 V VG 1.80 V

1.80 V 1.80 V 1.80 V 1.80 V

0 V vout

0 V 1.51 V VD 1.51 V

VAR VAR2

down_nr=64 down_wr=8 down_lr=0.18

Eqn Var

VAR VAR1

up_nr=64 up_wr=8 up_lr=0.18

Eqn Var

0 A VtSine

SRC2

Phase=0 Damping=0 Delay=0 nsec Freq=5.25 GHz Amplitude=0.666 V Vdc=0.785 V -292 uA 292 uA

-292 uA 292 uA TSMC_CM018RF_PMOS_RF M1

nr=10 wr=1.5 um lr=0.18 um Type=1.8V twin-well

0 A R R1 R=50 Ohm

-8.98 mA 8.98 mA

-8.98 mA 0 A

TSMC_CM018RF_PMOS_RF M3

nr=down_nr wr=down_wr um lr=down_lr um Type=1.8V twin-well

0 A DC_Block DC_Block1 292 uA

-292 uA -292 uA 292 uA

TSMC_CM018RF_NMOS_RF M4

nr=1 wr=1.5 um lr=0.18 um Type=1.8V triple-well

-9.27 mA V_DC

SRC1 Vdc=1.8 V

8.98 mA I_Probe ID3_up

8.98 mA I_Probe ID4_down -8.98 mA 8.98 mA

-8.98 mA 0 A

TSMC_CM018RF_PMOS_RF M2

nr=up_nr wr=up_wr um lr=up_lr um Type=1.8V twin-well

Fig 4.10 Simulation of output buffer

Fig 4.11 Input waveform of output buffer.

Fig 4.12 Output waveform of output buffer.

After swing that the waveform can be intact, we can take the place of it while entering the intact circuit, then fine tune Performance.

4-3-4 Total Performance

x1

vdd2

x1 x2

x1 vbuf f er 1

vbuf f er 2 vdd1

V2 V3

V4 V1

vbuf f er 2 vbuf f er 2

vbuf f er 1 vbuf f er 1

vdd2 vdd1

x2 x2

V4 V3 V1 V2

a vout 1 vout 3

vout 2 vout 4

TSM C_CM 018RF_M I M CAP C16

wt =30 um lt =30 um Type=M I M CAP_SHI ELD

TSM C_CM 018RF_M I M CAP C15

wt =30 um lt =30 um Type=M I M CAP_SHI ELD

TSM C_CM 018RF_M I M CAP C14

wt =30 um lt =30 um Type=M I M CAP_SHI ELD

TSM C_CM 018RF_M I M CAP C13

wt =30 um lt =30 um Type=M I M CAP_SHI ELD

TSM C_CM 018RF_JUNCAP_W40 D4 nr =jv

TSM C_CM 018RF_JUNCAP_W40 D3 nr =jv TSM C_CM 018RF_JUNCAP_W40 D1 nr =jv

TSM C_CM 018RF_JUNCAP_W40 D2 nr =jv TSM C_CM 018RF_M I M CAP

C1 wt =30 um lt =30 um Type=M I M CAP_SHI ELD

TSM C_CM 018RF_M I M CAP C2

wt =30 um lt =30 um Type=M I M CAP_SHI ELD

TSM C_CM 018RF_M I M CAP C3 wt =30 um lt =30 um Type=M I M CAP_SHI ELD

TSM C_CM 018RF_M I M CAP C4

wt =30 um lt =30 um Type=M I M CAP_SHI ELD

TSM C_CM 018RF_M I M CAP C8

wt =30 um lt =30 um Type=M I M CAP_SHI ELD

TSM C_CM 018RF_M I M CAP C7

wt =30 um lt =30 um Type=M I M CAP_SHI ELD

TSM C_CM 018RF_M I M CAP C6

wt =30 um lt =30 um Type=M I M CAP_SHI ELD

TSM C_CM 018RF_M I M CAP C5

wt =30 um lt =30 um Type=M I M CAP_SHI ELD

TSM C_CM 018RF_M I M CAP C12

wt =30 um lt =30 um Type=M I M CAP_SHI ELD

TSM C_CM 018RF_M I M CAP C11 wt =30 um lt =30 um Type=M I M CAP_SHI ELD

TSM C_CM 018RF_M I M CAP C10

wt =30 um lt =30 um Type=M I M CAP_SHI ELD

TSM C_CM 018RF_M I M CAP C9 wt =30 um lt =30 um Type=M I M CAP_SHI ELD TSM C_CM 018RF_M I M CAP C20

wt =30 um lt =30 um Type=M I M CAP_SHI ELD

TSM C_CM 018RF_M I M CAP C19

wt =30 um lt =30 um Type=M I M CAP_SHI ELD

TSM C_CM 018RF_M I M CAP C18

wt =30 um lt =30 um Type=M I M CAP_SHI ELD

TSM C_CM 018RF_M I M CAP C17

wt =30 um lt =30 um Type=M I M CAP_SHI ELD

TSM C_CM 018RF_M I M CAP C21

wt =30 um lt =30 um Type=M I M CAP_SHI ELD

TSM C_CM 018RF_M I M CAP C22

wt =30 um lt =30 um Type=M I M CAP_SHI ELD TSM C_CM 018RF_M I M CAP C23

wt =30 um lt =30 um Type=M I M CAP_SHI ELD

TSM C_CM 018RF_M I M CAP C24

wt =30 um lt =30 um Type=M I M CAP_SHI ELD

O scPor t O sc1

M axLoopG ainSt ep=

FundI ndex=1 St eps=10 Num O ct aves=2 Z=1. 1 O hm V=

VAR VAR4 vt une=1. 81 E q n V a r

V_DC SRC6 Vdc=1. 8 V R R16 R=0. 75 O hm L L10 R=

L=1. 2 nH

R R14 R=0. 75 O hm L L8 R=

L=1. 2 nH V_DC

SRC5 Vdc=1. 8 V

R R15 R=0. 75 O hm

L L9 R=

L=1. 2 nH

V_DC SRC3 Vdc=1. 8 V L

L7 R=

L=1. 2 nH R R13 R=0. 75 O hm

V_DC SRC8 Vdc=1. 8 V R R12 R=0. 75 O hm L L6 R=

L=1. 2 nH C

C28 C=0. 625 pF R R8 R=625 O hm V_DC

SRC4 Vdc=1. 8 V

R R11 R=0. 75 O hm

L L5 R=

L=1. 2 nH

C C30 C=0. 625 pF R R10 R=625 O hm

R R9 R=625 O hm C C29 C=0. 625 pF

C C27 C=0. 625 pF

R R7 R=625 O hm V_DC SRC2 Vdc=vt une V

C C26 C=0. 625 pF

R R6 R=625 O hm R

R5 R=625 O hm C C25 C=0. 625 pF

VAR VAR2 a=102 jv=24 E q n V a r

TSM C_CM 018RF_PM O S_RF M 33

nr =P_nr wr =P_wr um lr =P_lr um Type=1. 8V t win- well

TSM C_CM 018RF_PM O S_RF M 32

nr =P_nr wr =P_wr um lr =P_lr um Type=1. 8V t win- well

V_DC SRC7 Vdc=1. 8 V V_DC

SRC9 Vdc=1. 8 V

VAR VAR3

N_nr =20 N_lr =0. 18 N_wr =1. 5 E q n V a r VAR VAR1

P_wr =8 P_nr =30 P_lr =0. 18 E q n V a r

VAR VAR9

buf down_wr =8 buf down_nr =64 buf down_lr =0. 18 E q n V a r VAR VAR8

buf up_wr =8 buf up_nr =64 buf up_lr =0. 18 E q n V a r

V_DC SRC11 Vdc=1. 8 V

V_DC SRC10 Vdc=vt une V VAR

VAR6

r ef p_wr =1. 5 r ef p_nr =10 r ef p_lr =0. 18 E q n V a r

VAR VAR7

r ef n_wr =1. 5 r ef n_nr =1 r ef n_lr =0. 18 E q n V a r

TSM C_CM 018RF_PM O S_RF M 19

nr =buf down_nr wr =buf down_wr um lr =buf down_lr um Type=1. 8V t win- well DC_Block DC_Block3

TSM C_CM 018RF_PM O S_RF M 20

nr =buf up_nr wr =buf up_wr um lr =buf up_lr um Type=1. 8V t win- well

R R3 R=50 O hm DC_Feed DC_Feed3

TSM C_CM 018RF_PM O S_RF M 23

nr =buf down_nr wr =buf down_wr um lr =buf down_lr um Type=1. 8V t win- well

TSM C_CM 018RF_PM O S_RF M 24

nr =buf up_nr wr =buf up_wr um lr =buf up_lr um Type=1. 8V t win- well DC_Feed DC_Feed4

R R4 R=50 O hm

DC_Block DC_Block4

DC_Feed DC_Feed2

R R2 R=50 O hm TSM C_CM 018RF_PM O S_RF M 18

nr =buf up_nr wr =buf up_wr um lr =buf up_lr um Type=1. 8V t win- well

TSM C_CM 018RF_PM O S_RF M 17

nr =buf down_nr wr =buf down_wr um lr =buf down_lr um Type=1. 8V t win- well DC_Block DC_Block2

TSM C_CM 018RF_PM O S_RF M 16

nr =buf down_nr wr =buf down_wr um lr =buf down_lr um Type=1. 8V t win- well

TSM C_CM 018RF_PM O S_RF M 15

nr =buf up_nr wr =buf up_wr um lr =buf up_lr um Type=1. 8V t win- well DC_Block DC_Block1

R R1 R=50 O hm

DC_Feed DC_Feed1

VAR VAR10 r es_nr =64 r es_wr =8 r es_lr =0. 5 E q n V a r

TSM C_CM 018RF_NM O S_RF M 26

nr =r es_nr wr =r es_wr um lr =r es_lr um Type=1. 8V t r iple- well TSM C_CM 018RF_NM O S_RF M 27

nr =r es_nr wr =r es_wr um lr =r es_lr um Type=1. 8V t r iple- well

TSM C_CM 018RF_NM O S_RF M 6

nr =r es_nr wr =r es_wr um lr =r es_lr um Type=1. 8V t r iple- well TSM C_CM 018RF_NM O S_RF M 5

nr =r es_nr wr =r es_wr um lr =r es_lr um Type=1. 8V t r iple- well

VAR VAR5

I t ail_wr =8 I t ail_nr =64 I t ail_lr =0. 18 E q n V a r TSM C_CM 018RF_PM O S_RF M 1

nr =P_nr wr =P_wr um lr =P_lr um Type=1. 8V t win- well

TSM C_CM 018RF_PM O S_RF M 12

nr =I t ail_nr wr =I t ail_wr um lr =I t ail_lr um Type=1. 8V t win- well

TSM C_CM 018RF_PM O S_RF M 3

nr =P_nr wr =P_wr um lr =P_lr um Type=1. 8V t win- well TSM C_CM 018RF_PM O S_RF M 4

nr =P_nr wr =P_wr um lr =P_lr um Type=1. 8V t win- well

TSM C_CM 018RF_PM O S_RF M 25

nr =I t ail_nr wr =I t ail_wr um lr =I t ail_lr um Type=1. 8V t win- well

TSM C_CM 018RF_I NDS3_SYM L3

lay=6 r ad=a um nr =2 w=30 um TSM C_CM 018RF_I NDS3_SYM

L4

lay=6 r ad=a um nr =2 w=30 um

I _DC SRC12 I dc=1 m A

TSM C_CM 018RF_NM O S_RF M 28

nr =N_nr wr =N_wr um lr =N_lr um Type=1. 8V t r iple- well

TSM C_CM 018RF_NM O S_RF M 29

nr =N_nr wr =N_wr um lr =N_lr um Type=1. 8V t r iple- well TSM C_CM 018RF_NM O S_RF

M 30

nr =N_nr wr =N_wr um lr =N_lr um Type=1. 8V t r iple- well TSM C_CM 018RF_NM O S_RF M 31

nr =N_nr wr =N_wr um lr =N_lr um Type=1. 8V t r iple- well TSM C_CM 018RF_PM O S_RF M 34

nr =P_nr wr =P_wr um lr =P_lr um Type=1. 8V t win- well

TSM C_CM 018RF_PM O S_RF M 35

nr =P_nr wr =P_wr um lr =P_lr um Type=1. 8V t win- well TSM C_CM 018RF_PM O S_RF M 2

nr =P_nr wr =P_wr um lr =P_lr um Type=1. 8V t win- well

TSM C_CM 018RF_NM O S_RF M 8

nr =N_nr wr =N_wr um lr =N_lr um Type=1. 8V t r iple- well

TSM C_CM 018RF_NM O S_RF M 9

nr =N_nr wr =N_wr um lr =N_lr um Type=1. 8V t r iple- well

TSM C_CM 018RF_NM O S_RF M 10

nr =N_nr wr =N_wr um lr =N_lr um Type=1. 8V t r iple- well TSM C_CM 018RF_NM O S_RF M 11

nr =N_nr wr =N_wr um lr =N_lr um Type=1. 8V t r iple- well I _DC SRC1 I dc=1 m A TSM C_CM 018RF_I NDS3_SYM L1

lay=6 r ad=a um nr =2

w=30 um TSM C_CM 018RF_I NDS3_SYM

L2

lay=6 r ad=a um nr =2 w=30 um TSM C_CM 018RF_PM O S_RF

M 13

nr =r ef p_nr wr =r ef p_wr um lr =r ef p_lr um Type=1. 8V t win- well

TSM C_CM 018RF_NM O S_RF M 14

nr =r ef n_nr wr =r ef n_wr um lr =r ef n_lr um Type=1. 8V t r iple- well

Fig 4.13 VCO intact circuit

1. Output power(Single-end)

(a)

(b)

(c)

Fig 4.14 (a)f=5.15GHz (b)f=5.25GHz (c)f=5.35GHz

We can see by Fig 4-14, the fundamental frequency of the resonator after improving has differed by 31dB with second harmonic, and the fundamental frequency of the traditional structure is usually only lack of 20dB with the second harmonic.

Resonator after improve, it is good that the symmetry of the circuit will come than the traditional resonator, it is can suppress more harmonic distortion.

Output power (Differential)

Fig 4.15 In-phase of output.

As us while differential output, define a first I

+

、Q

+

、I

-

、Q

-

. Then differential output = I

+

-I

-

, as Fig 4-15 shows , it is differential output, the ones that can know the second harmonic is pressed are very low, it is more linear to represent circuit in this designed.

Finally, another differential output = Q

+

-Q

-

also.

2. The output of Time domain waveform

(a)

(b)

(c)

Fig 4.16 (a)f=5.15GHz (b)f=5.25GHz (c)f=5.35GHz

The resonator after improving is avoided to make the restrain amplitude too big, so the sine wave of this structure is difficult to be distorted.

3. Frequency versus vtune

Fig 4.17 Frequency V.S vtune

Because consider to process deviation, it will be bigger in the design of tuning voltage, it is from vtune =0.4V to 3V must stabilize oscillation.

Frequency sweep designed is from 4.913 ~ 5.538GHz, up to the tuning frequency range of 625MHz. In order to reduce Kvco, the possible one has tuning voltage between 1V and 1.8V.

Can know by Fig 4.17, this design the frequency of three centers of IEEE 802.11a and corresponding vtune:

Frequency Tuning voltage(vtune) 5.15GHz 1.07V

5.25GHz 1.39V 5.35GHz 1.81V

4. Phase noise V.S vtune

Fig 4.18 Phase noise versus vtune.

Because our resonator structure is to adopt Crystal-liked structure, characteristic with high qualitative factor and according to Leeson’s formula:

( )

⎪⎭

⎪⎬

⎪⎩

⎪⎨

⎟⎟⎠

⎜⎜ ⎞

⎝ + ⎛

⎥⎥

⎢⎢

⎟⎟⎠

⎜⎜ ⎞

⎛ +

⎟⎟⎠

⎜⎜ ⎞

= ⎛

2 2

2 2 1 1

2 log 2

10 ,

m m vco m

c s

m o vco

m f

V K f

f P

FkT Qf

K f f

L

(4-3-1)

The resonator of high Q can get a lower phase place. We can be proved in Fig. 4.18.

In addition when vtune is smaller than 0.9V, in relatively low frequency on the adjustable range is taken, because VCO has higher gain, will be by the last Kvco leading factor in the phase noise, in addition, because new resonator of structure of us increase more two NMOS than tradition, so will offer the noise extra, so when vtune is smaller than 0.9V, the phase place of our structure will rise.

5. Pushing figure

Fig 4.19 Pushing figure

V figure MHz

pushing 65

6 . 1 8 . 1

151 . 5 164 .

5 =

= −

If pushing figure is great, oscillation frequency is very apt to change with Vdd. Here, we have two solutions:

(1)Consider the Layout: Will add the extra capacitor to and filter noise by the power.

(2)Consider the bias voltage: Put into steady voltage IC (LM317 ) and stabilize the power

6. Pulling figure

(1)VSWR=1~3(Rloasd≦50 ohm)

Fig 4.20 Pulling figure

Acting as VSWR a change to 3, its frequency drops 10MHz.

(1)VSWR=1~3(Rloasd≧50 ohm)

Fig 4.21 Pulling figure

Acting as VSWR a change to 3, its frequency probably rise 5MHz.

Table 1: VCO performance

Parameter Value

Supply voltage(V

dd

) 1.8V

Center frequency(f

c

) 5.25 GHz

Tuning range 5.15GHz ~ 5.35GHz

Tuning voltage(V

tune

) 1.07V~1.81V

VCO sensitivity(K

vco

) 270.27 MHz/V

VCO bias current 18.5mA

Buffer amp. Bias current 34.32mA

Power consumption without buffer(Vdd=1.8V) 33.3mW Power consumption with buffer(Vdd=1.8V) 95.07mW

Phase Noise @1MHz offset from fc -107.948dBc/Hz

Here, phase noise of though the output buffer is -107.948 dBc/Hz, phase noise of not added buffer is up to -118.085 dBc/Hz; And using the buffer amount examined. Just combine in WLAN, supply with Mixer and Frequency synthesizer use, can get higher phase place , let the efficiency of the whole system be increased.

Table 2: VCO performance comparing with other authors.

School NCTU NCKU

This work

Author Mr. Zheng Mr. Lee

Yu-Cheng Wang

Center Freq 5.3925GHz 5.2GHz

5.25GHz

Supply voltage 2.5V 2.5V

1.8V

Frequency range 5.26~5.525GHz 4.8~5.7GHz

4.913~5.538GHz

Phase noise

-102.83dBc/Hz@1

MHz

-106.6dBc/Hz@1

MHz

-107.948dBc/Hz@

1MHz

Output power -22.17dBm@5.43G

Hz

-11dBm

-6dBm

Power consumption

Without buffer 43.75mW 38.25mW

33.3mW

With buffer 80.75mW

95.07mW

Architecture RC-CR Network RC-CR Network

RC-CR Network

Tech & Year CMOS 0.25μm

2002

CMOS 0.25μm 2003

CMOS 0.18μm

2005

4-4 QVCO Layout

1. Layout dispose

Before beginning Layout yet, I will make intact dispose to consider first. We confirm it have Pad for several piece and how much piece wire bonder.

(a)

(b)

Fig 4.22 Pad and wire bonder dispose.

Total pad and wire bonder:

Output signal (V

out1

、V

out2

、V

out3

&V

out4

):4 Voltage source of buffer(V

buffer1

&V

buffer2

):2 Voltage source of cross couple pair(V

dd1

&V

dd2

):2 Tuning voltage(Vt):1

Voltage source of NMOS capacitor(Vnmos):1

Add one GND finally, put the surplus area on Ground Pad finally, in order to reduce parasitic inductance and resistance.

Consider to noise of power supply, will hope to add by-pass capacitor in all input of DC bias voltage. Beside four RF out , should all add by-pass capacitor between DC and Ground. Then we will simulation again, will see whether performance of the circuit changes to some extent.

Fig 4.23 Layout dispose

(1) It is very important that the line of Layout is wide. Have one experience rule , line of 1um wide to is it flow current of 1mA to able to bear. Lead to the fact at most that it is usually on the current sources of output stage and core circuit to be able to bear the design not flowing.

(2) In order to prevent too many parasitic capacitance from producing, there are places to cross in all metal, try one's best to separate thickness of oxide layer of a layer. Oxidize one layer of thickness averagly and invite 1.66um.

(3) In order to prevent the effect of Pad from being too big, so metal and device all try one's best to have safe distance of 30um with Pad.

Plane figure of Layout:

在文檔中 中 華 大 學 (頁 43-75)

相關文件