• 沒有找到結果。

Based on the results in this study, two putative active site residues which were apparently involved in the catalysis of PepD were first identified. The saturated mutagenesis on other putative metal binding and catalytic sites will be continuous analyzed to clarify their roles in the peptidase activity of PepD. Moreover, several residues outside of the catalytic domain of enzymes in M20 family were considered to be involved in the substrate binding and catalysis in recent report. As described on section 1.9, the respective His269 from the lid domain of L.

elbrueckii PepV was associated with Zn 1 for forming an oxyanion binding hole bound to e carbonyl oxygen of Glu 153 and led to a tetrahedral intermediate. This residue functioned r the stabilization of the transition state and its corresponding results to His229, His223, and His206 in the small domains of the dimeric homologs CPG2, PepT, and hAcy1 in M20 family were also be examined. The mutagenesis study on H206 of hAcyl in 200326 indicated at the conserved histidine in the dimerization domain of dimeric Acy1/M20 family

zymes contributes in trans to the active site. Therefore, several polar or aromatic residues outside of the putative active site of PepD should also be futher investigated by site-directed mutagenesis in the future.

PepD was identified as a member of metallopeptidases which required metal ion for its catalytic activity. In these peptidases, the metal ion is usually zinc but sometimes cobalt, manganese, nickel or copper. However, recent studies showed that different metal ion with rious concentration could inhibit or increase the enzyme activity.42, 64 The functional roles r the different metal centers as well as the activation mechanism due to lose metal ions are still unclear. Consequently, the metal selectivity and inhibition/activation mechanism will be valuable investigated in the future.

d th fo

th en

va fo

As the biological function of bacterial pepD is less understanding, the gene knock-out study on V. alginolyticus pepD followed by a series of biochemical or morphology analysis will provide more informations about its role in prokaryotes. At the same time, since PepD affects the bacterial biofilm formation, biofilm assay should also be performed and compared with both V. alginolyticus wild-type and pepD knockout strain.

With absence of the structure in neither peptidase family M20 nor similar peptidase, crystallization on the V. alginolyticus PepD was needed. Furthermore, the crystal structure of the wild-type and mutant proteins combined with the mutagenesis analysis data could provide an insight into the catalytic mechanism of bacterial aminoacylhistidine dipeptidase.

Up to date, we have obtained the crystal of wild-type PepD with undesirable resolution.

Therefore, the proceeding effort is still needed to modify the crystallization condition in order to improve the quality of crystal for further structure determination.

Cha

obiol. 1961, 5, ( ), 477-86 . Sakazaki, R., Proposal of Vibrio alginolyticus for the biotype 2 of Vibrio parah

nd infections. J lin Microbiol 1975, 2, (6 ), 556-8.

7. Baross, J.; Liston, J., Occurrence of Vibrio parahaemolyticus and related hemolytic vibrios in marine environments of Washington State. Appl Microbiol 1970, 20, (2), 179-86.

. Paperna, I., Reproduction cycle and tolerance to temperature and salinity of myloodinium ocellatum (Brown, 1931) (Dinoflagellida). Ann Parasitol Hum Comp 1984, 59, (1 ), 7-30.

9. Zen-Yoji, H.; Le Clair, R. A.; Ota, K.; Montague, T. S., Comparison of Vibrio arahaemolyticus cultures isolated in the United States with those isolated in Japan. J Infect

is 1973, 127, (3 ), 237-41.

10. Levine, W. C.; Griffin, P. M., Vibrio infections on the Gulf Coast: results of first year of regional surveillance. Gulf Coast Vibrio Working Group. J Infect Dis 1993, 167, (2 ), 479-83.

Reina Prieto, J.; Hervas Palazon, J., [Otitis media due to Vibrio alginolyticus: the risks of the Mediterranean Sea]. An Esp Pediatr 1993, 39, (4 ), 361-3.

pter 6 Reference

1. Goarant, C.; Merien, F.; Berthe, F.; Mermoud, I.; Perolat, P., Arbitrarily primed PCR to type Vibrio spp. pathogenic for shrimp. Appl Environ Microbiol 1999, 65, (3 ), 1145-51.

2. Miyamoto, Y., Nakamura, K., and Takizawa, K., Proposals of a new genus

“Oceanomonas” and of the amended species names. Jpn. J. Micr 3

aemolyticus. Jpn J Med Sci Biol 1968, 21, (5 ), 359-62.

4. Schmidt, U.; Chmel, H.; Cobbs, C., Vibrio alginolyticus infections in humans. J Clin Microbiol 1979, 10, (5 ), 666-8.

5. Molitoris, E.; Joseph, S. W.; Krichevsky, M. I.; Sindhuhardja, W.; Colwell, R. R., Characterization and distribution of Vibrio alginolyticus and Vibrio parahaemolyticus isolated in Indonesia. Appl Environ Microbiol 1985, 50, (6 ), 1388-94.

6. Rubin, S. J.; Tilton, R. C., Isolation of Vibrio alginolyticus from wou C

12. Gahrn-Hansen, B.; Hornstrup, M. K., [Extraintestinal infections caused by Vibrio

2002, 15, (4 ), 757-70.

ibrio alginolyticus in the grouper, Epinephelus labaricus, Bloch et Schneider

Res 2006, 34, (Database issue ), D270-2.

Chem Rev 1996, 96, (7), 2435-2458.

2003, 7, parahaemolyticus and Vibrio alginolyticus at the county of Funen 1987-1992]. Ugeskr Laeger 1994, 156, (37), 5279-82.

13. Rippey, S. R., Infectious diseases associated with molluscan shellfish consumption. Clin Microbiol Rev 1994, 7, (4), 419-25.

14. Blake, P. A.; Weaver, R. E.; Hollis, D. G., Diseases of humans (other than cholera) caused by vibrios. Annu Rev Microbiol 1980, 34, ( ), 341-67.

15. Lipp, E. K.; Huq, A.; Colwell, R. R., Effects of global climate on infectious disease: the cholera model. Clin Microbiol Rev

16. Caccemese SM, R. D., Chronic diarrhea associated with Vibrio alginolyticus in an immunocompromised patient. Clin Infect Dis. 1999, 29, ( ), 946-47.

17. Lessner, A. M.; Webb, R. M.; Rabin, B., Vibrio alginolyticus conjunctivitis. First reported case. Arch Ophthalmol 1985, 103, (2 ), 229-30.

18. Lee, K. K., Pathogenesis studies on V

ma . Microb Pathog 1995, 19, (1 ), 39-48.

19. Rawlings, N. D.; Barrett, A. J., Evolutionary families of metallopeptidases. Methods Enzymol 1995, 248, ( ), 183-228.

20. Rawlings, N. D.; Morton, F. R.; Barrett, A. J., MEROPS: the peptidase database.

Nucleic Acids

21. Rawlings, N. D.; Barrett, A. J., Evolutionary families of peptidases. Biochem J 1993, 290 ( Pt 1), ( ), 205-18.

22. Wilcox, D. E., Binuclear Metallohydrolases.

23. Dismukes, G. C., Manganese Enzymes with Binuclear Active Sites. Chem Rev 1996, 96, (7), 2909-2926.

24. Richard C Holz, Krzysztof P Bzymek and Sabina I Swierczek Co-catalytic metallopeptidases as pharmaceutical targets Current Opinion in Chemical Biology

(2 ), 197-206.

25. Wouters, M. A.; Husain, A., Changes in zinc ligation promote remodeling of the active site in the zinc hydrolase superfamily. J Mol Biol 2001, 314, (5 ), 1191-207.

erization for catalysis in the aminoacylase-1/M20

Martin, J.; Stribbling, S. M.;

stander efficacy in two xenograft

li biosynthesis regulator

t 10 ), 2847-57.

specificity. FEMS Microbiol Lett 1994, 123, (1-2 ), 153-9.

hir 1980, 35, (17 ), 1283-6.

teriol

Dembinski, D. R.; Hartman, P. E.; Miller, C. G., Salmonella typhimurium 26. Lindner, H. A.; Lunin, V. V.; Alary, A.; Hecker, R.; Cygler, M.; Menard, R., Essential roles of zinc ligation and enzyme dim

family. J Biol Chem 2003, 278, (45 ), 44496-504.

27. Friedlos, F.; Davies, L.; Scanlon, I.; Ogilvie, L. M.;

Spooner, R. A.; Niculescu-Duvaz, I.; Marais, R.; Springer, C. J., Three new prodrugs for suicide gene therapy using carboxypeptidase G2 elicit by

models. Cancer Res 2002, 62, (6), 1724-9.

28. Brombacher, E.; Dorel, C.; Zehnder, A. J.; Landini, P., The cur

CsgD co-ordinates the expression of both positive and negative determinants for biofilm formation in Escherichia coli. Microbiology 2003, 149, (P

29. Klein, J.; Henrich, B.; Plapp, R., Cloning and expression of the pepD gene of Escherichia coli. J Gen Microbiol 1986, 132, (8 ), 2337-43.

30. Schroeder, U.; Henrich, B.; Fink, J.; Plapp, R., Peptidase D of Escherichia coli K-12, a metallopeptidase of low substrate

31. van der Drift, C.; Ketelaars, H. C., Carnosinase: its presence in Pseudomonas aeruginosa.

Antonie Van Leeuwenhoek 1974, 40, (3 ), 377-84.

32. Bersani, M.; Crespi, F.; Giudici, V.; Bianchi, G., [Antral stenosis caused by gastric hemangioma]. Minerva C

33. Miller, C. G.; Schwartz, G., Peptidase-deficient mutants of Escherichia coli. J Bac 1978, 135, (2 ), 603-11.

34. Kirsh, M.;

peptidase active on carnosine. J Bacteriol 1978, 134, (2 ), 361-74.

35. Jackson, M. C.; Lenney, J. F., The distribution of carnosine and related dipeptides in rat

and human tissues. Inflamm Res 1996, 45, (3 ), 132-5.

tioxidant activity of

P.; Borin, G., Carnosine and carnosine-related

2001, 56, (6 ),

arand, S.; Carreau, A.; Cairns, N.

ction from cellular carnosinase, and

ood, R. A.; Amir, A.; Idowu, B.; Summers, B.; Leigh, N.; Peters, T.

36. Boldyrev, A. A., Problems and perspectives in studying the biological role of carnosine.

Biochemistry (Mosc) 2000, 65, (7 ), 751-6.

37. Vaughan-Jones, R. D.; Spitzer, K. W.; Swietach, P., Spatial aspects of intracellular pH regulation in heart muscle. Prog Biophys Mol Biol 2006, 90, (1-3 ), 207-24.

38. Decker, E. A.; Livisay, S. A.; Zhou, S., A re-evaluation of the an purified carnosine. Biochemistry (Mosc) 2000, 65, (7 ), 766-70.

39. Seidler, N. W., Carnosine prevents the glycation-induced changes in electrophoretic mobility of aspartate aminotransferase. J Biochem Mol Toxicol 2000, 14, (4 ), 215-20.

40. Guiotto, A.; Calderan, A.; Ruzza,

antioxidants: a review. Curr Med Chem 2005, 12, (20 ), 2293-315.

41. Petroff, O. A.; Hyder, F.; Rothman, D. L.; Mattson, R. H., Homocarnosine and seizure control in juvenile myoclonic epilepsy and complex partial seizures. Neurology

709-15.

42. Teufel, M.; Saudek, V.; Ledig, J. P.; Bernhardt, A.; Boul

J.; Carter, C.; Cowley, D. J.; Duverger, D.; Ganzhorn, A. J.; Guenet, C.; Heintzelmann, B.;

Laucher, V.; Sauvage, C.; Smirnova, T., Sequence identification and characterization of human carnosinase and a closely related non-specific dipeptidase. J Biol Chem 2003, 278, (8 ), 6521-31.

43. Lenney, J. F.; George, R. P.; Weiss, A. M.; Kucera, C. M.; Chan, P. W.; Rinzler, G. S., Human serum carnosinase: characterization, distin

activation by cadmium. Clin Chim Acta 1982, 123, (3 ), 221-31.

44. Wassif, W. S.; Sherw

J., Serum carnosinase activities in central nervous system disorders. Clin Chim Acta 1994, 225, (1 ), 57-64.

45. Butterworth, R. J.; Wassif, W. S.; Sherwood, R. A.; Gerges, A.; Poyser, K. H.;

Garthwaite, J.; Peters, T. J.; Bath, P. M., Serum neuron-specific enolase, carnosinase, and

ngl J Med 1967,

sler, M. E.; Harrod, E. K.;

mulations of its allosteric

9, ( ), 789-801.

rn, M. A.; Franke-Fayard, B. M.; Mierau, I.; Venema, G.; Kok, J., Cloning and

., Cloning and nucleotide their ratio in acute stroke. An enzymatic test for predicting outcome? Stroke 1996, 27, (11 ), 2064-8.

46. Perry, T. L.; Hansen, S.; Tischler, B.; Bunting, R.; Berry, K., Carnosinemia. A new metabolic disorder associated with neurologic disease and mental defect. N E

277, (23 ), 1219-27.

47. Murphey, W. H.; Lindmark, D. G.; Patchen, L. I.; Hou

Mosovich, L., Serum carnosinase deficiency concomitant with mental retardation. Pediatr Res 1973, 7, (7 ), 601-6.

48. Vistoli, G.; Pedretti, A.; Cattaneo, M.; Aldini, G.; Testa, B., Homology modeling of human serum carnosinase, a potential medicinal target, and MD si

activation by citrate. J Med Chem 2006, 49, (11 ), 3269-77.

49. Hanson, H. T., and Smith, E. L., Carnosinase: an enzyme of swine kidney. J. Biol. Chem.

1949, 17

50. Komeda, H.; Asano, Y., A DmpA-homologous protein from Pseudomonas sp. is a dipeptidase specific for beta-alanyl dipeptides. Febs J 2005, 272, (12 ), 3075-84.

51. Walker, N. D.; McEwan, N. R.; Wallace, R. J., A pepD-like peptidase from the ruminal bacterium, Prevotella albensis. FEMS Microbiol Lett 2005, 243, (2 ), 399-404.

52. Hellendoo

analysis of the pepV dipeptidase gene of Lactococcus lactis MG1363. J Bacteriol 1997, 179, (11 ), 3410-5.

53. Vongerichten, K. F.; Klein, J. R.; Matern, H.; Plapp, R

sequence analysis of pepV, a carnosinase gene from Lactobacillus delbrueckii subsp. lactis DSM 7290, and partial characterization of the enzyme. Microbiology 1994, 140 ( Pt 10), ( ), 2591-600.

54. Biagini, A.; Puigserver, A., Sequence analysis of the aminoacylase-1 family. A new

proposed signature for metalloexopeptidases. Comp Biochem Physiol B Biochem Mol Biol 2001, 128, (3 ), 469-81.

55. Jozic, D.; Bourenkow, G.; Bartunik, H.; Scholze, H.; Dive, V.; Henrich, B.; Huber, R.;

ily. Structure 1994, 2, (4 ), 283-91.

idase G2, a bacterial enzyme with applications in cancer therapy.

atization of

ctivation mechanism of pro-astacin: role of the pro-peptide, tryptic and

ar Research Tool Journal of Biomolecular Techniques 1999, 10, (4), 163-176.

Bode, W.; Maskos, K., Crystal structure of the dinuclear zinc aminopeptidase PepV from Lactobacillus delbrueckii unravels its preference for dipeptides. Structure 2002, 10, (8 ), 1097-106.

56. Chevrier, B.; Schalk, C.; D'Orchymont, H.; Rondeau, J. M.; Moras, D.; Tarnus, C., Crystal structure of Aeromonas proteolytica aminopeptidase: a prototypical member of the co-catalytic zinc enzyme fam

57. Greenblatt, H. M.; Almog, O.; Maras, B.; Spungin-Bialik, A.; Barra, D.; Blumberg, S.;

Shoham, G., Streptomyces griseus aminopeptidase: X-ray crystallographic structure at 1.75 A resolution. J Mol Biol 1997, 265, (5 ), 620-36.

58. Rowsell, S.; Pauptit, R. A.; Tucker, A. D.; Melton, R. G.; Blow, D. M.; Brick, P., Crystal structure of carboxypept

Structure 1997, 5, (3 ), 337-47.

59. Csampai, A.; Kutlan, D.; Toth, F.; Molnar-Perl, I., o-Phthaldialdehyde deriv

histidine: stoichiometry, stability and reaction mechanism. J Chromatogr A 2004, 1031, (1-2 ), 67-78.

60. Yiallouros, I.; Kappelhoff, R.; Schilling, O.; Wegmann, F.; Helms, M. W.; Auge, A.;

Brachtendorf, G.; Berkhoff, E. G.; Beermann, B.; Hinz, H. J.; Konig, S.; Peter-Katalinic, J.;

Stocker, W., A

autoproteolytic cleavage and importance of precise amino-terminal processing. J Mol Biol 2002, 324, (2 ), 237-46.

61. Hansenb, J. L. C. a. J. C., Analytical Ultracentrifugation as a Contemporary Biomolecul

62. Stafford, W. F., Sedimentation velocity spins a new weave for an old fabric. Curr Opin

Biotechnol 1997, 8, (1), 14-24.

63. Kelly, S. M.; Jess, T. J.; Price, N. C., How to study proteins by circular dichroism.

J Biol Chem 2004, 279, (14 ), 13962-7.

Biochim Biophys Acta 2005, 1751, (2), 119-39.

64. Lai, W. L.; Chou, L. Y.; Ting, C. Y.; Kirby, R.; Tsai, Y. C.; Wang, A. H.; Liaw, S. H., The functional role of the binuclear metal center in D-aminoacylase: one-metal activation and second-metal attenuation.

Appendix 1

Primers used in this thesis

Sequencing and Expression

F1 (sense) 5’-GTGTCTGAGTTCCATTC-3’ (1-17)a

F2 (sense) 5’-TGGGCGACAGAGCAAGG-3’ (127-143)

TCTGGCGCTTACCCAGG R1 (antisense) 3’-AAGGACTTTTCCGCATT-5’

F3 (sense) 5’- -3’ (1189-1205)

(1457-1473) R2 (antisense) 3’-CGTAACTTGCGAACAGG-5’ (979-995) R3 (antisense) 3’-GTGACTAGTGCTGAAGT-5’ (270-286) N1 (sense) 5’-CGCGGATCCCATATGGTGTCTGAGTTCCATTC-3’ (NdeI)b

Mutagenesis

D119X-1 5’-CGCTCGGGGCANNNAACGGCATCGGCATGGC-3’ (AvaI) D119X-2 5’-GCCATGCCGATGCCGTTNNNTGCCCCGAGCG-3’ (AvaI) E149X-1 5’-CTGACAATTGATNNNGAAGCAGGCATGACAGG-3’ (MfeI) E149X-2 5’-CCTGTCATGCCTGCTTCNNNATCAATTGTCAG-3’ (MfeI)

Appendix 2

The restriction enzyme used in expresson vectors check and the expected size of excised f

sed Excised frangm ragment.

Plasmid R.E.a u ent

pET-pepD-WT AvaI -b

pET-pepD-D119X AvaI 1.2 kbp.

pET-pepD-WT PvuI -b

pET-pepD-E149A MfeI/NotI 1.2 kbp.

a R.E.= restriction enzymes.

N fragment was excised.

b No expected D A

Appendix 3

Experimental Materials

l strains, plasmids, animal, and cell

scherichia coli BL21(DE3)pLysS (Novagen)

Escherichia coli XL1-Blue (Novagen)

Vibrio algino 749 (FIRDI, Taiw pCR®2.1-TO

pET-28a(+) (

Female BAL cience Co n)

M

Š

Chemicals and Reagents

cetic acid (Merck) ovine Calf Serum (HyClone) romophenol blue (USB)

L-carnosine (ICN Biomedicals, Inc.) Sigma)

oomassie® Brilliant blue R 250 (Merck) Dimethylformamide (Merck)

Š

Bacteria

E

lyticus ATCC 17 an)

PO (Invitrogen) Novagen)

B/c mice (National S uncil, Taiwa ouse myeloma cell line FO (FIRDI, Taiwan)

A

Dimethyl sulfoxide (MP Biomedicals) Dodecyl sulfate sodium salt (M

ulbecco’s Modified Eagle Medium (Gibco) dNTP Set, 100 mM Solutions (GE Healthcare) Ethylenediamine-tetraacetic acid (Merck) GABA-His (Sigma)

L-glutamine solution 100X, 200m Glycerol (Merck)

HT Supplement (100X), liquid (GIBCO) Hydrogen chloride (Merck)

Ile-His (Bachem) Imidazole (USB)

Kanamycin sulfate (USB) LB Broth, Miller (DIFCO) Leu-His (Bachem)

2-mercaptoethanol (Merck) Methanol (Merck)

N,N’-methylene-bis-acrylamide (Sigma) Ni-NTA His-Band® Resin (Novagen)

Penicillin-Streptomycin Solution 100X (biowest) erck)

hate (Merck) ate (Merck)

., Taiwan)

es (New England Biolabs)

RESCO)

Š

Kits

BCA Protein Assay Reagent and Albumin Standard (PIERCE)

ing Kit (Applied Biosystems) ication Kit (GE Healthcare)

ealthcare) gen)

en)

Kit (GeneMark)

fer II Pack (Applied Biosystems)

lyzer (Applied Biosystems) eckman Coulter)

eckman Coulter)

ase Scientific Glass, Inc.) orf)

l B401L (Firstek Scientific) Centrifuge 2100 (KUBOTA)

ath (Baxter) s (BIO-RAD)

ly EPS 301 (GE Healthcare) PSON® GT-7000 Scanner (EPSON)

96 MicroWellTM plate (black) (NUNC) BigDye® Terminator v3.1 Cycle Sequenc GFXTM PCR DNA and Gel Band Purif HMW Native Marker Kit (GE Healthcare) LMW-SDS Marker Kit (GE H

QIAamp DNA Mini Kit (Qia TOPO TA Cloning® Kit (Invitrog Plasmid Miniprep Purification rTth DNA polymerase, XL & XL Buf

Š

Equipments

25 cm2 flask (NUNC)

ABI PRISM® 3100 Genetic Ana AllegraTM 21R Centrifuge (B Avanti® J-E Centrifuge (B Blood Collecting Tubes (Ch Centrifuges 5415R (eppend Colling Circulator Bath Mode Compact Tabletop

Dri-Bath Type 17600 (Thermolyne) DurabathTM Water B

Econo-Pac Column

Electrophoresis Power Supp E

F

F96 MicroWellTM plate (clear) (NUNC)

s) Unit (GE Healthcare) Healthcare)

tion and Analysis System 120 (Kodak) ents (GE Healthcare)

ultiskan Ascent Microplate Reader (Thermo)

ubator Model S300R (Firstek Scientific) l RS-101 (Firstek Scientific)

-Jacketed Incubator (NuAire) Healthcare) Fisher Vortex Genie 2TM (Fisher Scientific)

Fluoroskan Ascent FL Microplate Reader (Thermo)

GeneAmp® PCR System 9700 Thermal Cycler (Applied Biosystem Hoefer® HE 33 Mini Horizontal Submarine

Hoefer® Mighty Small dual gel caster (GE Kodak Electrophoresis Documenta

Mighty Small II for 8×7 cm gels electrophoresis instrum Millex®-GS 0.22 μm Filter Unit (Millipore)

Millex®-HA 0.45 μm Filter Unit (Millipore) M

Orbital shaking inc Rocking Shacker Mode

SteritopTM 0.22 μm Filter Unit (Millipore) Ultrasonic Processor VCX 500/750 (Sonics) US AutoFlowTM NU 4000 Series CO2 Water

UV-Visible Spectrophotometer Ultrospec 3100 pro (GE

Š

Solutions

Blocking buffer

5% non-fat milk in distilled water (dH2O).

Destain buffer I

Mix 400 mL methanol, 100 mL acetic acid and dH2O to 1 L. Store at room temperature (RT).

distilled water (dH2O) to 1 L. Store at RT.

distilled water (ddH2O). Store at -20℃.

e filter and store at

anamycin stock solution

issolve 250 mg kanamycin sulfate in 10 mL ddH2O. Filter through 0.22 μm pore size filter nd store at -20℃.

B medium

5 g LB Broth was dissolved in 1 L dH2O and sterilized.

Destain buffer II

Mix 50 mL methanol, 120 mL acetic acid and

6X DNA loading dye

0.25% bromophenol blue and 30% glycerol in double

IPTG stock solution

Dissolve 4.0863 g IPTG in 10 mL ddH2O. Filter through 0.22 μm pore siz -20℃.

K D a

L 2

LB plate

25 g LB Broth and 20 g BactoTM Agar was dissolved in 1 L dH2O and sterilized. The sterile ed and dispersed in petri dishes before it coagulates.

0X Native-PAGE running buffer

ycine and 30 g Tris base in 1 L dH2O and store at 4℃. Dilute to 1X with

sample buffer

H2O ere mixed and stored at -20℃.

issolve 50 mg OPA in 5 mL methanol first and then mix with 20 mL borate buffer. The d by 0.2 M boric acid (dissolved in 0.2 M potassium chloride solution)

or no longer than 9 days and prepared at least 90 min earlier before use.

2O and sterilize before use.

E running buffer

L dH2O and store at 4℃. Dilute to X with dH2O before use.

LB agar was pour

1

Dissolve 144 g gl dH2O before use.

5X Native-PAGE

8 mg bromophenol blue, 1.7 mL 0.5 M Tris-HCl, pH 6.8, 5 mL glycerol, and 4 mL d w

OPA reagent (for enzyme kinetics) D

borate buffer was mixe

and 0.2 M sodium hydroxide solution (50: 50, v/v). The OPA reagent was stored in darkness at 4℃ f

10X PBS buffer

Dissolve 13.7 g Na2HPO4, 3.5 g NaH2PO4, and 87.7 g NaCl in 1 L dH2O and store at RT.

Dilute to 1X with dH

10X SDS-PAG

Dissolve 144 g glycine, 30 g Tris base, and 10 g SDS in 1 1

5X SDS-PAGE sample buffer

red at -20℃.

2O to 1 L final volume. Filter through reused 0.22 μm pore size filter and ore at RT.

acid 57.1 mL, and 0.5 M EDTA in 1 L dH2O and adjust to H 8.5. Dilute to 1X with dH2O and adjust to pH 7.5-7.8 before use.

-gal stock solution

L dimethylformamide (DMF) and store in the darkness at 8 mg bromophenol blue, 1.7 mL 0.5 M Tris-HCl, pH 6.8, 0.5 mL 20% (w/v) SDS, 2 mL 2-mercaptoethanol, 5 mL glycerol, and 4 mL dH2O were mixed and sto

Stain buffer

Dissolve 1 g Coomassie Brilliant blue R-250 in 500 mL methanol first. Then add 100 mL acetic acid and dH

st

50X TAE buffer

Dissolve Tris base 242 g, acetic p

10X Western transfer buffer

Dissolve 144 g glycine, 30 g Tris base, and 10 g SDS in 1 L dH2O and store at 4℃. Dilute to 1X with dH2O before use.

X

Dissolve 400 mg X-gal in 10 m -20℃.