• 沒有找到結果。

In the future work, We can use BPhen:Cs2COO3 to produce electron transport layer and

electron injection layer by co-evaporation method. According to the journal before the students

discovered that the doping layer carrier mobility is higher than the undoping layer carrier

mobility. By way of co-evaporation to increase the electron transport layer of the electron

mobility, resulting in the organic light-emitting diode devices are more balanced with the hole

and electron number. The device could improve the luminous efficiency.

61

References

[1] C.W. Tang, S.A. Vanslyke, Appl. Phys. Lett., 51 (1987), 913.

[2] C. Adachi, S. Tokito, T. Tsutsui, S. Saito, Jpn. J. Appl. Phys., 27 (1988), 713.

[3] T. Tsutsui, E. Aminaka, Y. Fujita, Y. Hamada, S. Saito, Synth. Met., 55 (1993), 4157.

[4] J. Kido, H. Shionoya, K. Nagai, Appl. Phys. Lett., 67 (1995), 16.

[5] J. Kido, M. Kimura, K. Nagai, Science, 267 (1995), 1332.

[6] R.F. Service, Science, 273 (1996), 878.

[7] A. Bernanose, M. Comte, P. Vouaux, J. Chim. Phys., 50 (1953), 64.

[14] J.R. Sheats, H. Antoniadis, M. Hueschen, W. Lenard, J. Miller,R. Mon, D.Roitman, A.

Stocking, Science, 273 (1996), 884.

[15] R.H. Friend, R.W. Gymer, A.B. Holmes, J.H. Burroughes, R.N. Marks, C. Taliani, D.D.C.

Bradley, Nature, 397 (1999), 121.

[16] D. A. Pardo, G. E. Jabbour, N. Peyghambarian, Adv. Mater. 12, 17, 1249 (2000).

[17] O. Prache, Displays, Issue 2, 22 (2001), 49.

[18] Cambridge Display Technology, March 26, 2007.

[19] http://www.cnet.com.au/nikon-d7100-339343411.htm.

[20] http://www.reuters.com/article/2007/10/01/us-sony-tv-idUSTKV00290020071001.

62

[21]http://www.oled-info.com/kodak/kodak_signs_oled_cross_license_agreement_with_lg_displ ay_co_ltd.

[22] http://www.reuters.com/article/2013/06/27/us-samsung-tv-idUSBRE95Q05K20130627.

[23] C. Hosokawa, M. Eida, M. Matsuura, K. Fukuoka, H. Nakamura, and T. Kusumoto, Synth.

Met., 91(1997), 3.

[24] C.Hosokawa H. Higashi, H. Nakamura, and T. Kusumoto, Appl. Phys. Lett., 67 (1995), 3853.

[25] Z. Q. Gao, C. S. Lee, I. Bello, S. T. Lee, R. M. Chen, T. Y. Luh, J. Shi, C. W. Tang, Appl.

Phys. Lett., 74 (1999), 865.

[26] Y. T. Tao, A. Danel, P. Tomasik, Appl. Phys. Lett., 77 (2000), 933.

[27] C. Adachi, S. Tokito, T. Tsutsui, S. Saito, Jpn. J. Appl. Phys., 27 (1988), 269.

[28] Y. Hamada, C. Adachi, T. Tsutsui, S. Saito, Jpn. J. Appl. Phys., 31, (1992), 1812.

[29] M. Era, C. Adachi, T. Tsutsui, S. Saito, Chem. Phys. Lett., 178 (1991), 488.

[30] Yong Qiu, Yudi Gao, Peng Wei, Liduo Wang, Appl. Phys. Lett., 80 (2005), 2628.

[31] Fangcong Wang, Su Liu, Chunlin Zhang, Microelectronics Journal, 38 (2007), 259.

[32] A. R. Brown, D. D. C. Bradley, J. H. Burroughes, R. H. Frienf, N. C. Greenam, P. L. Burn, A. B. Holmes, A. Kraft, Appl. Phys. Lett., 61 (1992), 2793.

[33] N. Von Malm, J. Steiger, R. Schmechel, H. Von Seggerm, J. Appl. Phys.,89 (2001), 5559.

[34] J. Pommerehne, H. Vestweber, Y. H. Tak, and H. Bassler, Synth. Met. 76 (1996), 654.

[35] C. F. Qiu, L. D.Wang, H. Y. Chen, M. Wong, H. S. Kwok, Appl. Phys. Lett. 79, 2276 (2001) [36] S. Seki, Y. Sawada, T. Nishide, Thin Solid Films, 388 (2001), 22.

[37] T. Ishida, H. Kobayashi, Y. Nakato, J. Appl. Phys.,73 (1993) 4344.

[38] T. Futagami, Y. Shigesato, T. Yasui, Jpn. J. Appl.Phys. Part 1, 37 (1998), 6210.

[39] M. Bender, J. Trube, J. Stollenwerk, Appl. Phys. A, 69 (1999), 397.

[40] T. Maruyama, K. Fukui, Thin Solid Films, 203 (1991), 297.

[41] V. Vasu, A. Subrahmanyam, Thin Solid Films, 193/194 (1990), 696.

63

[42] M. Ishii, T. Mori, H. Fujikawa, S. Tokito, Y. Taga, Journal of Luminescence, 87 (2000), 1165.

[43] J. S. Kim, M. Gransrom, R. H. Friend, N. Johansson, W. R. Salaneck, R. Daik, W. J. Feast, F.

Cacialli, Appl. Phys., 84 (1998), 6859.

[44] S. K. Sol, W. K. Choi, C. H. Cheng, L. M. Leung, C. F. Kwong, Appl. Phys. A, 68(1999), 447.

[45] M. G. Mason, L. S. Hung, C. W. Tang, S. T. Lee, K. W. Wang, J. Appl. Phys.,86 (1999), 1688.

[46] I. Min Chan, Tsung Yi Hsu, Franklin C. Hong, Appl. Phys. Lett., 81 (2002), 102.

[47] S. T. Lee, Z. Q. Gao, L. S. Hung, Appl. Phys. Lett., 75(1999), 1404.

[48] S. A. VanSlyke, C. H. Chen, C. W. Tang, Appl. Phys. Lett., 69 (1996), 2160.

[49] Y. Yang, A. J. Heeger, Appl. Phys. Lett., 64 (1994), 1245.

[50] A. Elschner, F. Bruder, H. W. Heuer, F. Jonas, A. Karbach, S. Kirchmeyer, S. Thurm, R.

Wehrmann, Synth. Met., 111 (2000), 139.

[51] T. M. Brown, J. S. Kim, R. H. Friend, F. Cacialli, R. Daik, W. J. Feast, Appl. Phys. Lett., 75 (1999), 1679.

[52] S. E. Shaheen, G. E. Jabbour, M. M. Morrell, Y. Kawabe, B. Kippelen, N. Peyghambarian, M. F. Nabor, R. Schlaf, E. A. Mash, N. R. Armstrong, Appl. Phys. Lett., 84 (1998), 2324.

[53] J. D. Anderson, E. M. McDonald, P. A. Lee, M. L. Anderson, E. L. Ritchie, H. K. Hall, T.

Hopkins, E. A. Mash. J. Wang, A. Padias, S. Thayumanavan, S. Barlow, S. R. Marder, G. E.

Jabbour, S. Shaheen, B. Kippelen, N. Peyghambarian, R. M. Wightman, N. R. Armstrong, J.

Am. Chem. Soc., 120 (1998), 9646.

[54] Ch. Jonda, A. B. R. Mayer, and W. Grothe, J. Appl. Phys., 85 (1999), 6884.

[55] L. S. Hung, C. W. Tang, M. G. Mason, Appl. Phys. Lett. 70 (1997), 152.

[56] G. E. Jabbour, B. Kippelen, N. R. Armstrong, N. Peyghambarian, Appl. Phys. Lett. 73 (1998), 1185.

64

[57] J. M. Bharathan, Y. Yang, J. Appl. Phys., 84 (1998), 3207.

[58]M. Stossel, J. Satudigel, F. Steuber, J. Simmer, A. Winnacke, Appl. Phys. A: Mater. Sci.

Process. 68 (1999), 387.

[59] C. W. Tang, S. A. VanSlyke, C. H. Chen, J. Appl. Phys., 65 (1989), 3610.

[60] Z. B. Deng, X. M. Ding, S. T. Lee W. A. Gambling, Appl. Phys. Lett.,74 (1999), 2227.

[61] J. M. Zhao, S. T. Zhang, X. J. Wang, Y. Q. Zhan, X. Z. Wang, G. Y. Zhong, Z. J. Wang, X. M.

Ding, W. Huang, X. Y. Hou, Appl. Phys. Lett., 84 (2003), 2913.

[62] S. Tokito, H. Tanaka, Y. Taga, Appl. Phys. Lett., 69 (1996), 878.

[63] Y. Sato, H. Kanai, Mol. Cryst. 253 (1994), 143.

[64] Universal Display: Passive-matrix OLED Displays.

[65] Universal Display: Active-matrix OLED Displays.

[66] T.Sasaoka et al., SID Digest, Vol.32, pp.384-387, June 2001.

[67] T.Tsujimura et al., SID Digest, Vol.34, pp.6-9, May 2003.

[68] F.Templier et al, IDMC2006 Digest, (2006), 1705.

[69] C. C. Wu, J. C. Sturm, R. A. R.egister, M. E. Thompson, Appl. Phys. Lett., 69 (1996), 3117.

[70] J. Bharathan, Y. Yang, Appl. Phys. Lett., 72 (1998), 2660.

[71] T. R. Hebner, C. C. Wu, D. Marcy, M. H. Lu, J. C. Sturm, Appl. Phys. Lett., 72 (1998), 519.

[72] G. Gustafsson, Y. Cao, G. M. Treacy, F. Klavetter, N. Colaneri, A. J. Heeger, Nature, 357 (1992), 477.

[73] W.Graupner et al., SPIE Proceedings 4207 (2000), 11.

[74] T.Sasaoka et al.,SID Digest, Vol.32, pp.384, June 2001

[75] Ta-Ya Chu, Szu-Yi Chen, Chao-Jung Chen, Jenn-Fang Chen and Chin H. Chen, Appl. Phys.

Lett., 89 (2006), 053503.

[76] V. Bulovic, P. Tian, P. E. Burrows, M. R. Gokhale, S. R. Forrest, M. E. Thompson, Appl.

Phys. Lett., 70 (1997), 2954.

[77] T. Dobbertin, O. Werner, J. Meyer, A. Kammoun, D. Schneider, T. Riedl, E. Becker, H. H.

65

Johannes, W. Kowalsky, Appl. Phys. Lett., 83 (2003),5071.

[78] Milan Stolka, Consultant, OIDA OLED Workshop August 2002.

[79] T. Miyashita, S. Naka, H. Okada, H. Onnagawa, Proceedings of IDW`04,p.1421,Dec. 8-10, 2004, Niigata, Japan.

[80] Haskal E I, Synth. Met., 91 (1997), 187.

[81] Y. Hamada, H. Kanno, T. Tsujioka, H. Takahashi, T. Usuki, Appl. Phys. Lett. 75 (1999)

1682.

[82] C. Adachi, M.A. Baldo, S.R. Forrest, J. Appl. Phys. 87 (2000) 8049.

[83] C. Hosokawa, H. Higashi, H. Nakamura, T. Kusumoto, Appl. Phys. Lett. 67 (1995) 3853.

[84] Y. M. Shi, Z. B. Deng, D. H. Xu, J. Xiao, Displays 27 (2006) 166.

[85] H. Xu, Y. Yue, H. Wang, L. Chen, Y. Hao, B. Xu, J. Lumines. 132 (2012) 919.

[86] H. Zhu, Z. Xu, S. Zhao, F. Zhang, L. Gao, C. Kong, G. Yan, Y. Wang, Displays. 32 (2011) 102.

[87] T. Yasuda, Y. Yamaguchi, D. C. Zou, T. Tsutsui, Jpn. J. Appl. Phys. 41 (2002) 5626.

[88] M. A. Khan, W. Xu, K. u. Haq, Y. Bai, X. Y. Jiang, Z. L. Zhang, W. Q. Zhu, J. Appl. Phys.

66

Figure 1.1 LCD structure and the ratio of the output for light to backlight.

67

Figure 2.1 The diagram of energy band for light emission.

68

Figure 2.2 The diagram of process from charge carriers injection to the output for light emission.

69

Figure 2.3 The diagram of molecule orbital.

70

Figure 2.4 The diagram of Singlet state and Triplet state.

71

Figure 2.5 The structure of Passive-matrix OLED.

72

Figure 2.6 The structure of Active-matrix OLED.

73

Figure 2.7 The structure of side-by-side method for full-color OLED.

74

Figure 2.8 The structure of color conversion method for full-color OLED.

75

Figure 2.9 The structure of color filter method for full-color OLED.

76

Figure 2.10 The structure of bottom emission OLED.

77

Figure 2.11 The structure of top emission OLED.

78

Figure 2.12 The structure of transparent OLED.

79

Figure 2.13 The structure of inverted OLED.

80

Figure 4.1 The energy band diagrams of the multilayer for OLEDs.

Figure 4.2 The current density-voltage (J-V) characteristics of the devices with various thicknesses of DPVBi layer.

81

Figure 4.3 The luminance-voltage curves of the devices with various thicknesses of DPVBi layer.

Figure 4.4 The electroluminescence spectra of the devices with various thicknesses of DPVBi layer at 12V.

82

Figure 4.5 The energy band diagrams of the double hole blocking layers for OLEDs.

Figure 4.6 The current density-voltage (J-V) characteristics of the devices with double hole blocking layers.

83

Figure 4.7 The luminance-voltage curves of the devices with double hole blocking layers.

Figure 4.8 The electroluminescence spectra of the devices with double hole blocking layers..

84

Figure 4.9 The energy band diagrams of the triple hole blocking layers for OLEDs.

Figure 4.10 The current density-voltage (J-V) characteristics of the devices with various thicknesses of triple hole blocking layer.

85

Figure 4.11 The luminance-voltage curves of the devices with various thicknesses of triple hole blocking layer.

Figure 4.12 The electroluminescence spectra of the devices with various thicknesses of DPVBi layer at 10V.

86

Figure 4.13 The energy band diagrams of the different electron transport layer for OLEDs.

Figure 4.14 The current density-voltage (J-V) characteristics of the different electron transport layer for OLEDs.

87

Figure 4.15 The luminance-voltage curves of the different electron transport layer for OLEDs.

Figure 4.16 The luminous efficiency - current density of the different electron transport layer for OLEDs.

88

Figure 4.17 The electroluminescence spectra of the different electron transport layer for OLEDs at 9V.

Figure 4.18 The current density-voltage characteristics insert of hole injection layers for OLEDs.

89

Figure 4.19 The luminance-voltage characteristics insert of hole injection layers for OLEDs.

Figure 4.20 The luminous efficiency - current density insert of hole injection layers for OLEDs.

90

Figure 4.21 The current density-voltage characteristics of change hole blocking layers material for OLEDs.

Figure 4.22 The luminance-voltage curves of change hole blocking layers material for OLEDs.

91

Figure 4.23 The luminous efficiency - current density insert of change hole blocking layers material for OLEDs.

92

Figure 4.24 The schematic energy band diagrams of device O-S.

93

Figure 4.25 (a) EL spectra characteristics of various devices at injection current density of 100 mA/cm2. (b) CIE coordinates of various devices at current density of 100 mA/cm2.

94

Figure 4.26 (a) The normalized EL intensity spectra characteristics of the device S at applied voltage of 8-12V. (b)The CIE coordinates of device S at applied voltage of 8-12V.

95

96

Figure 4.27 The (a) current density-voltage (b) luminance-voltage (c) luminous efficiency-current density characteristics of the various structures. The inset shows the normalized EL intensity spectra of the device P at the applied voltage of 7-10V.

97

Table 4.1 Comparisons of devices with various thicknesses of DPVBi layer at 12 V.

Table 4.2 Comparisons of devices with various materials of double hole blocking layers at 12 V.

98

Table 4.3 Comparisons of devices with various thicknesses of triple hole blocking layers at 10 V.

相關文件