• 沒有找到結果。

1. The whole AFEA circuit will be integrated into the implantable epilepsy detection and stimulation system and it will be test in vivo. The SOC will be packaged in a special case passing FDA inspection.

2. For long time monitoring biopotential signal, fast settle is necessary. Therefore, a clock generator should be designed on chip to generate the “fast settle” signal.

3. The proposed pre-amplifier has an advantage of their NEF performance due to decline of noise. However, the rear end circuit might dominate the noise source. For more thorough and complete front-end circuit design, we should diminish the noise and power consumption of analog multiplexer and PGA circuit.

4. To reduce power dissipation, we might add power gating at bias circuit of chopper stabilized pre-amplifier. Let the 8 channel pre-amplifiers will NOT consume static power at the same time.

5. Although the analog MUX and PGA are shared by eight channels pre-amplifier, overall power is still too large. Therefore, the power of the shared part should be more optimized.

6. Considering external disturbance, using pseudoresistor to generate high pass corner frequency might be NOT the best choice. However, current mode circuit may be another choice for addressing the issue.

5. Finally, a full understanding of neural recording system and a more careful consideration are essential to design and implement a front-end circuit for these applications. There is still large improvement available in this design.

R EFERENCES

[1] Refet Fırat Yazıcıo˘glu, et al., Biopotential Readout Circuits for Portable Acquisition Systems, Springer Netherlands, 2009.

[2] L. A. Geddes and L. E. Baker, Principles of Applied Biomedical Instrumentation, 3rd ed., New York : Wiley, 1989.

[3] N. V. Thakor, Biopotentials and Electrophysiology Measurement, Baltimore, MD:

Johns Hopkins School of Medicine, 1999.

[4] Andrew B. Schwartz, Tracy Cui, Douglas J. Weber, & Daniel W. Moran,

“Brain-controlled interfaces: Movement restoration with neural prosthetics,” Neuron, vol. 52, pp. 205–220, 2006.

[5]M. Teplan, “Fundamentals of EEG measurement,” Measurement Science Review, vol. 2, pp. 1–11, 2002.

[6] John G. Webster, Medical Instrumentation Applications and Design, 4th Edition, Wiley, 2009.

[7] J. D. Jirsch, E. Urrestarazu, P. LeVan, A. Olivier, F. Dubeau and J. Gotman,

“High-frequency oscillations during human focal seizures,” Brain, vol. 129, pp.

1593–1608, 2006.

[8] E. Urrestarazu, R. Chander, F. Dubeau, J. Gotman, “Interictal high-frequency oscillations (100-500Hz) in the intracerebral EEG of epileptic patients,” Brain, vol.

130, pp. 2354–2366, 2007.

[9] Towle VL, Bolaños J, Suarez D, Tan K, Grzeszczuk R, Levin DN, Cakmur R, Frank SA, Spire JP, “The spatial location of EEG electrodes: locating the best-fitting sphere relative to cortical anatomy,” Electroencephalography and Clinical Neurophysiology, vol. 86, pp. 1–6,1993.

[10] K. A. Ng and P. K. Chan, “A CMOS Analog Front-End IC for Portable EEG/ECG Monitoring Applications,” IEEE Transactions On Circuits And Systems—i:

Regular Papers, Vol. 52, No. 11, November 2005.

[11] T. Denison, K. Consoer, W. Santa, A.-T. Avestruz, J. Cooley, and A. Kelly, “A 2 μW 100 nV/ √ chopper-stabilized instrumentation amplifier for chronic measurement of neural field potentials,” IEEE Journal of Solid-State Circuits, vol. 42, no. 12, pp. 2934–2945, 2007.

[12] N. Verma, A. Shoeb, J. Bohorquez, J. Dawson, J. Guttag, and A. Chandrakasan,

“Micro-Power EEG Acquisition SoC With Integrated Feature Extraction Processor for a Chronic Seizure Detection System,” IEEE Journal of Solid-State Circuits, vol. 45, no. 4, pp.804–816, April 2010.

[13] R. R. Harrison, C. Charles, "A low-power low-noise CMOS amplifier for neural recording applications," IEEE Journal of Solid-State Circuits, vol. 38, no. 6, pp. 958-

965, 2003.

[14] B. Razavi, Design of Analog CMOS Integrated Circuits, Boston, MA:

McGraw-Hill, 2001.

[15] M. S. J. Steyaert, W. M. C. Sansen, and C. Zhongyuan, “A micropower low-noise monolithic instrumentation amplifier for medical purposes,” IEEE Journal of Solid-State Circuits, vol. 22, no. 6, pp. 1163–1168, 1987.

[16] S. Farshchi, A. Pesterev, E. Guenterberg, I. Mody, J.W. Judy; “An Embedded System Architecture for Wireless Neural Recording,”, 3rd International IEEE/EMBS Conf. on Neural Engineering, pp. 327-332, May 2007.

[17] M. Sanduleanu et al., “A low noise, low residual offset, chopped amplifier for mixed level applications,” in Proc. IEEE Int. Conf. Electron., Circuits Syst., 1998, vol.

2, pp. 333–336.

[18] B. Razavi, Design of Analog CMOS Integrated Circuits, New York:

McGraw-Hill, 2001.

[19]H. Alzaher and M. Ismail, “A CMOS fully balanced differential difference amplifier and its applications,” IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process., vol. 48, no. 6, pp. 614–620, Jun. 2001.

[20] K. Martin , L. Oczolak , Y. S. Lee and G. C. Temes "A differential switched-capacitor amplifier", IEEE Journal of Solid-State Circuits, vol.

SC-22, pp. 104, 1987.

[21]C. C. Enz, G. C. Temes, "Circuit techniques for reducing the effects of op-amp imperfections: autozeroing, correlated double sampling, and chopper stabilization," Proc. IEEE , vol.84, no.11, pp.1584-1614, Nov. 1996.

[22]H. C. Liu, Z. M. Lee, J. T. Wu, "A 15-b 40-MS/s CMOS pipelined analog-to-digital converter with digital background calibration," IEEE J. Solid-State Circuits, vol. 40, no. 5, pp. 1047- 1056, May 2005.

[23]P. J. Hurst, S. H. Lewis, J. P. Keane, F. Aram, and K. C. Dyer, “Miller compensation using current buffers in fully differential CMOS two-stage operational amplifiers,” IEEE Transactions on Circuits and Systems—Part I: Fundamental Theory and Applications, vol. 51, no. 2, pp. 275–285, February 2004.

[24] Shaw, F.Z., Lai, C.J. and Chiu, T.H., A low-noise flexible integrated system for recording and analysis of multiple electrical signals during sleep-wake states in rats, J.

Neurosci. Methods, vol. 118, pp.77–87, 2002.

[25] R. R. Harrison, “A versatile integrated circuit for the acquisition of biopotentials,”

in Proc. IEEE Custom Integrated Circuits Conf., Sep. 16–19, 2007, pp. 115–122.

VITA

姓 名:蔡宗昀 學 歷:

臺北市立成功高級中學 (86 年 9 月~89 年 6 月) 國立交通大學土木工程學系 (89 年 9 月~93 年 6 月)

國立交通大學電子研究所碩士班 (96 年 6 月~99 年 12 月) 研究所修習課程:

類比積體電路 吳介琮教授

數位積體電路 周世傑教授

計算機組織輔助設計特論 周景揚教授

穩健品質及工程設計 黎正中教授

功率積體電路設計 陳科宏教授

前瞻類比積體電路設計 洪浩喬教授

鎖相迴路設計與應用 陳巍仁教授

生醫系統設計導論 林俐如講師

英文報告技巧 Steve Wallace

永久地址:台北市信義區吳興街 284 巷 65 號 1F Email: Alvin0702.ee96g@g2.nctu.edu.tw

相關文件