• 沒有找到結果。

PbS cube (a)

Chapter 7 Future Work

1. The applications of porous alumina membranes as two dimensional photonic crystals or micropolarizers have been noted recently. More extensive researches would be necessary to make clear definitions in these fields.

2. The further application of porous alumina membranes is as a light extraction component in a LED. Porous alumina membrane has an appropriate reflective index between semiconductor layer of the LED and air; moreover, its surface roughness and photonic crystal structure can enhance the light extraction

3. Nonlinear optical properties of semiconductor nanocrystals are expected to be great enhanced in the strong confinement regime. Owing to a large Bohr radius and the adjustable optical absorption, these make PbS interesting for potential applications in nonlinear optics. It will be useful to investigate the nonlinear optical property of PbS nanocrystals in detail.

4. A kind of application of the PbS is the fabrication of light converting electrodes which can be obtained by producing PbS nanocrystals in porous titania template.

In this divice, visible light is absorbed by PbS nanocrystals, followed by electron transfer into the porous TiO2 membrane. There are several advantages to use PbS nanocrystals instead of organic dyes: the band gap or the absorption range can be easily adjustable by the size of the nanocrystals, and the absorption behavior has the higher photo-electro conversion efficiency.

REFERENCE

1. D. R. Vij: Luminescence of Solid, Plenum Press (1998).

2. J. B. Birks: Standardization in Spectrophotometry and Luminescence Measurements, Nat. Bur. Std. Special Publ. (1977).

3. Klaus D. Mielenz: Measurement of Photoluminescence, Academic Press, INC.

(1982).

4. B. D. Evans, M. Stapelbroek: Phys. Rev. B 18, 7089 (1978).

5. B. G. Draeger, G. P. Summers: Phys. Rev. B 19, 1172 (1979).

6. P. Lacovara, L. Esterowitz, M. Kokta: IEEE J. Quantum Electron. 21, 1614 (1985).

7. W. Chen, H. Tang, C. Shi, J. Deng, J. Shi, Y. Zhou, S. Xia, Y. Wang, S. Yin: Appl.

Phys. Lett. 67, 317 (1995).

8. Y. Du, W. L. Cai, C. M. Mo, J. Chen, L. D. Zhang, X. G. Zhu: Appl. Phys. Lett.

74, 2951 (1999).

9. Y. Li, G. H. Li, G. W. Meng, L. D. Zhang, F. Phillipp: J. Phys.: Condens. Matter 13, 2691 (2001).

10. J. H. Wu, X. L. Wu, N. Tang, Y. F. Mei, X. M. Bao: Appl. Phys. A 72, 735 (2001).

11. G. S. Huang, X. L. Wu, Y. F. Mei, X. F. Shao: J. Appl. Phys. 93, 582 (2003).

12. Y. Yamamoto, N. Baba, S. Tajima: Nature 289, 572 (1981).

13. T. Gao, G. Meng, L. Zhang: J. Phys.: Condens. Matter 15, 2071 (2003).

14. G. H. Li, Y. Zhang, Y. C. Wu, L. D. Zhang: J. Phys.: Condens. Matter 15, 8663 (2003).

15. Z. J. Li, K. L. Huang: Luminescence (2006).

16. L. Dong, Y. Chu, Y. Liu, M. Li, F. Yang, L. Li: J. Colloid Interface Sci. 301, 503 (2006).

17. M. A. Hines, G. D. Scholes: Adv. Mater. 15, 1844 (2003).

18. D. S. Koktysh, J. R. McBride, S. K. Dixit, L. C. Feldman, S. J. Rosenthal:

Nanotechnology 18, 1 (2007).

19. M. S. Bakshi, P. Thakur, S. Sachar, G. Kaur, T. S. Banipal, F. Possmayer, N. O.

Petersen: 111 ,18087 (2007).

20. C. Zhang, Z. Kang, E. Shen, E. Wang, L. Gao, F. Luo, C. Tian, C. Wang, Y. Lan, J. Li, X. Cao: J. Phys. Chem. B 110, 184 (2006).

21. J. P. Yang, S. B. Qadri, B. R. Ratna: J. Phys. Chem. 100, 17255 (1996).

22. G. Lin, A. Xicheng: Mater. Chem. Phys. 63, 30 (2000).

23. S. M. Lee, Y. W. Jun, S. N. Cho, J. Cheon: J. Am. Chem. Soc. 124, 11244 (2002).

24. Y. Ma, L. Qi, J. Ma, H. Cheng: Cryst. Growth Des. 4 ,351 (2004).

25. M. Bashouti, E. Lifshitz: Inorg. Chem. 47, 678 (2008).

26. G. Zhou, M. Lü, Z. Xiu, S. Wang, H. Zhang, Y. Zhou, S. Wang: J. Phys. Chem.

110, 6543 (2006).

27. J. P. Ge, J. Wang, H. X. Zhang, X. Wang, Q. Peng, Y. D. Li: Chem. Eur. J. 11, 1889 (2005).

28. A. A. Rempel, N. S. Kozhevnikova, A. J. G. Leenaers, S. Van den Berghe: J.

Cryst. Growth 280, 300 (2005).

29. S. Chen, W. Liu: Mater. Chem. Phys. 98, 183 (2006).

30. Y. J. Yang: Mater. Sec. Eng. B 131 ,200 (2006).

31. X. Changqi, Z. Zhicheng, W. Hailong, Y. Qiang: Mater. Sec. Eng. B 104, 5 (2003).

32. Y. Ni, H. Liu, F. Wang, Y. Liang, J. Hong, X. Ma, Z. Xu: Cryst. Growth Des. 4, 759 (2004).

33. Y. Ni, H. Liu, F. Wang, Y. Liang, J. Hong, X. Ma, Z. Xu: Crys. Res. Technol. 39,

34. S. Wang, S. Yang: Langmuir 16, 389 (2000).

35. A. A. R. Watt, H. Rubinsztein-Dunlop, P. Meredith: Mater. Lett. 59, 3033 (2005).

36. A. A. R. Watt, D. Blake, J. H. Warner, E. A. Thomsen, E. L. Tavenner, H.

Rubinsztein-Dunlop, P. Meredith: J. Phys. D: Appl. Phys. 38, 2006 (2005).

37. M. T. Nenadovic, M. I. Comor, V. Vasic, O. I. Micic: J. Phys. Chem. 94, 6390 (1990).

38. J. Kuljanin, M. I. Comor, V. Djokovic, J. M. Nedeljkovic: Mater. Chem. Phys. 95, 67 (2006).

39. T. D. Krauss, F. W. Wise: Phys. Rev. B 55, 9860 (1997).

40. K. K. Nanda, S. N. Sahu, R. K. Soni, S. Tripathy: Phys. Rev. B 58, 15405 (1998).

41. R. Vogel, P. Hoyer, H. Weller: J. Phys. Chem. 98, 3183 (1994).

42. R. Könenkamp, P. Hoyer, A.Wahi: J. Appl. Phys. 79, 7029 (1996).

43. B. Ma, F. Luo, L. Wang, X. Wu, C. Zhan, Y. Qiu: Jpn. J. Appl. Phys. 46, 7745 (2007).

44. A. A. Lipovskii, E. V. Kolobkova, A. Olkhovets, V. D. Petrikov, F. W. Wise:

Physica E 5, 157 (2000).

45. A. M. Malyarevich, V. G. Savitsky, I. A. Denisov, P. V. Prokoshin, K. V.

Yumashev, E. Raaben, A. A. Zhilin, A. A. Lipovskii: Phys. Stat. Sol. (b) 224, 253 (2001).

46. C. Kittel: Introduction to solid state physics, John Wiley & Son, Inc. (1996).

47. P. N. Prasad: Nanophotonics, John Wiley & Son, Inc. (2004).

48. F. W. Wise: Acc. Chem. Res. 33, 773 (2000).

49. C. Dushkin, K. Papazova, N. Dushkina, E. Adachi: Colloid. Polym. Sci. 284, 80 (2005).

50. I. Kang, F. W. Wise: J. Opt. Soc. Am. B 14, 1632 (1997).

51. A. D. Yoffe: Adv. Phys. 42, 173 (1993).

52. J. H. Warner, E. Thomsen, A. R. Watt, N. R. Heckenberg, H. Rubinsztein-Dunlop:

Nanotechnology 16, 175 (2005).

53. M. J. Fernée, A. Watt, J. Warner, S. Cooper, N. Heckenberg, H.

Rubinsztein-Dunlop: Nanotechnology 14, 991 (2003).

54. I. Chakraborty, S. P. Moulik: J. Nanoparticle Res. 6, 233 (2004).

55. M. J. Fernée, A. Watt, J. Warner, N. Heckenberg, H. Rubinsztein-Dunlop:

Nanotechnology 15, 1328 (2004).

56. S. Chen, L. A. Truax, J. M. Sommers: Chem. Mater. 12, 3864 (2000).

57. J. L. Machol, F. W. Wise, R. C. Patel, D. B. Tanner: Phys. Rev. B 48, 2819 (1993).

58. K. S. Kang: Appl. Phys. Lett. 85, 293 (2004).

59. F. Gao, Q. Lu, X. Liu, Y. Yan, D. Zhao: Nano Lett. 1, 743 (2001).

60. L. Bakueva, S. Musikhin, M. A. Hines, T. W. F. Chang, M. Tzolov, G. D. Scholes, E. H. Sargent: Appl. Phys. Lett. 82, 2895 (2003).

61. M. J. Fernée, A. Watt, J. Warner, N. Heckenberg, H. Rubinsztein-Dunlop:

Nanotechnology 15, 1351 (2004).

62. H. Gao, G. Wang, S. Zhang, X. Zhang: Nanotechnology 17, 3280 (2006).

63. R. E. de Lamaëstre, H. Bernas: J. Appl. Phys. 98, 114310 (2005).

64. B. Yu, G. Yin, C. Zhu, F. Gan: Opt. Mater. 11, 17 (1998).

65. C. Lü, C. Guan, Y. Liu, Y. Cheng, B. yang: Chem. Mater. 17, 2448 (2005).

66. L. Fushman, D. Englumd, J. Vuckovic: Appl. Phys. Lett. 87, 241102 (2005).

67. R. Thielsch, T. Böhme, R. Reiche, D. Schläfer, H. D. Bauer, H. Böttcher: Nano struc. Mater. 10, 131 (1998).

68. Y. Hu, J. Chen, X. Jin, W. Chen: Mater. Lett. 59, 234 (2005).

69. M. T. Wu, I. C. Leu, M. H. Hon: J. Vac. Sci. Technol. B 20, 776 (2002).

Lett. 7, E15 (2004).

71. N. Stein, M. Rommlfangen, V. Hody, L.Johann, J. M. Lecuire: Electrochem. Acta 47, 1811 (2002).

72. Y. Huang, X. Duan, Y. Gui and C. M. Lieber: Nano Lett. 2, 101 (2002).

73. K. Nielsch, F. Muller, A. P. Li, U. Gosele: Adv. Mater. 12, 582 (2002).

74. G. L. Che, B. B. Laksshmi, E. R. Fisher, C. R. Martin: Nature 393, 346 (1998).

75. S. Z. Chu, S. Inoue, K. Wada, D. Li, H. Haneda: J. Mater. Chem. 13, 866 (2003).

76. F. Matsumoto, K. Nishio, H. Masuda: Adv. Mater. 16, 2105 (2004).

77. O. Jessensky, F. Muller, U. Gosele: Appl. Phys. Lett. 72, 1173 (1998).

78. S. Ono, H. Ichinose, N. Masuko: Corros. Sci. 33, 841 (1992).

79. J. Choi, Y. Luo, R. B. Wehrspohn, R. Hillebrand, J. Schilling, U. Gösele: J. Appl.

Phys. 94, 4757 (2003).

80. K. Tanaka: Science 277, 1786 (1997).

81. M. Sugisaki, H. W. Ren, S. V. Nair, K. Nishi, Y. Masumoto: Phys. Rev. B 66, 235309 (2002).

82. F. Wu, J. W. Lewis, D. S. Kliger, J. Z. Zhang: J. Chem. Phys. 118, 12 (2003).

83. Y. Q. Wang, Y. Ishikawa, N. Shibata: Jpn. J. Appl. Phys. 41, 5177 (2002).

84. S. K. Sarkar, N. Chandrasekharan, S. Gorer, G. Hodes: Appl. Phys. Lett. 81, 5045 (2002).

85. X. D. Wang, P. X. Gao, J. Li, C. J. Summers, Z. L. Wang: Adv. Mater. 14, 1732 (2002).

86. K. Murakoshi, H. Hosokawa, S. Yanagida: Jpn. J. Appl. Phys. 38, 522 (1999).

87. Y. Jiang, X. M. Meng, J. Liu, Z. R. Hong, C. S. Lee, S.T. Lee: Adv. Mater. 15, 1195 (2003).

88. X. Zhang, Y. Xie, Q. Zhao, Y. Tian: New J. Chem. 27, 827 (2003).

89. F. Goto, M. Ichimura, E. Arai: Jpn. J. Appl. Phys. 36, L1146 (1997).

90. Q. Lu, F. Gao, D. Zhao: Nano Lett. 2, 725 (2002).

91. J. H. Warner, A. A. R. Watt, R. D. Tilley: Nanotechnology 16, 2381 (2005).

92. R. Plass, S. Pelet, J. Krueger, M. Grätzel, U. Bach: J. Phys. Chem. B 106, 7578 (2002).

93. S. W. Lu, U. Sohling, M. Menning, H. Schmidt: Nanotechnology 13, 669 (2002).

94. P. Villars, L. D. Calvert: Pearson’s Handbook of Crystallographic Data for intermetallic phases, Materials Park, OH/ASM International (1991).

95. JCPDS No.04-0686.

96. I. Barin: Thermochemical Data of Pure Substances, VCH Publishers, Inc. (1995).

97. Z. Zhang, J. Y. Ying, M. S. Dresselhaus: J. Mater. Res. 13, 1745 (1998).

98. C. C. Chen, Y. Bisrat, Z. P. Luo, R. E. Schaak, C. G. Chao, D. C. Lagoudas:

Nanotechnology 17, 367 (2006).

99. B. B. Alchagirov, A. G. Mozgovoy, Kh. B. Khokonov: High Temp. 41 , 755 (2003).

100. C. W. Extrand: Langmuir 18, 7991 (2002).

101. M. C. Flemings: Solidification Processing, McGraw-Hill (1974).

102. W. Kurz, D. J. Fisher: Fundamentals of solidification, Trans Tech Publication Ltd. (1992).

103. M. W. Chase, C. A. Davies: NIST-JANAF Thermochemical Tables, Dow Chemical Company. Thermal Research Laboratory (1985).

104. I. S. Grigoriev, E. Z. Meilikhov: Handbook of Physical Quantities, Boca Raton /CRC Press (1997).

105. J. F. Moulder, W. F. Stickle, P. E. Sobol, K. D. Bomben: Handbook of X-ray Photoelectron Spectroscopy, Perkin-Elmer Corporation, Physical Electronics

Division (1992).

107. Z. Zhang, J. C. Li, Q. Jiang: J. Phys. D: Appl. Phys. 33, 2653 (2000).

108. S. Mahmoud, O. Hamid: FIZIKAN A 10, 21 (2001).

109. L. E. Brus: J. Chem. Phys. 80, 4403 (1984).

110. Y. Wang, A. Suna, W. Mahler, R. Kasowski: J. Chem. Phys. 80, 7315 (1987).

111. R. S. Kane, R. E. Cohen, R. Silbey: J. Phys. Chem. 100, 7928 (1996).

112. M. J. Fernee, J. Warner, A. Watt, S. Cooper, N. R. Heckenberg, H.

Rubinsztein-Dunlop: Nanotechnology 15, 16 (2004).

113. N. Murase, M. Gao: Mater. Lett. 58, 3898 (2004).

114. Y. Lei, L. D. Zhang, G. W. Meng, G. H. Li, X. Y. Zhang, C. H. Liang, W. Chen, S.

X. Wang: Appl. Phys. Lett. 78, 1125 (2001).

115. S. C. Lyu, Y. Zhang, H. Ruh, H. J. Lee, H. W. Shim, E. K. Suh, C. J. Lee: Chem.

Phys. Lett. 363, 134 (2002).

116. C. R. M. de Oliveira, A. M. de Paula, F. O. Plentz Filho, J. A. Medeiros Neto, L.

C. Barbosa, O. L. Alves, E. A. Menezes, J. M. M. Rios, H. L. Fragnito, C. H.

Brito Cruz, C. L. Cesar: Appl. Phys. Lett. 66, 439 (1995).