• 沒有找到結果。

C. krusei as reference

8. Future work

a. Using GFP or other reporter genes to better understand the subcellular localization of Gcn5 in the absence of Ada2 and Ada3.

b. To investigate whether defect of HAT module affects the function of other modules in SAGA complex.

c. Using protein-protein interaction to elucidate whether other proteins function as Gcn5 will interact with SAGA complex in the absence of Gcn5.

d. To find which transcription factor is regulated by SAGA complex against oxidative stress in C. glabrata.

9. References

1. Pappas PG, Lionakis MS, Arendrup MC, Ostrosky-Zeichner L, Kullberg BJ. 2018.

Invasive candidiasis. Nature Reviews Disease Primers 4:18026.

2. Tan BH, Chakrabarti A, Li RY, Patel AK, Watcharananan SP, Liu Z, Chindamporn A, Tan AL, Sun PL, Wu UI, Chen YC, Xu YC, Wang H, Sun ZY, Wang LL, Lu J, Yang Q, Zhang QQ, Shao HF, Liao K, Woo PCY, Marak RSK, Kindo AJ, Wu CL, Ho MW, Lu PL, Wang LS, Riengchan P. 2015. Incidence and species distribution of candidaemia in Asia: a laboratory-based surveillance study. Clinical Microbiology and Infection 21:946.

3. Wiederhold NP. 2017. Antifungal resistance: current trends and future strategies to combat. Infection and drug resistance 10:249.

4. Silva S, Negri M, Henriques M, Oliveira R, Williams DW, Azeredo J. 2012.

Candida glabrata, Candida parapsilosis and Candida tropicalis: biology, epidemiology, pathogenicity and antifungal resistance. FEMS Microbiology Reviews 36:288.

5. Kumar K, Askari F, Sahu MS, Kaur R. 2019. Candida glabrata: A Lot More Than Meets the Eye. Microorganisms 7:39.

6. De Las Peñas A, Juárez-Cepeda J, López-Fuentes E, Briones-Martín-del-Campo M, Gutiérrez-Escobedo G, Castaño I. 2015. Local and regional chromatin silencing in Candida glabrata: consequences for adhesion and the response to stress. FEMS Yeast Research 15.

7. Bannister AJ, Kouzarides T. 2011. Regulation of chromatin by histone modifications. Cell Research 21:381.

8. Verdin E, Ott M. 2015. 50 years of protein acetylation: from gene regulation to epigenetics, metabolism and beyond. Nature Reviews Molecular Cell Biology 16:258.

9. Suganuma T, Workman JL. 2011. Signals and combinatorial functions of histone modifications. Annual Review of Biochemistry 80:473.

10. Hong L, Schroth GP, Matthews HR, Yau P, Bradbury EM. 1993. Studies of the DNA binding properties of histone H4 amino terminus. Thermal denaturation studies reveal that acetylation markedly reduces the binding constant of the H4

"tail" to DNA. Journal of Biological Chemistry 268:305.

11. Sun J, Paduch M, Kim S-A, Kramer RM, Barrios AF, Lu V, Luke J, Usatyuk S, Kossiakoff AA, Tan S. 2018. Structural basis for activation of SAGA histone acetyltransferase Gcn5 by partner subunit Ada2. Proceedings of the National Academy of Sciences 115:10010.

12. Balasubramanian R, Pray-Grant MG, Selleck W, Grant PA, Tan S. 2002. Role of the Ada2 and Ada3 transcriptional coactivators in histone acetylation. Journal of Biological Chemistry 277:7989.

13. Cieniewicz AM, Moreland L, Ringel AE, Mackintosh SG, Raman A, Gilbert TM, Wolberger C, Tackett AJ, Taverna SD. 2014. The bromodomain of Gcn5 regulates site specificity of lysine acetylation on histone H3. Molecular & Cellular Proteomics 13:2896.

14. Wu M, Newcomb L, Heideman W. 1999. Regulation of gene expression by glucose in Saccharomyces cerevisiae: a role for ADA2 and ADA3/NGG1. Journal of Bacteriology 181:4755.

15. Canzonetta C, Leo M, Guarino SR, Montanari A, Francisci S, Filetici P. 2016.

SAGA complex and Gcn5 are necessary for respiration in budding yeast.

Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 1863:3160.

16. Kurat CF, Yeeles JTP, Patel H, Early A, Diffley JFX. 2017. Chromatin controls DNA replication origin selection, lagging-strand synthesis, and replication fork rates. Molecular Cell 65:117.

17. Church M, Smith KC, Alhussain MM, Pennings S, Fleming AB. 2017. Sas3 and Ada2(Gcn5)-dependent histone H3 acetylation is required for transcription elongation at the de-repressed FLO1 gene. Nucleic Acids Research 45:4413.

18. Cormack BP, Ghori N, Falkow S. 1999. An adhesin of the yeast pathogen Candida glabrata mediating adherence to human epithelial cells. Science 285:578.

19. Haynes BC, Skowyra ML, Spencer SJ, Gish SR, Williams M, Held EP, Brent MR, Doering TL. 2011. Toward an integrated model of capsule regulation in Cryptococcus neoformans. PLoS Pathog 7:e1002411.

20. Meara TR, Hay C, Price MS, Giles S, Alspaugh JA. 2010. Cryptococcus neoformans histone acetyltransferase Gcn5 regulates fungal adaptation to the host.

Eukaryotic Cell 9:1193.

21. Shivarathri R, Tscherner M, Zwolanek F, Singh NK, Chauhan N, Kuchler K. 2019.

The fungal histone acetyl transferase Gcn5 controls virulence of the human pathogen Candida albicans through multiple pathways. Scientific Reports 9:9445.

22. Chang P, Fan X, Chen J. 2015. Function and subcellular localization of Gcn5, a histone acetyltransferase in Candida albicans. Fungal Genetics and Biology

81:132.

23. Lin C-J, Hou Y-H, Chen Y-L. 2019. The histone acetyltransferase GcnE regulates conidiation and biofilm formation in Aspergillus fumigatus. Medical Mycology doi:10.1093/mmy/myz043.

24. Kounatidis I, Ames L, Mistry R, Ho H-l, Haynes K, Ligoxygakis P. 2018. A host-pathogen interaction screen identifies ada2 as a mediator of Candida glabrata defenses against reactive oxygen species. G3: Genes|Genomes|Genetics 8:1637.

25. Yu S-J, Chang Y-L, Chen Y-L. 2018. Deletion of ADA2 Increases antifungal drug susceptibility and virulence in Candida glabrata. Antimicrobial Agents and Chemotherapy 62:e01924.

26. Dujon B, Sherman D, Fischer G, Durrens P, Casaregola S, Lafontaine I, De Montigny J, Marck C, Neuvéglise C, Talla E. 2004. Genome evolution in yeasts.

Nature 430:35.

27. Reuß O, Vik Å, Kolter R, Morschhäuser J. 2004. The SAT1 flipper, an optimized tool for gene disruption in Candida albicans. Gene 341:119.

28. Gietz D, St Jean A, Woods RA, Schiestl RH. 1992. Improved method for high efficiency transformation of intact yeast cells. Nucleic acids research 20:1425.

29. Yu S-J, Chang Y-L, Chen Y-L. 2018. Deletion of ADA2 increases antifungal drug susceptibility and virulence in Candida glabrata. Antimicrobial agents and chemotherapy:AAC. 01924.

30. Wayne P. 2008. Reference methods for broth dilution antifungal susceptibility testing of yeasts: approved standard, 2nd ed. Document M27-A3.

31. Workman JL, Kingston RE. 1998. Alternation of nucleosome structure as a

mechanism of transcriptional regulation. Annual Review of Biochemistry 67:545.

32. Piña B, Berger S, Marcus GA, Silverman N, Agapite J, Guarente L. 1993. ADA3:

a gene, identified by resistance to GAL4-VP16, with properties similar to and different from those of ADA2. Molecular and Cellular Biology 13:5981.

33. Briones-Martin-Del-Campo M, Orta-Zavalza E, Juarez-Cepeda J, Gutierrez-Escobedo G, Cañas-Villamar I, Castaño I, De Las Peñas A. 2014. The oxidative stress response of the opportunistic fungal pathogen Candida glabrata. Revista Iberoamericana de Micología 31:67.

34. Lo W-S, Dranginis AM. 1998. The cell surface flocculin Flo11 is required for pseudohyphae formation and Invasion by Saccharomyces cerevisiae. Molecular Biology of the Cell 9:161.

35. Guo B, Styles CA, Feng Q, Fink GR. 2000. A Saccharomyces gene family involved in invasive growth, cell–cell adhesion, and mating. Proceedings of the National Academy of Sciences 97:12158.

36. Rasheed M, Battu A, Kaur R. 2018. Aspartyl proteases in Candida glabrata are required for suppression of the host innate immune response. Journal of Biological Chemistry 293:6410.

37. Kaur R, Ma B, Cormack BP. 2007. A family of glycosylphosphatidylinositol-linked aspartyl proteases is required for virulence of Candida glabrata.

Proceedings of the National Academy of Sciences 104:7628.

38. Helmlinger D, Tora L. 2017. Sharing the SAGA. Trends in Biochemical Sciences 42:850.

39. Baptista T, Grünberg S, Minoungou N, Koster MJE, Timmers HTM, Hahn S,

Devys D, Tora L. 2018. SAGA is a general cofactor for RNA polymerase II transcription. Molecular Cell 70:1163.

40. Vernarecci S, Ornaghi P, Bâgu A, Cundari E, Ballario P, Filetici P. 2008. Gcn5p plays an important role in centromere kinetochore function in budding yeast.

Molecular and Cellular Biology 28:988.

41. Shih P-Y, Liao Y-T, Tseng Y-K, Deng F-S, Lin C-H. 2019. A potential antifungal effect of chitosan against Candida albicans is mediated via the inhibition of SAGA complex component expression and the subsequent alteration of cell surface integrity. Frontiers in Microbiology 10.

42. Georgakopoulos T, Gounalaki N, Thireos G. 1995. Genetic evidence for the interaction of the yeast transcriptional co-activator proteins GCN5 and ADA2.

Molecular and General Genetics MGG 246:723.

43. Brown AJP, Haynes K, Quinn J. 2009. Nitrosative and oxidative stress responses in fungal pathogenicity. Current Opinion in Microbiology 12:384.

44. Kasper L, Seider K, Hube B. 2015. Intracellular survival of Candida glabrata in macrophages: immune evasion and persistence. FEMS Yeast Research 15.

45. Segal AW. 2004. How neutrolphils kill microbes. Annual Review of Immunology 23:197.

46. Galocha M, Pais P, Cavalheiro M, Pereira D, Viana R, Teixeira MC. 2019.

Divergent approaches to virulence in C. albicans and C. glabrata: two sides of the same coin. International journal of molecular sciences 20:2345.

47. Sellam A, Askew C, Epp E, Lavoie H, Whiteway M, Nantel A. 2009. Genome-wide Mapping of the Coactivator Ada2p Yields Insight into the Functional Roles

of SAGA/ADA Complex in Candida albicans. Molecular Biology of the Cell 20:2389.

48. Cuéllar-Cruz M, Briones-Martin-del-Campo M, Cañas-Villamar I, Montalvo-Arredondo J, Riego-Ruiz L, Castaño I, De Las Peñas A. 2008. High resistance to oxidative stress in the fungal pathogen Candida glabrata is mediated by a single catalase, Cta1p, and is controlled by the transcription factors Yap1p, Skn7p, Msn2p, and Msn4p. Eukaryotic Cell 7:814.

49. Lee J, Godon C, Lagniel G, Spector D, Garin J, Labarre J, Toledano MB. 1999.

Yap1 and Skn7 Control two specialized oxidative stress response regulons in yeast. Journal of Biological Chemistry 274:16040.

50. Morgan BA, Banks GR, Toone WM, Raitt D, Kuge S, Johnston LH. 1997. The Skn7 response regulator controls gene expression in the oxidative stress response of the budding yeast Saccharomyces cerevisiae. The EMBO Journal 16:1035.

51. Kontoyiannis DP. 1999. Genetic analysis of azole resistance by transposon mutagenesis in Saccharomyces cerevisiae. Antimicrobial Agents and Chemotherapy 43:2731.

52. Ramírez-Zavala B, Mogavero S, Schöller E, Sasse C, Rogers PD, Morschhäuser J. 2014. SAGA/ADA Complex Subunit Ada2 Is Required for Cap1- but Not Mrr1-Mediated Upregulation of the Candida albicans Multidrug Efflux Pump MDR1. Antimicrobial Agents and Chemotherapy 58:5102.

53. Usher J, Haynes K. 2019. Attenuating the emergence of anti-fungal drug resistance by harnessing synthetic lethal interactions in a model organism. PLoS genetics 15:e1008259.

54. Zupan J, Raspor P. 2008. Quantitative agar-invasion assay. Journal of Microbiological Methods 73:100.

55. Santos R, Costa C, Mil-Homens D, Romão D, de Carvalho CCCR, Pais P, Mira NP, Fialho AM, Teixeira MC. 2017. The multidrug resistance transporters CgTpo1_1 and CgTpo1_2 play a role in virulence and biofilm formation in the human pathogen Candida glabrata. Cellular Microbiology 19:e12686.

56. Dodgson J, Avula H, Hoe K-L, Kim D-U, Park H-O, Hayles J, Armstrong J. 2009.

Functional genomics of adhesion, invasion, and mycelial formation in Schizosaccharomyces pombe. Eukaryotic Cell 8:1298.

57. Hua SST, Beck JJ, Sarreal SBL, Gee W. 2014. The major volatile compound 2-phenylethanol from the biocontrol yeast, Pichia anomala, inhibits growth and expression of aflatoxin biosynthetic genes of Aspergillus flavus. Mycotoxin Research 30:71.

58. Pukkila-Worley R, Peleg AY, Tampakakis E, Mylonakis E. 2009. Candida albicans hyphal formation and virulence assessed using a Caenorhabditis elegans infection model. Eukaryotic Cell 8:1750.

59. Li D-D, Fuchs BB, Wang Y, Huang X-W, Hu D-D, Sun Y, Chai D, Jiang Y-Y, Mylonakis E. 2017. Histone acetyltransferase encoded by NGG1 is required for morphological conversion and virulence of Candida albicans. Future Microbiology 12:1497.

60. De Las Peñas A, Pan S-J, Castaño I, Alder J, Cregg R, Cormack BP. 2003.

Virulence-related surface glycoproteins in the yeast pathogen Candida glabrata are encoded in subtelomeric clusters and subject to RAP1- and SIR-dependent

transcriptional silencing. Genes & Development 17:2245.

61. Castaño I, Pan S-J, Zupancic M, Hennequin C, Dujon B, Cormack BP. 2005.

Telomere length control and transcriptional regulation of subtelomeric adhesins in Candida glabrata. Molecular Microbiology 55:1246.

62. Jacobson S, Pillus L. 2009. The SAGA subunit Ada2 functions in transcriptional silencing. Molecular and Cellular Biology 29:6033.

相關文件