• 沒有找到結果。

Baltensweiler W. 1993. A contribution to the explanation of larch

budmoth cycle, the polymorphic fitness hypothesis. Oecologia(Berl.)

93:251-255.

Baltensweiler W. 1997.Colour polymorphism and dynamics of larch budmoth populations (Zeiraphera diniana Gn., Lep. Tortricidae).

Mitteil. Schweiz. Entomol.Gesellsch. 50:12-23.

Baylac M., C.Villemant and G. Simbolotti. 2003.Combining geometric morphometrics with pattern recognition for the investigation of species complexes. Biol. J. Linn. Soc. 80: 89-98.

Brunton C. F. A. and M. N. Majerus. 1995. Ultraviolet colours in

Lond. B 260:199-204

Bush G. L. 1969. Sympatric host race formation and speciation in frugivorous flies of the genus Rhagoleris (Diptera, Tephritidae).

Eovl. 23:237-251.

Bush G. L. 1974. The mechanism of sympatric host race formation in the true fruit flies (Tephritidae). Genetic Mechanisms of Speciation in Insect.ed. M. J. D. White, 3-23.pp.170. Sydeny:Australia & New Zealand Book Co.

Bush G. L. 1975. Modes of animal speciation. Annu. Rev. Ecol. Syst.

6:339-364.

Bush G. L. and J. J. Smith. 1998. The genetics and ecology of sympatric speciation: a case study. Res. Popul. Ecol. 40:175-187.

Chapman R. F. 1982. Chemoreception: the significance of receptor numbers. Adv. Insect. Physiol. 16:247-356.

Chiang H. C. 1985. Inesct and their environment. Foundamentals of Applied Entomology. ed. Pfadt. R. E. pp.128-161 Nork York:

Macmillan.

Chiao C. C., M. Y. Wu, S. H. Chen and E. C. Yang. Visualization of the spatial and spectral signals of orb-weaving spiders, Nephila pilipes, through the eyes of a honeybee. J. Exp. Biol. 212:2269-2278.

Diehl S. R. and G. L. Bush. 1984. An evolutionary and applied

perspective of insect biotypes. Annu. Rev. Entomol. 29:471-504.

Drès M. and J. Mallet. 2002. Host races in plant-feeding insects and their importance in sympatric speciation. Phil. Trans. R. Soc. Lond. B

375:471-492.

Emelianov I., J. Mallet and W. Baltensweiler. 1995.Genetic

differentiation in the larch budmoth Zeiraphera diniana

(Lepidoptera: Tortricidae): polymorphism, host race or sibling species? Heredity. 75:416-424.

Emelianov I., M. Drès,W. Baltensweiler, and J. Mallet. 2001.

Host-induced assortative mating in host race of larch budmoth.

Evolution. 55:2002-2010.

Emelianov I., F. Simposon, P Narang and J. Mallet. 2003. Host choice promotes reproductive isolation between host races of the larch budmoth Zeiraphera diniana. J. Evol. Biol. 16(2):208-128.

Feder J. L. 1998. The apple maggot fly, Rhagoletis pomonella: flies in the face of conventional wisdom. Endless forms Species and Speciation.

ed. D. J. Howard & S. H. Berlocher. pp.130-144. New York: Oxford University Press.

Fiedler K. 1996. Host-plant relationship of lycaenid butterflies:

large-scale patterns, interactions with plant chemistry,and mutualism with ants. Entomol. Exp. Appl. 80:259-267.

Higley L.G., L. P. Pediogo and K. R. Ostlie. 1986. DEGDAY: A program for caculating degree-days, and assumptions behind the degree-day approach.

Environ. Entomol. 15:999-1016.

Hiroki M. and Y. Kato. 1996. Age-related sexual receptivity change in virgin female of a butterfly, Eurema hecabe. Appl. Entomol. Zool.

31:455-458.

Itami J. K., T. P. Craig and J. D. Horner. 1998. Factors affecting gene flow between the host-race of Eurosta solidginis. In Genetic

structure and Local Adaptation in Natural Insect Population,

Chapman and Hall, New York.

Jiggins F. M., M. Linares, R. E. Naisbit, C. Salazar, Z. H.Yang and J.

Mallet. 2001 Sex-linked hybrid sterility in a butterfly. Evol.

55:1631-1638.

Kato Y. 1999. Fringe colour, seasonal morph and host-plant use of the Pierid butterfly Eurema hecabe (L.) (Lepidoptera, Pieridae) on Okinawa-jima Island. Trans. Lepos. Soc. Jpn. 50:111-121.

Kato Y. and H. Handa.1992. Seasonal polyphenism in a subtropical population of Eurema hecabe (Lepidoptera, Pieridae). Jpn. J.

Entomol. 60:305-318.

Kato Y. and O. Yato 2005 Geographic distribution and taxonomical status of two types of Eurema hecabe (L.)(Lepidoptera, Pieridae) in

south-western Japan and Taiwan. Trans. Lepid. Soc. Japan.

56(3):171-183.

Kato Y., M. Hiroki and H. Handa. 1992. Interpopulation variation in

adaption of Eurema hecabe (Lepidoptera, Pieridae) to host plant. Jpn.

J. Ent. 60(4):749-759.

Kobayashi A., M. Hiroki and Y. Kato. 2001. Sexual isolation between two sympatric types of the butterfly Eurem hecabe (L.). J. Insect Behav.

14(3):353-362.

Knüttel H. and K. Fiedler. 2000. On the use of ultraviolet photography and ultraviolet wing patterns in butterfly morphology and taxonomy.

J. Lepid. Soc. 54(4):137-144

Matsuno H. 1999. Difference in reflection pattern against ultra-violet rays between two types of Eurema hecabe. Gekkan-Mushi 338:13-15. (In Japanese)

Maynard-Smith J. 1966. Sympatric Speciation. Am. Natur. 100:637-650.

Mayr E. 1963. Animal Species and Evolution. pp.811 Cambridge, MA:Belknap.

Mikheev A. V. and A. G. Kreslavsky. 1980. Interrelation of the willow and birch race of Lochmaea capreae L. (Coleoptera, Chrysomelidae) with food plant. Zool. Zhurnal. 59:705-714.

Narita S., M. Nomura, Y. Kato and T. Fukatsu. 2006 Genetic structure of sibling butterfly species affected by Wolbachia infection sweep:

evolution and biogeographical implication. Mol. Ecol.

15:1095-1108.

Price P. W. 1975.Introdution: The parasitic way of life and its

consequence. Evolutionary Strategies of Parastic Insect, ed P. W.

Price,1-19. pp.244. London: Plenum.

Priesner, E. and Baltensweiler, W. 1987a Studien zum pheromon- polymorphismus von Zeiraphera diniana gn. (Lep.,Tortricidae). 1.

Pheromon-reaktionstypen ma¨nnlicher falterin europa¨ischen wildpopulationen, 1978–1985. J. Appl.Entomol. 104: 234–256.

Priesner, E. and Baltensweiler, W. 1987b Studien zum

pheromon-polymorphismus von Zeiraphera diniana gn.

(Lep.,Tortricidae). 2. Pheromon-reaktionstypen ma¨nnlicher falterbei F1-hybriden dreier wirtsrassen. J. Appl. Entomol. 104:433–448.

Seitz A. and M. Komma. 1984. Genetic polymorphism and its ecological background in Tephritid Population (Diptera: Tephirtidae). In

Populatoion Biology and Evolution, pp.143-158. Springer,

Heidelberg.

Publishers, Warszawa.

Taylor F. 1981.Ecology and evolution of physiological time in insects.

Am. Nat. 117:1-23.

TurnerJ. R. G. and P. M. Sheppard. 1979. Absence of crossing-over in female butterflies (Heliconius). Heredity. 34:265-269.

Wahlberg N. and C.W. Wheat. 2008. Genomic outposts serve the phylogenomic pioneers: designing novel nuclear markers for

genomic DNA extractions of Lepidoptera. Syst. Biol. 57(2):231-242.

Yata O. 1995. A revision of the Old World species of geneus Eurema Hübner (Lepidoptera, Pieridae). Part Ⅴ,Description of the hecabe group(part). Bull. Kitakushu Mus. 14:1-54.

表一、前翅腹面地標點位置。

表二、後翅腹面地標點位置。

地標點編號 描述

1 Sc+R1脈與翅基的交點 2 Sc+R1脈與翅端的交點

3 Rs 脈與翅端的交點

4 M1脈與翅端的交點 5 M2脈與翅端的交點 6 M3脈與翅端的交點 7 CuA1脈與翅端的交點 8 CuA2脈與翅端的交點 9 1A+2A 脈與翅端的交點 10 Rs 脈與中室的交點 11 M1脈與中室的交點 12 M2脈與中室的交點 13 M3脈與中室的交點 14 CuA1脈與中室的交點 15 CuA2脈與中室的交點

表三、本研究所使用之引子。

基因片段 方向 引子名稱 引子序列 參考文獻

GAPDH Forward GAPDHf 5' AARGCTGGRGCTGAATATGT 3' Wanlberg & Wheat(2008) GAPDH Reverse GAPDHr 5' GWTTGAATGTACTTGATRAGRTC 3' Wanlberg & Wheat(2008) RpS2 Forward RpS2f 5' ATGGCNGARGARAAYTGGAAYGA 3' Wanlberg & Wheat(2008) RpS2 Reverse RpS2r 5' CGGTTRGAYTTRGCAACACG 3' Wanlberg & Wheat(2008) Wingless Forwars LepWg1 5' GARTGYAARTGYCAYGGYATGTCTGG 3' (Brower and DeSalle, 1998)

Wingless Reverse LepWg3R 5'ATGTTTGTAGTGGAACGATGCAAC 3' 吳,未發表

表四、分子樣本資料。

表五、各型黃蝶樣本前翅地標點以普氏疊合後,殘差進行多變量分析 之駢對比較侯特齡氏檢定結果(n=95)。

分類單元 北黃蝶 豆科型黃蝶 大戟型黃蝶

北黃蝶 1 0.400609 <0.001

豆科型黃蝶 1 <0.001

大戟型黃蝶 1

表六、各型黃蝶樣本前翅翅緣地標點以普氏疊合後,殘差進行多變量 分析之駢對比較侯特齡氏檢定結果(n=95)。

分類單元 北黃蝶 豆科型黃蝶 大戟型黃蝶

北黃蝶 1 <0.001 <0.001

豆科型黃蝶 1 <0.001

大戟型黃蝶 1

表七、各型黃蝶樣本後翅地標點以普氏疊合後,殘差進行多變量分析 之駢對比較侯特齡氏檢定結果(n=95)。

分類單元 北黃蝶 豆科型黃蝶 大戟型黃蝶

北黃蝶 1 <0.001 <0.001

豆科型黃蝶 1 <0.001

大戟型黃蝶 1

表八、各型黃蝶間 wingless 基因之 Fst 值。

分類單元 北黃蝶 豆科型黃蝶 大戟科型黃蝶

北黃蝶

豆科型黃蝶 0.04001

大戟科型黃蝶 0.72368 0.82051

表九、各型黃蝶間 RpS2 基因之 Fst 值。

分類單元 北黃蝶 豆科型黃蝶 大戟科型黃蝶

北黃蝶

豆科型黃蝶 0.52525

大戟科型黃蝶 0.65473 0.85842

表十、各型黃蝶間 GAPDH 基因之 Fst 值。

北黃蝶 豆科型黃蝶 大戟科型黃蝶

北黃蝶

豆科型黃蝶 0.26476

大戟科型黃蝶 0.13198 0.07356

圖一、日本地區黃蝶之緣毛形態。A:褐色形緣毛 B:黃色型緣毛(Kato, 2000)。

圖二、地標點位置。A:前翅地標點,B:後翅地標點。

圖三、各型黃蝶之典型變異分析圖(n=95),前翅地標點之形狀資料經 普氏疊合分析法後的殘差進行典型變異分析之結果。

北黃蝶 豆科型黃蝶 + 大戟型黃蝶

-4 -3.2 -2.4 -1.6 -0.8 0.8 1.6 2.4 3.2

Axis 1 -4 -3.2 -2.4 -1.6 -0.8 0.8 1.6 2.4

Axis 2

圖四、各型黃蝶之典型變異分析圖(n=95),前翅翅緣地標點之形狀資 料經普氏疊合分析法後的殘差進行典型變異分析之結果。

北黃蝶 豆科型黃蝶 + 大戟型黃蝶

-5 -4 -3 -2 -1 1 2 3

Axis 1 -4 -3 -2 -1 1 2 3 4

Axis 2

圖五、各型黃蝶之典型變異分析圖(n=95),後翅地標點之形狀資料經 普氏疊合分析法後的殘差進行典型變異分析之結果。

-4.8 -3.6 -2.4 -1.2 1.2 2.4 3.6 4.8

Axis 1 -5

-4 -3 -2 -1 1 2 3 4

Axis 2

北黃蝶 豆科型黃蝶 + 大戟型黃蝶

大戟型黃蝶 豆科型黃蝶

北黃蝶

圖七、各型黃蝶雄蝶背面紫外光翅紋反射格式。

北黃蝶

豆科型黃蝶

大戟科型黃蝶

圖八、各型雌蝶背面紫外光翅紋反射格式。

圖八、各型黃蝶之基因型網狀親緣關係圖。A:wingless 基因,B:

RpS2 基因,C:GAPDH 基因。

豆科型黃蝶 大戟科型黃蝶 北黃蝶

豆科型黃蝶 大戟科型黃蝶 北黃蝶 豆科型黃蝶 大戟科型黃蝶 北黃蝶

A

B

C

相關文件