• 沒有找到結果。

¯¯

θ=θjj

= n0

2 µσˆ2

σ∗2 − 1

2 + nj

2 µσˆ2j

σ∗2j − 1

2

= (n0 + nj)³n0nj

2

´ µ σˆ2 − ˆσj2 n0σˆ2+ njσˆ2j

2

· 1σjσ}. (2.19) When the process is in control at time j, the distribution of W0,j depends only on p, n0, and nj. Set

W¯0,j W0,j − Eθ,θj(W0,j )|θ=˜θ,θjθj q

Varθ,θj(W0,j )|θ=˜θ,θjθj , (2.20) where both Eθ,θj(W0,j )|θ=˜θ,θjθj and Varθ,θj(W0,j )|θ=˜θ,θjθj are given in Appendix D.1.

2.6 Proposed monitoring scheme

The EWMA sequence is defined as





U ≡ 0,

where λ is a smoothing parameter in (0, 1], and ˜Wj = ¯Wj in subsection 2.2, or ˜Wj = ¯Wj in subsection 2.3, ˜Wj = ¯W0,j in subsection 2.4, ˜Wj = ¯W0,j in subsection 2.5. Then, standardize the statistic and define the control chart statistic as

Uj Uj − Eθ(Uj)

pVarθ(Uj) , (2.22)

where

Eθ(Uj) = 0,

and

Varθ(Uj) = λ [1 − (1 − λ)2j] 2 − λ , for known θ case;

Eθ(Uj) = 0,

and

Varθ(Uj) = λ [1 − (1 − λ)2j]

2 − λ + 2λ2 X

0≤k1<k2≤j−1

(1 − λ)k1+k2Cov( ˜Wj−k1, ˜Wj−k2),

for unknown θ case. Because ˜Wj−k1 and ˜Wj−k2 are correlative, so the calculation of Cov( ˜Wj−k1, ˜Wj−k2) will be very complex when Xjs are not design matrix. Therefore,

here recommend X0 and Xj as

X0 =









X

...

X









(mn)×p

, Xj =









X

...

X









(mjn)×p

, j ≥ 1,

where X is a n×p design matrix, then Cov( ˜Wj−k1, ˜Wj−k2) will only depend on n, p, m, mj−k1, mj−k1

Out-of-control signal occurs at time j if

Uj > C,

where C > 0 is chosen by a specified in-control ARL (≡ ARL0). C only depend on ARL0, λ, p, n1, n2, . . . for known θ case and depend on ARL0, λ, p, n, m, m1, m2, . . . for unknown θ case.

3 A Simulation Study

In this Section, we explain how to simulate the proposed EWMA control chart for comparison with the Kim et al. (2003) and Zou et al. (2007). Consider the case of constrained EWMA control chart with known parameters first. If the process is in control, in equation (2.11), the Hj1 follows chi-squared distribution with p degrees of freedom, Hj2 follows chi-squared distribution with nj− p degrees. Use this property to generate test statistic and find control limit C.

Step 1 : Choose the specific ARL0 and smoothing parameter λ, here given ARL0=200 and λ=0.2 and 50,000 simulations, The same assumptions with Kim et al. (2003) and Zou et al. (2006)

Step 2 : Generate 200 Hj1 and Hj2, and calculated 200 Wj, Uj, and Uj, for j = 1, 2, . . . , 200

Step 3 : c ≡ max{U1, U2, . . . , U200 } .

Step 4 : Repeat Step (2) ∼ Step (3) 50,000 times, obtain 50,000 c, and make them to sort (c(1) < c(2) < . . . < c(50000)).

Step 5 : Choose the median of the 50,000 c as the control limit. Use this control limit, make 50,000 time simulation, then obtain 50,000 Run Length, and compute the ARL.

Step 6 : Use bisection method if the ARL > 200 then make control limit as the smaller

It can be easily generate the out-of-control Wj by equation (2.11), and use the con-trol limit which obtained previously to calculate the out-of concon-trol ARL (ARL1) with 50,000 simulations.

Next, consider the case of constrained EWMA control chart with unknown param-eters. The procedure is same as case of constrained EWMA control chart with known parameters except the generation of U. In subsection 2.5, W0,j consists of ˆβ, ˆβj, ˆσ, and ˆσj, where

β ∼ Nˆ p(β, σ2(X0TX0)−1), βˆj ∼ Npj, σj2(XjTXj)−1),

ˆ

σ ∼ σ2/n0χ2n0−p, ˆ

σj ∼ σj2/njχ2nj−p,

and they are independent respectively. W0,j and W0,j 0 are depends on p, n0, n1, . . .(j 6=

j0), and therefore the X0 and Xj must be design matrix. Then generate U through above property.

We consider the case from Kim et al. (2003) and Zou et al. (2007), the simplest case of model (2.2) with p = 2, in-control parameters β ≡ (β0, β1)T = (3, 2)T, σ = 1, fixed

Xj,

Xj ≡ X =













 1 2 1 4 1 6 1 8













, j ≥ 1,

and

X0 =









X

...

X









4m×p

.

4 Conclusions

4.1 Monitoring performance comparisons

Compared proposed EWMA chart with the KMW, ZTW and Huang (2012) EWMA chart by out of control ARL (ARL1), the ARL1 of three control chart with known pa-rameters are given in Table 5.1∼5.3. The process parameter β0 is changed to β0+ δ0σ, and β1 is changed to β1+ δ1σ in Table 5.1 and Table 5.2. The ARL1 of different ratio with σ and σj are presented in Table 5.3.

First focus on the KMW and ZTW, In Table 5.1 and Table 5.2. The proposed EWMA chart is favorable for detecting large shift in β0 and β1, but when shift is mod-erate or small, proposed EWMA chart has a significant adverse, it maybe cause by the property of score test and LR test. In the case of large shift or nj, the performance should be good, on the other hand, the case of small shift and nj, have the opposite result. The nj is fixed to 4, and nj − p = 2, therefore, this result is not surprising.

In the table 5.3. show that performance in all change case of the proposed EWMA chart are superior to others chart. In equation (2.7) and (2.8) show that changes of β0 and β1only affect the Hj1, but changes of σ2 affect not only Hj1 but also Hj2, therefore, the proposed EWMA chart is more sensitive when σ2 shifted.

Table 5.4 presented ARL1 with process parameters β and σ change simultane-ously. And the unknown in-control process parameters case also presented. When

rameters case.

4.2 Modify monitoring scheme (1)

In Huang (2012), he proposed an EWMA control chat based on LR test statistic, it is similar with the method we proposed. It should be similar results in theory, but according to Table 5.1∼5.3, they are a little difference. The HEWMA is better than proposed EWMA when the β shifted, and it is worse than proposed EWMA when the σ shifted.

Here proposed an improved method, we transform the score statistic to make it more sensitive for the detection of β.

Wj = ( ˆβj− β)TXjTXj( ˆβj− β) σ02

+a

"

Φ−1 Ã

Fχ2nj

Ã( ˆβj − β)TXjTXj( ˆβj − β)

σ2 +njσˆ2j σ2

!!#2 ,

for two-sided case, and

Wj = ( ˆβj − β)TXjTXj( ˆβj − β) σ2

+aFχ−12 1

à Fχ2nj

Ã( ˆβj− β)TXjTXj( ˆβj− β)

σ2 +njσˆj2 σ2

!!

,

detection of β, and therefore the ARL1 performance with 0 < a < 1 are given in Table 5.6 and Table 5.7. When a the smaller, the performance will be almost the same as with the HEWMA or better. We found very bad performance for the detection of σ shifted in table 5.8. When the emphasis on the sift of β, we recommend the use this method, and when the emphasis on the shift of σ, we recommend using the methods mentioned earlier.

4.3 Modify monitoring scheme (2)

In the previous subsection, even the use of the modified statistic β shifted ARL1 performance still worse than KMW and ZTW. And think it is ( ˆβj − β)TXjTXj( ˆβj β)/σ2 terms caused. It makes all the factors of β changes into a single value. Then propose a improve method. First use the MEWMA Chart. Let

W0 ≡ 0p+1×1

where XjT(yj− Xjβ)/σ2 and Φ−1

³ Fχ2

nj (kyj − Xjβk22)

´

are not independent but

Covθj

Then make the two-sided score test statistic as

Uj = and the one-sided score test statistic as

Uj = where a ∈ (0, ∞). Similar with before, the greater a is, and the more sensitive for the

In table 5.9 and table 5.10 shows the simulation results of the β shifted with two-sided case. The ARL1 performance of the improve method is very close with ZTW and KMW, and when the constant a is getting smaller even better than their. In table 5.11 shows the simulation results of the σ shifted with two-sided and one-sided case. When constant a = 1, one-sided case more sensitive than two-sided, and the they are better than ZTW and KMW, but slightly worse than HEMWA. And the greater constant a is, the worse performance becomes. This improve method can be seen here in the case of whether β shifted or σ shifted has good, and to focus on detection of shifts in the β or σ by by adjusting constant a.

5 Future Work

In this paper, the MEWMA performance seems better than the performance of EWMA based on score test statistics. In future work, it can focus on MEWMA. Con-sider the nonlinear model. e.g., yj = uj(Xj; βj) + σjεj, where uj(· ; ·) is a known function for j = 1, 2, · · · . May also consider the error term is not a normal distribution.

e.g., t-distribution. And considered the MEWMA method based on score test statistics will have a good performance.

References

[1] Castagliola, P., Celano, G., and Fichera, S. (2006) Monitoring process variability using EWMA. Springer Handbook of Engineering Statistics, 291-325. Ch.17.

[2] Huang, W-C. (2012) An exponentially weighted moving average control chart based on likelihood ratio test statistics for monitoring general linear profiles. Master the-sis, National Chiao Tung University, Hsinchu, Taiwan.

[3] Jensen, W. A., Champ, C. W., and Woodall, W. H. (2006) Effects of parameter estimation on control chart properties: a literature review. Journal of Quality Technology, 38, 156-167.

[4] Jones, L. A., Champ, C. W., and Rigdon, S. E. (2001) The performance of exponen-tially weighted moving average charts with estimated parameters. Technometrics, 43, 156-167.

[5] Kim, K., Mahmoud, M., and Woodall, W. H. (2003) On the monitoring of linear profiles. Journal of Quality Technology, 35, 317-328.

[6] Kots, Balakrishnan and Johnson. (2000) Continuous multivariate distributions vol-ume 1 second edition.

[7] Page, E. S. (1954) Continuous inspection schemes. Biometrika, 41, 100-115.

[9] Shewhart, W. A. (1931) Economic control of quality of manufactured product, American Society for Quality, Vol. 509.

[10] Zou, C., Lin, Y., and Wang, Z. (2009) Comparisons of control schemes for moni-toring the means of processes subject to drifts. Metrika, 70, 141-163.

[11] Zou, C., Tsung, F., and Wang, Z. (2007) Monitoring general linear profiles using multivariate exponentially weighted moving average schemes. Technometrics, 49, 395-408.

[12] Zou, C., Zhang, Y., and Wang, Z. (2006) A control chart based on a change-point model for monitoring linear profiles. Transactions, 38, 1093-1103.

[13] Zou, C., Zhang, J., and Wang, Z. (2010) A control chart based on likelihood ratio test for monitoring process mean and variability. Quality and Reliability Engineer-ing International, 26, 63-73.

Table 5.1: Out of control ARL comparisons between EWMA with known in-control parameters and constraint case, ZTW, KMW and HEWMA charts for shifts in β0, where θj = (β0+ δ0σ, β1, σ)T and τj2= 4δ20 for j ≥ 1.

ARL1

δ0 τj2 EWMA ZTW KMW HEWMA

0.1000 0.0400 178.7 131.5 133.7 171.1

0.2000 0.1600 133.1 59.9 59.1 113.1

0.3000 0.3600 86.7 29.6 28.3 67.2

0.4000 0.6400 53.4 17.2 16.2 38.1

0.5000 1.0000 32.9 11.5 10.7 22.1

0.6000 1.4400 20.5 8.5 7.9 13.8

0.8000 2.5600 9.1 5.8 5.1 6.1

1.0000 4.0000 4.8 4.1 3.8 3.4

1.5000 9.0000 1.7 2.6 2.4 1.5

2.0000 16.000 1.2 2.0 1.9 1.1

Table 5.2: Out of control ARL comparisons between EWMA with known in-control parameters and constraint case, ZTW, KMW and HEWMA charts for shifts in β1, where θj = (β0, β1+ δ1σ, σ)T and τj2= 120δ12 for j ≥ 1.

ARL1

δ1 τj2 EWMA ZTW KMW HEWMA

0.0250 0.0750 162.4 99.0 101.6 153.0

0.0375 0.1688 130.1 57.4 61.0 112.3

0.0500 0.3000 97.0 35.0 36.5 77.4

0.0625 0.4688 70.9 23.1 24.6 53.2

0.0750 0.6750 51.1 16.4 17.0 35.4

0.1000 1.2000 26.2 9.8 10.3 17.4

0.1250 1.8750 14.2 6.9 7.2 9.5

0.1500 2.7000 8.4 5.3 5.5 5.8

0.2000 4.8000 3.6 3.7 3.8 2.8

0.2500 7.5000 2.2 2.9 2.9 1.8

Table 5.3: Out of control ARL comparisons between EWMA with known in-control parameters and constraint case , ZTW, KMW and HEWMA charts for shifts in σ, where θj = (β0, β1, δσ)T for j ≥ 1.

ARL1

δ EWMA ZTW KMW HEWMA

1.10 49.0 76.2 72.8 51.1

1.15 29.4 48.7 48.1 30.2

1.20 19.0 33.2 33.5 20.0

1.25 13.4 24.1 24.9 14.6

1.30 10.0 18.4 19.4 11.0

1.40 6.4 12.1 12.7 7.0

1.60 3.8 7.0 7.2 4.0

1.80 2.4 4.9 5.1 2.8

2.20 1.6 3.1 3.2 1.8

2.60 1.3 2.3 2.5 1.4

3.00 1.2 1.9 2.1 1.3

Table 5.4: ARLs with unknown in-control parameters and constraint case for shifts in θ with θj = Tj, δσ)T and τj2= τ22for j ≥ 1

m = 5 m = 25

m = 125 δ

m = ∞ 1.10 1.11 1.12 1.13 1.14 1.15 1.16 1.17 1.18 1.19 1.110 1.111 1.112 0.02 200.0 71.6 31.9 14.9 9.5 5.3 4.1 3.0 2.1 1.9 1.7 1.5 1.4

200.0 54.9 20.2 9.9 6.0 3.9 2.9 2.3 1.9 1.5 1.4 1.3 1.2

200.0 50.1 18.7 9.4 5.4 3.5 2.7 2.0 1.8 1.4 1.3 1.3 1.2

200.0 49.0 18.0 8.9 4.8 3.3 2.5 1.9 1.7 1.3 1.3 1.2 1.2

0.22 189.2 69.9 28.5 13.7 9.2 5.1 3.9 2.9 2.0 2.0 1.7 1.6 1.4

184.3 52.0 19.8 9.3 5.6 3.7 2.8 2.3 1.8 1.5 1.4 1.3 1.2

182.2 47.1 18.0 8.9 5.3 3.2 2.5 2.0 1.7 1.3 1.3 1.2 1.2

178.7 44.2 17.0 8.4 4.1 3.0 2.2 1.6 1.4 1.3 1.3 1.2 1.2

0.42 150.1 62.1 27.3 12.9 8.8 4.9 3.7 2.7 2.0 1.9 1.6 1.5 1.4

140.1 54.3 18.0 9.1 5.4 3.5 2.7 2.2 1.7 1.4 1.3 1.3 1.2

136.8 49.2 17.0 8.5 4.8 3.1 2.5 2.0 1.7 1.3 1.3 1.2 1.2

133.1 40.1 14.1 7.9 3.9 2.6 2.0 1.5 1.4 1.3 1.3 1.2 1.2

0.62 99.9 45.2 22.7 10.9 8.3 4.8 3.5 2.4 2.0 2.0 1.5 1.5 1.4

93.7 37.8 15.0 8.4 5.3 3.3 2.6 2.0 1.7 1.4 1.3 1.2 1.2

89.1 33.5 14.1 7.5 4.6 2.8 2.2 1.8 1.6 1.3 1.3 1.2 1.2

86.7 30.8 13.1 7.1 3.4 2.5 1.9 1.5 1.4 1.3 1.3 1.2 1.2

0.82 70.2 43.1 20.9 10.1 7.1 4.1 3.3 2.2 1.9 1.8 1.5 1.4 1.4

58.2 26.9 12.9 7.3 4.5 2.8 2.5 2.0 1.6 1.4 1.3 1.2 1.2

55.1 24.2 11.5 6.7 3.8 2.5 2.1 1.7 1.6 1.3 1.3 1.2 1.2

53.4 22.1 10.8 6.3 3.2 2.3 1.8 1.5 1.4 1.3 1.3 1.2 1.2

τ2 1.02 50.2 24.1 13.9 9.5 6.7 4.0 3.1 2.0 1.8 1.6 1.4 1.4 1.4

37.1 15.8 9.2 6.0 4.2 2.7 2.3 1.8 1.6 1.4 1.3 1.2 1.2

33.2 14.9 7.9 5.6 3.7 2.4 2.0 1.6 1.5 1.3 1.3 1.2 1.2

32.9 13.7 6.7 5.4 3.0 2.1 1.8 1.5 1.4 1.3 1.3 1.2 1.2

1.22 30.5 14.2 10.5 7.8 5.8 3.8 3.0 2.0 1.8 1.6 1.4 1.4 1.3

25.6 10.1 7.2 5.1 3.5 2.6 2.1 1.8 1.6 1.4 1.3 1.2 1.2

21.9 9.2 6.4 4.8 3.2 2.3 1.9 1.6 1.5 1.3 1.3 1.2 1.2

20.5 8.5 5.8 4.4 2.8 2.0 1.7 1.5 1.4 1.3 1.3 1.2 1.1

1.42 22.4 13.0 8.5 6.4 5.0 3.5 2.9 1.9 1.7 1.5 1.4 1.3 1.3

14.0 8.8 5.6 4.3 3.3 2.5 2.1 1.6 1.6 1.4 1.2 1.2 1.2

12.2 7.2 5.2 4.2 3.0 2.3 1.8 1.6 1.5 1.3 1.2 1.2 1.2

11.6 6.9 4.8 3.8 2.6 1.8 1.7 1.5 1.4 1.3 1.2 1.2 1.1

1.62 12.9 11.1 7.7 5.5 4.6 3.4 2.8 1.7 1.7 1.5 1.4 1.3 1.3

9.8 5.5 4.7 3.8 3.2 2.4 1.9 1.6 1.5 1.3 1.2 1.2 1.2

9.6 5.3 4.4 3.5 2.9 2.1 1.7 1.8 1.4 1.3 1.2 1.2 1.2

9.1 4.9 4.0 3.3 2.5 1.7 1.6 1.5 1.4 1.3 1.2 1.2 1.1

1.82 8.9 6.9 5.4 4.5 3.8 3.0 2.5 1.6 1.5 1.4 1.4 1.3 1.3

6.6 4.9 3.7 3.2 2.7 2.3 2.1 1.9 1.5 1.3 1.3 1.3 1.2

Table 5.5: ARLs with unknown in-control parameters case for shifts in θ with θj = (βTj, δσ)T and τj2= τ22 for j ≥ 1

m = 5 m = 25

m = 125 δ

m = ∞ 1.10 1.11 1.12 1.13 1.14 1.15 1.16 1.17 1.18 1.19 1.110 1.111 1.112

2.22 5.4 4.3 3.6 3.3 3.1 2.6 2.4 2.1 1.9 1.8 1.6 1.5 1.3

4.1 3.6 2.7 2.3 2.2 2.0 1.8 1.7 1.6 1.5 1.4 1.2 1.2

3.8 3.3 2.5 2.3 2.2 1.8 1.7 1.6 1.5 1.4 1.3 1.2 1.1

3.6 3.1 2.4 2.1 1.8 1.7 1.6 1.5 1.3 1.2 1.2 1.2 1.1

2.42 4.5 3.8 3.1 2.8 2.6 2.4 2.2 1.8 1.8 1.7 1.5 1.4 1.3

3.5 3.0 2.2 2.1 2.0 1.7 1.7 1.6 1.5 1.4 1.3 1.2 1.2

3.2 2.9 2.2 2.0 1.9 1.7 1.7 1.5 1.5 1.4 1.3 1.2 1.1

3.0 2.2 2.0 1.9 1.6 1.6 1.6 1.5 1.3 1.2 1.2 1.2 1.1

2.62 4.9 3.2 2.9 2.6 2.4 2.3 2.0 1.7 1.7 1.6 1.4 1.3 1.2

3.2 2.7 2.1 1.9 1.8 1.7 1.6 1.5 1.4 1.3 1.3 1.2 1.2

3.0 2.3 1.9 1.8 1.6 1.6 1.5 1.5 1.3 1.3 1.2 1.2 1.1

2.6 2.0 1.8 1.8 1.5 1.5 1.4 1.4 1.2 1.2 1.2 1.1 1.1

2.82 3.5 3.1 2.4 2.2 2.0 2.0 1.9 1.6 1.6 1.5 1.4 1.3 1.2

2.8 2.1 1.9 1.7 1.6 1.6 1.5 1.4 1.4 1.3 1.2 1.2 1.2

2.4 1.9 1.7 1.6 1.6 1.5 1.5 1.4 1.3 1.3 1.2 1.1 1.1

2.2 1.6 1.5 1.5 1.5 1.4 1.4 1.3 1.3 1.2 1.2 1.1 1.1

3.02 3.2 2.9 2.2 2.0 1.9 1.9 1.8 1.6 1.5 1.4 1.3 1.3 1.3

2.5 1.9 1.7 1.6 1.5 1.4 1.4 1.4 1.3 1.3 1.2 1.2 1.1

2.1 1.8 1.6 1.4 1.4 1.4 1.4 1.3 1.3 1.2 1.2 1.1 1.1

1.8 1.6 1.4 1.4 1.4 1.4 1.3 1.3 1.2 1.2 1.2 1.1 1.1

τ2 3.22 2.9 2.7 2.1 1.9 1.8 1.8 1.7 1.5 1.5 1.4 1.3 1.3 1.3

2.1 1.9 1.6 1.5 1.5 1.4 1.4 1.3 1.3 1.2 1.2 1.2 1.1

1.9 1.7 1.5 1.4 1.4 1.4 1.3 1.3 1.2 1.2 1.1 1.1 1.1

1.7 1.5 1.4 1.4 1.4 1.3 1.3 1.2 1.2 1.2 1.1 1.1 1.1

3.42 2.7 2.1 1.9 1.8 1.7 1.7 1.6 1.5 1.5 1.4 1.4 1.3 1.2

1.8 1.6 1.4 1.3 1.4 1.3 1.3 1.3 1.2 1.2 1.2 1.1 1.1

1.7 1.5 1.3 1.3 1.3 1.3 1.2 1.2 1.2 1.2 1.1 1.1 1.1

1.5 1.4 1.3 1.3 1.3 1.2 1.2 1.2 1.2 1.1 1.1 1.1 1.1

3.62 2.0 1.7 1.7 1.7 1.6 1.6 1.5 1.4 1.4 1.3 1.3 1.3 1.2

1.6 1.5 1.4 1.4 1.3 1.3 1.3 1.2 1.2 1.2 1.2 1.1 1.1

1.5 1.4 1.3 1.3 1.3 1.3 1.2 1.2 1.2 1.2 1.1 1.1 1.1

1.4 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.1 1.1 1.1 1.1 1.1

3.82 1.7 1.6 1.5 1.5 1.5 1.5 1.4 1.4 1.3 1.3 1.2 1.3 1.2

1.5 1.3 1.3 1.2 1.3 1.2 1.2 1.2 1.2 1.2 1.1 1.1 1.1

Table 5.6: Out of control ARL comparisons between modified (1) EWMA with known in-control parameters case and HEWMA charts for shifts in β0, where θj = (β0+ δ0σ, β1, σ)T and τj2= 4δ02 for j ≥ 1.

ARL1

δ0 τj2 a=1 a=0.75 a=0.5 a=0.25 HEWMA

0.1000 0.0400 174.9 173.2 171.8 170.2 171.1 0.2000 0.1600 118.9 117.3 115.8 112.1 113.1

0.3000 0.3600 71.4 69.7 68.5 67.1 67.2

0.4000 0.6400 40.4 39.5 38.9 38.1 38.1

0.5000 1.0000 23.7 23.0 22.5 21.9 22.1

0.6000 1.4400 14.4 14.1 13.7 13.4 13.8

0.8000 2.5600 6.5 6.4 6.2 6.1 6.1

1.0000 4.0000 3.6 3.6 3.5 3.4 3.4

1.5000 9.0000 1.6 1.5 1.5 1.5 1.5

2.0000 16.000 1.1 1.1 1.1 1.1 1.1

Table 5.7: Out of control ARL comparisons between modified (1) EWMA with known in-control parameters case and HEWMA charts for shifts in β1, where θj = (β0, β1+ δ1σ, σ)T and τj2 = 120δ12 for j ≥ 1.

ARL1

δ1 τj2 a=1 a=0.75 a=0.5 a=0.25 HEWMA

0.0250 0.0750 153.6 152.4 152.3 152.2 153.0 0.0375 0.1688 115.6 113.8 112.6 112.3 112.3

0.0500 0.3000 81.6 79.9 78.7 77.6 77.4

0.0625 0.4688 55.8 54.5 53.8 52.8 53.2

0.0750 0.6750 37.7 37.3 36.4 35.3 35.4

0.1000 1.2000 18.6 18.0 17.6 17.2 17.4

0.1250 1.8750 10.0 9.7 9.5 9.3 9.5

0.1500 2.7000 6.1 5.9 5.8 5.6 5.8

0.2000 4.8000 2.9 2.8 2.8 2.7 2.8

0.2500 7.5000 1.8 1.8 1.7 1.7 1.8

Table 5.8: Out of control ARL comparisons between modified (1) EWMA with known in-control parameters case and HEWMA charts for shifts in σ, where θj= (β0, β1, δσ)T for j ≥ 1.

ARL1

δ a=1 a=0.75 a=0.5 a=0.25 HEWMA

1.10 138.6 148.1 162.6 179.1 51.1 1.15 112.4 126.0 144.0 167.6 30.2

1.20 91.0 105.5 126.9 157.4 20.0

1.25 73.0 87.6 110.9 145.9 14.6

1.30 59.2 72.7 96.3 135.9 11.0

1.40 38.6 49.7 71.2 114.7 7.0

1.60 18.2 24.0 37.8 77.7 4.0

1.80 10.4 13.3 20.7 49.8 2.8

2.20 4.9 5.9 8.5 20.2 1.8

2.60 3.2 3.6 4.8 9.8 1.4

3.00 2.4 2.7 3.3 5.9 1.3

Table 5.9: Out of control ARL comparisons between modified (2) MEWMA with known in-control parameters case, HEWMA, ZTW and KMW charts for shifts in β0, where θj= (β0+ δ0σ, β1, σ)T.

ARL1

unconstraint unconstraint unconstraint HEWMA ZTW KMW

δ0 a=1 a=0.75 a=0.5

0.1000 131.8 127.3 126.2 171.1 131.5 131.5

0.2000 59.7 58.0 57.1 113.1 59.9 59.1

0.3000 28.5 27.7 27.3 67.2 29.6 28.3

0.4000 16.5 16.0 15.7 38.1 17.2 16.2

0.5000 10.2 9.8 9.6 22.1 11.5 10.7

0.6000 7.5 7.3 7.1 13.8 8.5 7.9

0.8000 4.0 3.8 3.7 6.1 5.8 5.1

1.0000 2.8 2.7 2.6 3.4 4.1 3.8

1.5000 1.5 1.5 1.4 1.4 2.6 2.4

Table 5.10: Out of control ARL comparisons between modified (2) MEWMA with known in-control parameters case, HEWMA, ZTW and KMW charts for shifts in β1, where θj= (β0, β1+ δ1σ, σ)T.

ARL1

unconstraint unconstraint unconstraint HEWMA ZTW KMW

δ1 a=1 a=0.75 a=0.5

0.0250 99.9 98.9 98.2 153.0 99.0 101.6

0.0375 57.3 56.3 55.9 112.3 57.4 61.0

0.0500 34.8 33.9 32.1 77.4 35.0 36.5

0.0625 22.9 22.0 21.5 53.2 23.1 24.6

0.0750 16.0 15.4 15.0 35.4 16.4 17.0

0.1000 8.5 8.2 8.0 17.4 9.8 10.3

0.1250 5.8 5.6 5.2 9.5 6.9 7.2

0.1500 4.5 4.5 4.3 5.8 5.3 5.5

0.2000 2.7 2.6 2.5 2.8 3.7 3.8

0.2500 1.7 1.7 1.6 1.8 2.9 2.9

Table 5.11: Out of control ARL comparisons between modified (2) MEWMA with known in-control parameters case, HEWMA, ZTW and KMW charts for shifts in σ, where θj = (β0, β1, δσ)T for j ≥ 1.

ARL1

unconstraint unconstraint unconstraint constraint HEWMA ZTW KMW

δ a=1 a=0.75 a=0.5 a=1

1.10 53.1 58.1 66.1 50.0 51.1 76.2 72.8

1.15 32.2 38.2 45.0 30.1 30.2 48.7 48.1

1.20 20.8 24.3 29.4 19.8 20.0 33.2 33.5

1.25 15.2 17.8 21.8 14.0 14.6 24.1 24.9

1.30 11.0 12.6 15.4 10.0 11.0 18.4 19.4

1.40 6.9 7.8 9.3 6.4 7.0 12.1 12.7

1.60 3.9 4.3 4.8 3.8 4.0 7.0 7.2

1.80 2.8 3.0 3.2 2.4 2.8 4.9 5.1

2.20 1.7 1.8 2.0 1.6 1.8 3.1 3.2

2.60 1.4 1.5 1.7 1.3 1.4 2.3 2.5

3.00 1.2 1.3 1.4 1.2 1.3 1.9 2.1

Appendix

A.2

When the process is in control,

Hj1 ∼ χ2p

and

Hj2 ∼ χ2nj−p.

Eθ(Wj) = Eθ(Hj1+ 1

2nj(Hj1+ Hj2− nj)2) = p + Var(Hj1+ Hj2)

2nj = p + 1.

Varθ(Wj)

= 1

4n2jEθ¡

(Hj12 + Hj22 + 2Hj1Hj2− 2njHj2+ n2j)2¢

− (p + 1)2

= 1

4n2jEθ(Hj14 + Hj24 + 6Hj12 Hj22 + 4Hj13 Hj2+ 4Hj1Hj23 − 4njHj12 Hj2− 8njHj1Hj22

−4njHj23 + 2n2jHj12 + 6n2jHj22 + 4n2jHj1Hj2− 4n3jHj2+ n4j) − (p + 1)2

= 1

4n2j[Eθ(Hj14) + Eθ(Hj24) + 6Eθ(Hj12)Eθ(Hj22) + 4Eθ(Hj13)Eθ(Hj2)

+4Eθ(Hj1)Eθ(Hj23) − 4njEθ(Hj12)Eθ(Hj2) − 8njEθ(Hj1)Eθ(Hj22) − 4njEθ(Hj23) +2n2jEθ(Hj12 ) + 6n2jEθ(Hj22 ) + 4n2jEθ(Hj1)Eθ(Hj2) − 4n3jEθ(Hj2) + n4j ] − (p + 1)2

= 2p +8p nj

+ 12 nj

+ 2

where

Eθ(Hj1) = p,

Eθ(Hj12 ) = p(p + 2),

Eθ(Hj13 ) = p(p + 2)(p + 4),

Eθ(Hj14 ) = p(p + 2)(p + 4)(p + 6), Eθ(Hj2) = nj − p,

Eθ(Hj22 ) = (nj − p)(nj− p + 2),

Eθ(Hj23 ) = (nj − p)(nj− p + 2)(nj− p + 4),

Eθ(Hj24 ) = (nj − p)(nj− p + 2)(nj− p + 4)(nj − p + 6)

B.1

and

Here

where

Here

C.1

Rewrite W0,j in section 2.4 as

W0,j = (y0− X0β)˜ TX0(X0TX0)−1X0T(y0− X0β)˜

Let

Then

ε(1)0j = ε0− X0(X0TX0+ XjTXj)−1(X0Tε0+ XjTεj)

= ε0− X0(X0TX0+ XjTXj)−1/2Z0j(1)

then kε(1)0j k2 = kε0k2− 2Z0T(X0TX0)1/2(X0TX0+ XjTXj)−1/2Z0j(1) +k(X0TX0)1/2(X0TX0+ XjTXj)−1/2Z0j(1)k2

= H0+ kZ0− (X0TX0)1/2(X0TX0+ XjTXj)−1/2Z0j(1)k2

= H0+ k(X0TX0)−1/2£

(X0TX0)−1+ (XjTXj)−1¤−1/2

Z0j(2)k2.

And

cov

³

(X0TX0)−1/2£

(X0TX0)−1+ (XjTXj)−1¤−1/2 Z0j(2)

´

= (X0TX0)−1/2£

(X0TX0)−1+ (XjTXj)−1¤−1

(X0TX0)−1/2

(X0TX0)1/2£

(X0TX0)−1+ (XjTXj)−1¤

(X0TX0)1/2ª−1

Ip+ (X0TX0)1/2(XjTXj)−1(X0TX0)1/2¤−1

Ip+ P0jΛ−10j P0jT¢−1

P0j(Ip+ Λ−10j)P0jT¤−1

= P0j(Ip+ Λ−10j )−1P0jT where P0jΛ−10jP0jT is eigendecomposition of (X0TX0)1/2(XjTXj)−1(X0TX0)1/2 and

P0j−1 = P0jT , Λ0j ≡ diag{λ0j1, · · · , λ0jp}, λ0j1≥ · · · ≥ λ0jp≥ 0

and λ0j1, · · · , λ0jp are the eigenvalues of (X0TX0)1/2(XjTXj)−1(X0TX0)1/2, P0j (P0j1, · · · , P0jp), P0jk is the eigenvector of the eigenvalue λ0jk, k = 1, 2, . . . , p.

Let

Z0j ≡ (Ip+ Λ−10j )1/2P0jT(X0TX0)−1/2£

(X0TX0)−1+ (XjTXj)−1¤−1/2 Z0j(2)

∼ Np(Op×1, Ip), kZ0j(2)k2 = kZ0jk2 then kε(1)0jk2 = H0+ k (Ip + Λ−10j)−1/2Z0j k2= H0+

Xp k=1

Z0jk2 1 + 1/λ0jk

= H0+ Xp k=1

λ0jkZ0jk2

1 + λ0jk. (C.1)

And

ε(2)0j ≡ εj − Xj(X0TX0+ XjTXj)−1(X0Tε0 + XjTεj)

= εj − Xj(X0TX0+ XjTXj)−1/2Z0j(1)

then kε(2)0jk2 = kεjk2− 2ZjT(XjTXj)1/2(X0TX0+ XjTXj)−1/2Z0j(1) +k(XjTXj)1/2(X0TX0+ XjTXj)−1/2Z0j(1)k2

= Hj + kZj− (XjTXj)1/2(X0TX0+ XjTXj)−1/2Z0j(1)k2

= Hj + k(XjTXj)−1/2£

(X0TX0)−1+ (XjTXj)−1¤−1/2 Z0j(2)k2

= Hj + kZ0j(2)k2− k(X0TX0)−1/2£

(X0TX0)−1+ (XjTXj)−1¤−1/2 Z0j(2)k2

= Hj + kZ0jk2 Xp

k=1

λ0jkZ0jk2 1 + λ0jk

= Hj + Xp k=1

Z0jk2

1 + λ0jk. (C.2)

Hence

(1)k2 + kε(2)k2 = H + H + Xp

Z2 = H + H + kZ k2 ∼ χ2 . (C.3)

And

(1)0j )TX0(X0TX0)−1X0T(1)0j ) + (ε(2)0j )TXj(XjTXj)−1XjT(2)0j )

= k(X0TX0)−1/2X0Tε(1)0jk2+ k(XjTXj)−1/2XjTε(2)0j k2

= kZ0− (X0TX0)1/2(X0TX0+ XjTXj)−1/2Z0j(1)k2 +kZj− (XjTXj)1/2(X0TX0+ XjTXj)−1/2Z0j(1)k2

= k(X0TX0)−1/2£

(X0TX0)−1+ (XjTXj)−1¤−1/2 Z0j(2)k2 +k(XjTXj)−1/2£

(X0TX0)−1+ (XjTXj)−1¤−1/2 Z0j(2)k2

= kZ0j(2)k2 = kZ0jk2 = Xp k=1

Z0jk2 . (C.4)

By (C.1), (C.2), (C.3), (C.4)

W0,j = (n0+ nj)kZ0jk2 H0 + Hj+ kZ0jk2 + (n0+ nj)3

2n0nj(H0+ Hj+ kZ0jk2)2

"

Hj+ Xp k=1

Z0jk2

1 + λ0jk −nj(H0+ Hj + kZ0jk2) n0+ nj

#2 .

Let

D0j0 H0

H0+ Hj + kZ0jk2, D0jk Z0jk2

H0+ Hj + kZ0jk2, k = 1, 2, . . . , p,

D0j,p+1 Hj

H0+ Hj + kZ0jk2,

(D0j0, D0j1, · · · , D0jp, D0j,p+1)T ∼ Dirichlet

µn0− p 2 ,1

2, · · · ,1

2,nj − p 2

.

And

E(D0j0) = n0 − p

n0+ nj − p, Var(D0j0) = 2nj(n0− p)

(n0+ nj − p)2(n0+ nj− p + 2), E(D0jk) = 1

n0+ nj − p, Var(D0jk) = 2(n0+ nj− p − 1)

(n0+ nj− p)2(n0+ nj − p + 2), k = 1, 2, . . . , p.

E(D0j,p+1) = nj− p

n0+ nj − p, Var(D0j,p+1) = 2n0(nj− p)

(n0+ nj − p)2(n0+ nj− p + 2).

Then

W0,j = (n0+ nj) Xp k=1

D0jk+(n0+ nj)3 2n0nj

"

D0j,p+1+ Xp

k=1

D0jk

1 + λ0jk nj n0 + nj

#2 .

E(W0,j) = (n0+ nj)p

n0+ nj − p+ (n0+ nj)3 2n0nj

©(e1)2+ v1ª .

Where

Finally, E(W0,j) can be calculated by (C.5), (C.6).

For convenient, here calculate Var(W0,j) with the fixed X0 and Xj case in section 3.

Xj ≡ Xn×p, X0 =

Then

and the first part of Var(W0,j) can be calculated using the previous method.

By the book ¿ Continuous multivariate distributions À p.488 , we have

E©

Dm0jD0j,p+1n ª

= (p/2)[m][(nj− p)/2][n]

(nj/2)[m+n] , where k[m] ≡ k(k + 1) · · · (k + m − 1).

And here can use this method to calculate the second part of Var(W0,j). Finally, we can calculate the Var(W0,j).

D.1

Eθ(W0,j ) and Varθ(W0,j )

Eθ(W0,j ) = Eθ(W0,j) − Eθ(W0,j, θj))

where Eθ(W0,j) is given in appendix C.1, and by equation (2.19) can know

Eθ(W0,j, θj))

j<1/n0+1/nj1/n0

! ,

Then

Eθ(W0,j, θj)) = (n0+ nj)3 2n0nj

Eθ¡

(Bj− aj)2· 1Bj<aj¢

and

Eθ¡

Bjk· 1Bj<aj¢

= Z aj

0

xk+(nj−p)/2−1(1 − x)(n0−p)/2−1

Γ ((nj− p)/2) Γ ((n0− p)/2) /Γ ((n0+ nj − 2p)/2))dx

= Γ ((n0+ nj − 2p)/2) Γ (k + (nj − p)/2) Γ ((nj − p)/2) Γ (k + (n0+ nj − 2p)/2)

· Z aj

0

xk+(nj−p)/2−1(1 − x)(n0−p)/2−1

Γ (k + (nj− p)/2) Γ ((n0 − p)/2) /Γ (k + (n0+ nj − 2p)/2)dx

= Γ ((n0+ nj − 2p)/2) Γ (k + (nj − p)/2)

Γ ((nj − p)/2) Γ (k + (n0+ nj − 2p)/2)F (aj), k = 1, 2, 3, · · · ,

where F (·) is the cdf of Beta(k + (nj − p)/2, (n0 − p)/2). Finally, Eθ(W0,j ) can be calculated.

Varθ(W0,j ) = Varθ(W0,j) + Varθ(W0,j, θj)) − Cov(W0,j, W0,j, θj)).

Varθ(W0,j) is given in appendix C.1, and

Varθ(W0,j, θj)) = Eθ(W0,j2 , θj)) −£

Eθ(W0,j, θj))¤2

where Eθ(W0,j, θj)) is calculated in the previous, and

Eθ(W0,j2 , θj)) = (n0+ nj)6 4n20n2j Eθ

£(Bj− aj)4· 1Bj<aj

¤,

it can be calculated using the previous method. Cov(W0,j, W0,j, θj)) is too compli-cated to calculate, so using the simple covariance to estimate it. Finally, Var (W )

相關文件