• 沒有找到結果。

Fig. 6.9 Complementary cumulative distribution function of RTN amplitude distribution in FinFET SONOS cells with a fin width=10nm. A Poisson-like shape is obtained.

Chapter 7 Conclusions

In short, this dissertation has involved major reliability issues in high-k (HfSiON)/metal gate(TiN) pMOSFET, among them, NBTI and RTN are studied.

Single charge phenomena are characterized statistically to get insight of threshold voltage shift distributions in small-area devices. The RTN in non-volatile flash memory cells and its structural dependence are also studied. Contributions of each subject in this work are summarized as follows.

First, we characterize NBTI trap creation in a large number of high-k dielectric pMOSFETs. The broad distribution of trap creation times is attributed to an activation energy distribution in the RD model. An activation energy distribution including a local electric field effect has been extracted from measured trap characteristic times.

We develop a statistical model to simulate an NBTI induced Vt distribution in small-area devices. Our model can reproduce the measurement results of an NBTI

Vt distribution and its stress time evolutions well.

Next, continued from the preceding paragraph, since Vt recovers partly after a NBTI stress, we use a similar statistical approach as in Chapter 2 to exploring NBTI recovery mechanisms and trapped charge characteristics. Thermally-assisted trapped charge tunnel emission has been confirmed to be a major mechanism in NBTI recovery, which is proposed in our earlier papers [3.4]. We extract a trapped charge activation energy distribution in the ThAT model for the first time. We find that the emission time distribution of trapped charges broadens as a sequence number increases. This feature is successfully explained by the ThAT model and verified by

measurement. A Monte Carlo based statistical model for a post-NBTI Vt distribution is developed for small area devices. Our model can predict a Vt distribution and its temporal evolution in relaxation very well. In chapter 2 and 3, NBTI induced Vt

distributions are successfully characterized and predicted.

Then, single trapped charge induced vt distributions in RTN and NBTI are characterized and simulated in pMOSFETs. Our simulation method takes into account a trap creation probability in NBTI stress. Our study shows that a NBTI stress created charge has a larger vt distribution tail than RTN due to current path percolation effect.

This large NBTI induced distribution tail poses to be a serious CMOS reliability concern and should be carefully considered in a precise NBTI lifetime model.

Furthermore, with respect to non-volatile flash memories, RTN induced vt in FG and SONOS cells and its structural dependence are investigated. In a FG flash, RTN amplitudes are mainly determined by random dopant induced percolation effect and identical in erase and program states. However, in a planar MLC SONOS, we find that RTN amplitudes have a wide spread after program. The program-state RTN distribution is affected by both random program charges and substrate dopants. In addition, the RTN amplitude varies from P/E cycle to P/E cycle due to program induced percolation effect. Therefore the program charge effect has to be considered in RTN modeling in MLC SONOS. According to our experiments and simulations, the program charge induced percolation effect can be significantly reduced in a surrounding gate structure, such as a FinFET SONOS.

Finally, we discussed that RTN amplitude fluctuations in a MOSFET with a nanowire-like channel can no longer be explained by a current-path modulation effect.

We perform a 1D channel Monte Carlo RTN simulation to investigate RTN behavior without the presence of such current-path modulation. Based on the simulation results

in a large number of devices, we conclude that RTN amplitudes in a 1D channel device are dependent on the number of dopants nearby an RTN trap. According to the findings, we develop an analytical RTN amplitude distribution model for MOSFETs having a one-dimension-like channel. Our model can fit the Monte Carlo RTN simulation results quite well for different doping concentrations and gate lengths. This model can also apply to SONOS flash memory cells since nitride program charges and substrate dopants have some similar features about channel current path percolation effect, as investigated in Chapter 5.

References Chapter 1

[1.1] F.-L. Yang, D.-H. Lee, H.-Y. Chen, C.-Y. Chang, S.-D. Liu, C.-C. Huang, T.-X. Chuang, H.-W. Chen, C.-C. Huang, Y.-H. Liu, C.-C. Wu, C.-C. Chen, S.-C. Chen, Y.-T. Chen, Y.-H. Chen, C.-J. Chen, B.-W. Chan, P.-F. Hsu. J.-H.

Shieh, H.-J. Tao, Y. Li, J.-W. Lee, P. Chen, M.-S. Liang, and C. Hu,

“5nm-gate nanowire FinFET,” Symp. on VLSI Tech., pp. 196-197, 2004.

[1.2] B. Yu, L. Chang, S. Ahmed, H. Wang, S. Bell, C.-Y. Yang, C. Tabery, C. Ho, Q. Xiang, T.-J. King, J. Bokor, C. Hu, M.-R. Lin, and D. Kyser, “FinFET scaling to 10nm gate length,” IEDM Tech. Dig., pp. 251-254, 2002.

[1.3] S. H. Lo, D. A. Buchanan, Y. Taur, and W. Wang, “Quantum-mechanical modeling of electron tunneling current from the inversion layer of ultra-thin-oxide nMOSFET’s,” IEEE Elec. Dev. Lett., vol. 18, pp. 209-211, 1997.

[1.4] J. Wang, and M. Lundstrom, “Does source-to-drain tunneling limit the ultimate scaling of MOSFETs?,” IEDM Tech. Dig., pp. 707-710, 2002.

[1.5] H. Iwai, S. Ohmi, S. Akama, C. Ohshima, A. Kikuchi, I. Kashiwagi, J.

Taguchi, H. Yamamoto, J. Tonotani, Y. Kim, I. Ueda, A. Kuriyama, and Y.

Yoshihara, “Advanced gate dielectric materials for sub-100 nm CMOS,”

IEDM Tech. Dig., pp. 625-628, 2002.

[1.6] T. P. Ma, “Making silicon nitride film a viable gate dielectric,” IEEE Trans.

on Elec. Dev., vol. 45, pp. 680-690, 1998.

[1.7] T. Watanabe, M. Takayanagi, K. Kojima, K. Sekine, H. Yamasaki, K. Eguchi, K. Ishimaru, and H. Ishiuchi, “Impact of Hf concentration on performance

and reliability for HfSiON-CMOSFET,” IEDM Tech. Dig., pp. 507-510, 2004.

[1.8] C. Choi, C. S. Kang, C. Y. Kang, R. Choi, H. J. Cho, Y. H. Kim, S. J. Rhee, M. Akbar, and J. C. Lee, “The effects on nitrogen and silicon profile on high-k MOSFET performance and bias temperature instability,” Symp. on VLSI Tech., pp. 214-215, 2004.

[1.9] H.C.-H. Wang, S.-J. Chen, M.-F. Wang, P.-Y. Tsai, C.-W. Tsai, T.-W. Wang, S.M. Ting, T.-H. Hou, P.-S. Lim, H.-J. Lin, Y. Jin, H.-J. Tao, S.-C. Chen, C.H.

Diaz, M.-S. Liang, and C. Hu, “Low power device technology with SiGe channel, HfSiON, and poly-Si gate,” IEDM Tech. Dig., pp. 161-164, 2004.

[1.10] J. C. Lee, H. J. Cho, C. S. Kang, S. Rhee, Y. H. Kim, R. Choi, C. Y. Kang, C.

Choi, and M. Abkar, “High-k dielectrics and MOSFET characteristics,”

IEDM Tech. Dig., pp. 95-98, 2003.

[1.11] H.C.-H. Wang, C. W. Tsai, S. J. Chen, C. T. Chan, H. J. Lin, Y. Jin, H. J. Tao, S. C. Chen, C. H. Diaz, T. Ong, A. S. Oates, M. S. Liang, and M. H. Chi,

“Reliability of HfSiON as gate dielectric for advanced CMOS technology,”

Symp. on VLSI Tech., pp.170-171, 2005.

[1.12] T. Kauerauf, R. Degraeve, F. Crupi, B. Kaczer, G. Groeseneken, and H. Maes,

“Trap generation and progressive wearout in thin HfSiON,” Proc. Int. Reliab.

Phys. Symp., pp. 45-49, 2005.

[1.13] A. Shanware, M. R. Visokay, J. J. Chambers, A. L. P. Rotondaro, H. Bu, M. J.

Bevan, R. Khamankar, S. Aur, P. E. Nicollian, J. McPherson, and L.

Colombo, “Evaluation of the positive bias temperature stress stability in HfSiON gate dielectrics,” Proc. Int. Reliab. Phys. Symp., pp. 208-213, 2003.

[1.14] K. O. Jeppson, and C. M. Svensson, “Negative Bias Stress of MOS Devices

at High Electric Fields and Degradation of MNOS Devices,” J. Appl. Phys., vol. 48, pp. 2004-2014, 1977.

[1.15] M. A. Alam, and S. Mahapatra, “A Comprehensive Model of PMOS NBTI Degradation,” in Microelectron. Reliab., vol. 45, pp. 71-81, 2005.

[1.16] S. Ogawa, and N. Shiono, “Generalized Diffusion-Reaction Model for the Low-Field Charge Build up Instability at the Si-SiO2 Interface,” Phys. Rev. B, vol. 51, pp. 4218-4230, 1995.

[1.17] M. A. Alam, “A Critical Examination of the Mechanics of Dynamic NBTI for PMOSFETs,” in IEDM Tech. Dig., pp. 345-348, 2003.

[1.18] C. T. Chan, C. J. Tang, Tahui Wang, H. C.-H. Wang, and D. D. Tang,

“Positive Bias and Temperature Stress Induced Two-Stage Drain Current Degradation in HfSiON nMOSFET's,” in IEDM Tech. Dig., pp.571-574, 2005.

[1.19] C. T. Chan, C. J. Tang, T. Wang, H. C. -H. Wang, and D. D. Tang,

“Characteristics and Physical Mechanisms of Positive Bias and Temperature Stress-Induced Drain Current Degradation in HfSiON nMOSFETs,” IEEE Trans. on Elec. Dev., vol. 53, pp. 1340-1346, 2006.

[1.20] T. Grasser, B. Kaczer, W. Goes, H. Reisinger, T. Aichiger, P. Hehenberger, P.-J. Wagner, F. Schanovky, J. Franco, M. T. Luque, and M. Nelhiebel, “The Paradigm Shift in Understanding the Bias Temperature Instability:From Reaction-Diffusion to Switching Oxide Traps,” IEEE Trans. on Elec. Dev., vol. 58, pp. 3652-3665, 2011.

[1.21] T. Grasser, B. Kaczer, and W. Goes, “An Energy Level Perspective of Bias Temperature Instability,” in Proc. Int. Relib. Phys. Symp., pp. 28-38, 2008.

[1.22] T. Grasser, B. Kaczer, W. Goes, T. Aichinger, P. Hehenberger, and M.

Nelhiebel, “A Two-stage Model for Negative Bias Temperature Instability,”

in Proc. Int. Relib. Phys. Symp., pp. 33-44, 2009.

[1.23] T. Grasser, H. Reisinger, P.-J. Wagner, W. Goes, F. Schanovsky, and B.

Kaczer, “The Time Dependent Defect Spectroscopy (TDDS) Technique for the Bias Temperature Instability,” in Proc. Int. Relib. Phys. Symp., pp. 16-25, 2010.

[1.24] C. T. Chan, H. C. Ma, C. J. Tang, and T. Wang, “Investigation of Post-NBTI Stress Recovery in pMOSFETs by Direct Measurement of Single Oxide Charge De-Trapping,” Symp. on VLSI Tech., pp. 90-91, 2005.

[1.25] B. Kaczer, V. Arkhipov, R. Degraeve, N. Collaert, G. Groeseneken, and M.

Goodwin, “Disorder-Controlled-Kinetics Model for Negative Bias Temperature Instability and its Experimental Verification,” in Proc. Int. Relib.

Phys. Symp., pp. 381-387, 2005.

[1.26] V. Huard, “Two independent components modeling for Negative Bias Temperature Instability,” in Proc. Int. Rel. Phys. Symp., pp.33-42, 2010.

[1.27] S. Mahapatra, K. Ahmed, D. Varghese, A. E. Islam, G. Gupta, L. Madhav, D.

Saha, and M.A. Alam, “On the Physical Mechanism of NBTI in Silicon Oxynitride p-MOSFETs: Can Difference in Insulator Processing Conditions Resolve the Interface Trap Generation versus Hole Trapping Controversy?,”

in Proc. Int. Relib. Phys. Symp., pp. 1-9, 2007.

[1.28] A. E. Islam, H. Kufluoglu, D. Varghese, S. Mahapatra, and M. A. Alam,

“Recent Issues in Negative Bias Temperature Instability: Initial Degradation, Field Dependence of Interface Trap Generation, Hole Trapping Effects and Relaxation,” IEEE Trans. on Elec. Dev., vol. 54, pp. 2143-2154, 2007.

[1.29] S. Mahapatra, A. E. Islam, S. Deora, V. D. Maheta, K. Joshi, and M. A. Alam,

“A Critical Re-evaluation of the Usefulness of R-D Framework in Predicting NBTI Stress and Recovery,” in Proc. Int. Relib. Phys. Symp., pp. 614-623, 2011.

[1.30] M. H. Tsai, H. Muto, and T. P. Ma, “Random telegraph signals arising from fast interface states in metal-SiO2-Si transistors,” Appl. Phys. Lett., vol. 61, pp. 1691, Oct. 1992.

[1.31] K. Kandiah, M. O. Deighton, and F. B. Whiting, “A physical model for random telegraph signal currents in semiconductor devices”, J. Appl. Phys., vol.66, pp. 937, July 1989.

[1.32] M. J. Kirton, and M. J. Uren, “Noise in solid state microstructure: A new perspective on individual defects, interface states, and low frequency noise,”

Adv. in Phys., vol. 38, pp. 367-468, 1989.

[1.33] H. Muller, and M. Schulz, “Conductance modulation of submicrometer metal-oxide-semiconductor field-effect transistors by single electron trapping,” J. Appl. Phys., vol. 79, no. 8, pp. 4178-4186, Apr. 1996.

[1.34] N. Tega, H. Miki, Z. Ren, C. P. D’Emic, Y. Zhu, D. J. Frank, J. Cai, M. A.

Guillorn, D.-G. Park, W. Haensch, and K. Torii, “Reduction of Random Telegraph Noise in High-k/ Metal-Gate Stacks for 22 nm Generation FETs,”

in IEDM Tech. Dig., pp. 771-774, 2009.

[1.35] M. Tanizawa, S. Ohbayashi, T. Okagaki, K. Sonoda, E. Eikyu, Y. Hirano, K.

Ishikawa, O. Tsuchiya, and Y. Inoue, “Application of a Statistical Compact Model for Random Telegraph Noise to Scaled-SRAM Vmin Analysis,” Symp.

on VLSI Tech., pp. 95-96, 2010.

[1.36] T. Grasser, H. Reisinger, W. Goes, Th. Aichinger, Ph. Hehenberger, P.-J.

Wagner, M. Nelhiebel, J. Franco, and B. Kaczer, “Switching Oxide Traps as

the Missing Link Between Negative Bias Temperature Instability and Random Telegraph Noise,” in IEDM Tech. Dig., pp. 1-4, 2009.

[1.37] N. Tega, H. Miki, T. Osabe, A. Kotabe, K. Otsuga, H. Kurata, S. Kamohara, K. Tokami, Y. Ikeda, and R. Yamada, “Anomalously Large Threshold Voltage Fluctuation by Complex Random Telegraph Signal in Floating Gate Flash Memory,” in IEDM Tech. Dig., pp. 491-494, 2006.

[1.38] P. Fantini, A. Ghetti, A. Marinoni, G. Ghidini, A. Visconti, and A. Marmiroli,

“Giant Random Telegraph Signals in Nanoscale Floating-Gate Devices,”

IEEE Electron Device Lett., Vol.28, pp. 1114-1116, 2007.

[1.39] H. Kurata, K. Otsuga, A. Kotabe, S. Kajiyama, T. Osabe, Y. Sasago, S.

Narumi, K. Tokami, S. Kamohara, and O. Tsuchiya, “The Impact of Random Telegraph Signals on the Scaling of Multilevel Flash Memories,” in VLSI Circuit Symp., pp. 112-113, 2006.

[1.40] K. Fukuda, Y. Shimizu, K. Amemiya, M. Kamoshida, and C. Hu, “Random Telegraph Noise in Flash Memories-Model and Technology Scaling,” in IEDM Tech. Dig., pp. 169-172, 2007.

[1.41] A. S. Spinelli, C. M. Compagnoni, R. Gusmeroli, M. Ghidotti, and A.

Visconti, “Investigation of the Random Telegraph Noise Instability in Scaled Flash Memory Arrays,” Jpn. J. Appl. Phys., vol. 47, no. 4, pp. 2598-2601, 2008.

[1.42] S. H. Gu, C. W. Li, Tahui Wang, W. P. Lu, K. C. Chen, Joseph Ku, and Chih-Yuan Lu, “Read Current Instability Arising from Random Telegraph Noise in Localized Storage, Multi-Level SONOS Flash Memory,” IEDM Tech. Dig., pp. 487-490, 2006.

[1.43] S. E. Rauch, “Review and Reexamination of Reliability Effects Related to

NBTI-Induced Statistical Variations,” IEEE Trans. on Dev. Mater. Rel., vol. 7, no. 4, pp. 524-530, 2007.

[1.44] W. Wang, V. Reddy, A. T. Krishnan, R. Vattikonda, S. Krishnan, and Y. Cao,

“Compact Modeling and Simulation of Circuit Reliability for 65-nm CMOS Technology,” IEEE Trans. on Dev. Mater. Rel., vol. 7, no. 4, pp. 509-517, 2007.

[1.45] R. Vattikonda, W. Wang, and Y. Cao, “Modeling and minimization of PMOS NBTI effect for robust nanometer design,” in Proc. ACM/IEEE Des. Autom.

Conf., pp. 1047-1052, 2006.

Chapter 2

[2.1] V. Reddy, A.T. Krishnan, A. Marshall, J. Rodriguez, S. Natarajan, T. Rost, and S. Krishnan, “Impact of negative bias temperature instability on digital circuit reliability,” in Microelectron. Reliab., vol. 45, pp. 31-38, 2005.

[2.2] W. Wang, S. Yang, S. Bhardwaj, R. Vattikonda, S. Vrudhula, F. Liu, and Y.

Cao, “The impact of NBTI on the performance of combinational and sequential circuits,” in Proc. DAC, pp. 364-369, 2007.

[2.3] M. Agostinelli, S. Lau, S. Pae, P. Marzolf, H. Muthali, and S. Jacobs, “PMOS NBTI-induced circuit mismatch in advanced technologies,” in Microelectron.

Reliab., vol. 46, pp. 63-68, 2006.

[2.4] N. K. Jha, P. S. Reddy, D. K. Sharma, and V. R. Rao, “NBTI Degradation and Its Impact for Analog Circuit Reliability,” IEEE Trans. on Elec. Dev., vol. 52, no. 12, pp. 2609-2615, 2005.

[2.5] S. V. Kumar, C. H. Kim, and S. S. Sapatnekar, “Impact of NBTI on SRAM

read stability and design for reliability,” in Proc. Int. Symp. on Quality Elec.

Design, pp. 213-218, 2006.

[2.6] G. La Rosa, W. L. Ng, S. Rauch, R. Wong, and J. Sudijono, “Impact of NBTI induced statistical variation to SRAM cell stability,” in Proc. Int. Relib. Phys.

Symp., pp. 274-282, 2006.

[2.7] B. Kaczer, T. Grasser, Ph. J. Roussel, J. Franco, R. Degraeve, L.-A.

Ragnarsson, E. Simoen, G. Groeseneken, and H. Reisinger, “Origin of NBTI Variability in Deeply Scaled pFRTs,” in Proc. Int. Relib. Phys. Symp., pp.

26-32, 2010.

[2.8] B. Kaczer, Ph. J. Roussel, and T. Grasser, “Statistics of Multiple Trapped Charges in the Gate Oxide of Deeply Scaled MOSFET Devices — Application to NBTI,” IEEE Elec. Dev. Lett., vol. 31, no. 5, pp. 411-413, 2010.

[2.9] J. P. Chiu, Y. T. Chung, Tahui Wang, Min-Cheng Chen, C. Y. Lu, and K. F. Yu,

“A Comparative Study of NBTI and RTN Amplitude Distributions in High-k Gate Dielectric pMOSFETs,” IEEE Elec. Dev. Lett., vol. 33, no. 2, pp.

176-178, 2012.

[2.10] M. Toledano-Luque, B. Kaczer, J. Franco, P. J. Roussel, T. Grasser, T. Y.

Hoffmann, and G. Groeseneken, “From mean values to distributions of BTI lifetime of deeply scaled FETs through atomistic understanding of the degradation,” in Symp. on VLSI Tech., pp. 152-153, 2011.

[2.11] A. T. Krishnan, S. Chakravarthi, P. Nicollian, V. Reddy, and S. Krishnan,

“Negative bias temperature instability mechanism: The role of molecular hydrogen,” Appl. Phys. Lett., vol. 88, no. 15, p. 153518, 2006.

[2.12] A. E. Islam and M. A. Alam, “Analyzing the distribution of threshold voltage

degradation in nanoscale transistors by using reaction-diffusion and percolation theory”, J. Comput. Electron, vol. 10, no. 4, pp. 341-351, 2011.

[2.13] Jung-Piao Chiu, Chi-Wei Li, and Tahui Wang, “Characterization and modeling of trap number and creation time distributions under negative-bias-temperature stress,” Appl. Phys. Lett., vol. 101, no. 8, p.

082906, 2012.

[2.14] J. P. Chiu, H. D. Hsieh, and Tahui Wang, “Statistical Characterization and Modeling of a Vt Distribution and Its Temporal Evolutions in NBTI Recovery”, submitted to IEEE Trans. Electron Devices

[2.15] S. Rangan, N. Mielke, and E. C. C. Yeh, “Universal Recovery Behavior of Negative Bias Temperature Instability,” in IEDM Tech. Dig., pp.341-344, 2003.

[2.16] A. Stesmans, “Dissociation kinetics of hydrogen-passivated Pb defects at the (111) Si/SiO2 interface,” Phys. Rev. B, vol. 61, no. 12, pp. 8393-8403, 2000.

Chapter 3

[3.1] T. Siddiqua and S. Gurumurthi, “Enhancing NBTI Recovery in SRAM Arrays through Recovery Boosting,” IEEE Trans. on VLSI Systems, pp.

616-629, 2012.

[3.2] J. Shin, V. Zyuban, P. Bose and T. M. Pinkston, “A Proactive Wear-out Recovery Approach for Exploiting Micro-architectural Redundancy to Extend Cache SRAM Lifetime,” in Proc. Int. Symp. Comput. Architecture, pp.

353-362, 2008.

[3.3] H. Kufluoglu, V. Reddy, A. Marshall, J. Krick, T. Ragheb, C. Cirba, A.

Krishnan and C. Chancellor, “An Extensive and Improved Circuit Simulation Methodology for NBTI Recovery,” in Proc. Int. Relib. Phys. Symp., pp.

670-675, 2010.

[3.4] T. Wang, C. T. Chan, C. J. Tang, C. W. Tsai, H. C. -H. Wang, M. H. Chi and D. D. Tang, “A Novel Transient Characterization Technique to Investigate Trap Properties in HfSiON Gate Dielectric MOSFETs ─ From Single Electron Emission to PBTI Recovery Transient,” IEEE Trans. Electron Devices, vol. 53, pp. 1073-1079, 2006.

[3.5] H. Reisinger, O. Blank, W. Heinrigs, A. Muhlhoff, W. Gustin and C.

Schlunder, “Analysis of NBTI Degradation- and Recovery-Behavior Based on Ultra-Fast Vt-Measurements”, in Proc. Int. Relib. Phys. Symp., pp.

448-453, 2006.

[3.6] M. Denais, A. Bravaix, V. Huard, C. Parthasarathy, G. Ribes, F. Perrier, Y.

Rey-Tauriac, and N. Revil, “On-the-fly Characterization of NBTI in Ultra-thin Gate Oxide PMOSFETs” in IEDM Tech. Dig., pp.109-112, 2004.

[3.7] H. Y. Yu, Y. T. Hou, M. F. Li and D. -L. Kwong, “Hole Tunneling Current Through Oxynitride/Oxide Stack and the Stack Optimization for p-MOSFETs,” IEEE Electron Device Lett., vol. 23, pp. 285-287, 2002.

[3.8] Y. T. Hou, M. F. Li, H. Y. Yu, Y. Jin and D. -L. Kwong, “Quantum Tunneling and Scalability of HfO2 and HfAlO Gate Stacks,” in IEDM Tech. Dig., pp.

731-734, 2002.

[3.9] ISE TCAD Manual Release 10.0, Integr. Syst. Eng., Zurich, Switzerland, 2004.

[3.10] Z. Q. TEO, D. S. ANG and G. A. Du, “Observation of Two Gate Stress Voltage Dependence of NBTI Induced Threshold Voltage Shift of Ultra-thin

Oxynitride Gate P-MOSFET,” in Proc. Int. Relib. Phys. Symp., pp.

1002-1004, 2009.

[3.11] Y. Y. Liao, S. F. Horng, Y. W. Chang, T. C. Lu, K. C. Chen, T. Wang and C. Y.

Lu, “Profiling of Nitride-Trap-Energy Distribution in SONOS Flash Memory by Using a Variable-Amplitude Low-Frequency Charge-Pumping Technique,” IEEE Electron Device Lett., vol. 28, pp. 828-830, 2007.

Chapter 4

[4.1] A. Asenov, R. Balasubramaniam, A. R. Brown, and J. H. Davies, “RTS Amplitudes in Decananometer MOSFETs: 3-D Simulation Study,” IEEE Trans. Electron Devices, vol. 50, no.3, pp. 839-845, Mar. 2003.

[4.2] Monzio Compagnoni, Aurelio Mauri, Salvatore Maria Amoroso, Alessandro Maconi, Eugenio Greco, Alessandro S. Spinelli, and Andrea L. Lacaita,

“Comprehensive Investigation of Statistical Effects in Nitride Memories—Part II: Scaling Analysis and Impact on Device Performance,”

IEEE Trans. Electron Devices, pp. 2124-2131, 2010.

[4.3] M. A. Alam, A. Krishnan, “NBTI: Process, Device and Circuit”, Int.

Reliability Phys. Symp. (IRPS), p.212, 2005 Tutorial.

[4.4] Sanghoon Lee, Heung-Jae Cho, Younghwan Son, Dong Seup Lee, and Hyungcheol Shin, “Characterization of Oxide Traps Leading to RTN in High-k and Metal Gate MOSFETs,” in IEDM Tech. Dig., pp. 1-4, 2009.

[4.5] Huan-Chi Ma, You-Liang Chou, Jung-Piao Chiu, Yueh-Ting Chung, Tung-Yang Lin, Tahui Wang, Yuan-Peng Chao, Kuang-Chao Chen, Chih-Yuan Lu, “A Novel Random Telegraph Signal Method to Study

Program/Erase Charge Lateral Spread and Retention Loss in a SONOS Flash Memory,” IEEE Trans. Electron Devices, vol. 58, pp. 623-630, 2011.

[4.6] S. M. Amoroso, L. Gerre, S. Markov, F. Adamu-Lema and A. Asenov,

“Comprehensive statistical comparison of RTN and BTI in deeply scaled MOSFETs by means of 3D ‘atomistic’ simulation,” European Solid State Device Rea. Conf. (ESSDERC), pp. 109-112, 2012

Chapter 5

[5.1] A. Ghetti, C. Monzio Compagnoni, F. Biancardi, A. L. Lacaita, S. Beltrami, L. Chiavarone, A.S. Spinelli, and A. Visconti, “Scaling trends for random telegraph noise in deca-nanometer Flash memories,” IEDM Tech. Dig., pp.

835 - 838, 2008.

[5.2] P. Hoel, S. Port and C. Stone Introduction to Probability Theory, Houghton Mifflin Co., 1977.

Chapter 6

[6.1] C. Surya and T. Y. Hsiang, “Surface mobility fluctuations in metal-oxide-semiconductor field-effect transistors,” Phys. Rev. B., vol. 35, pp.

6343-6347, 1987.

[6.2] K. K. Hung, P. K. Ko, Chenming Hu and Yiu Chung Cheng, “Random Telegraph Noise of Deep-Submicrometer MOSFET’s,” IEEE Elect. Dev.

Lett., vol. 11, pp. 90-92, 1990.

[6.3] Ming-Horn Tsai, T. P. Ma and Terence B. Hook, “Channel Length

Dependence of Random Telegraph Signal in Sub-Micron MOSFET’s,” IEEE Elect. Dev. Lett., vol. 15, pp. 504-506, 1994.

[6.4] A. L. McWhorter, “1/f noise and germanium surface properties,” in Semiconductor Surface Physics. Philadelphia, PA: Univ. Pennsylvania Press,

pp. 207–228, 1957.

[6.5] F. N. Hooge, “l/f noise,” Physica, vol. 83B, pp. 14-23, 1976.

[6.6] K. K. Hung, P. K. Ko, Chenming Hu and Y. C. Cheng, “A unified model for the flicker noise in metal-oxide-semiconductor field-effect transistors,” IEEE Trans. Electron Devices, vol.37, no.3, pp. 654-665, 1990.

[6.7] A. Asenov, A. R. Brown, J. H. Davies, S. Kaya and G. Slavcheva,

“Simulation of intrinsic parameter fluctuations in decananometer and nanometer-scale MOSFETs,” IEEE Trans. Electron Devices, vol.50, no.9, pp.

1837-1852, 2003.

[6.8] Yueh-Ting Chung, Tzu-I Huang, Chi-Wei Li, You-Liang Chou, Jung-Piao Chiu, Tahui Wang, M. Y. Lee, Kuang-Chao Chen and Chih-Yuan Lu, “Vt

Retention Distribution Tail in a Multi-time Program MLC SONOS Memory Due to a Random Program Charge Induced Current Path Percolation Effect,”

IEEE Trans. Electron Devices, vol. 59, no. 5, pp. 1371-1376, 2012.

[6.9] A. Asenov, “Random dopant induced threshold voltage lowering and fluctuations in sub-0.1 μm MOSFET's: A 3-D “atomistic” simulation study,”

IEEE Trans. Electron Devices, vol.45, no.12, pp.2505-2513, 1998.

[6.10] K. R. Lakshmikumar, R. A. Hadaway and M. A. Copeland, “Characterization and modeling of mismatch in MOS transistors for precision analogue design,” IEEE J. Solid State Circuits, vol. SC-21, pp. 1057–1066, 1986.

[6.11] K. Takeuchi, T. Tatsumi and A. Furukawa, “Channel engineering for the

reduction of random-dopant-placement-induced threshold voltage fluctuations,” in IEDM Tech. Dig., pp. 841-844, 1997.

[6.12] Peter A. Stolk, Frans P. Widdershoven and D. B. M. Klaassen, “Modeling Statistical Dopant Fluctuations in MOS Transistors,” IEEE Trans. Electron Devices, vol. 45, no. 9, pp. 1960-1971, 1998.

[6.13] K. Sonoda, K. Ishikawa, T. Eimori and O. Tsuchiya, “Discrete Dopant Effects on Statistical Variation of Random Telegraph Signal Magnitude,”

IEEE Trans. Electron Devices, vol.54, no.8, pp.1918-1925, 2007.

[6.14] Yiming Li, Shao-Ming Yu, Jiunn-Ren Hwang and Fu-Liang Yang, “Discrete Dopant Fluctuations in 20-nm/15-nm-Gate Planar CMOS,” IEEE Trans.

Electron Devices, vol.55, no.6, pp. 1449-1455, 2008.

Electron Devices, vol.55, no.6, pp. 1449-1455, 2008.

相關文件