• 沒有找到結果。

II. Related  Work  Discussion  

 

Several   interesting   research   have   been   already   done   in   this   field;   and   both   outdoor   and   indoor   navigation   systems   for   visually   impaired   and   blind   people   been   proposed.   These   systems  are  based  on  different  approaches  and  technologies  in  order  to  provide  functional   variety  and  be  useful  to  navigate  in  both  known  and  unknown  environment.  

 

Proposed  architectures  include  both  so-­‐called  “wearable  navigation  systems”  [19,  13,  21,   36]   together   with   more   mobile   solutions   when   only   one   assisted   portable   device   is   required   on   the   users   side.   Such   portable   devices   might   include   a   mobile   unit   [15],   a   smartphone  [10,  2,  11],  or  even  improved  high-­‐tech  version  of  White  cane  [7,  39].  

 

In  [13]  authors  discuss  necessity  of  building  a  navigation  system  that  covers  both  indoor   and  outdoor  case  scenarios.  They  provide  a  description  of  “an  integrated  framework  of  a   precise   navigation   system   for   visually   impaired   and   blind   people”   [13].   Although   some   interesting   ideas   were   proposed   in   this   work,   there   is   still   a   necessity   for   tests   results,   including  performance  and  usability.      

 

Studies   [19]   also   propose   outdoor   and   indoor   wearable   navigation   system   for   visually   impaired   and   blind   people.   For   outdoor   location   positioning   DGPS  technique   is   used   and   special   hardware   equipment   (Trimble   PROXRS,   12   channel   integrated   GPS/Beacon/Satellite   receiver   with   multi-­‐path   rejection   technology)   is   introduced   in   the   system  in  order  to  improve  users  outside  location.  

 

Koley   et   al.   [21]   introduces   a   navigation   system   for   visually   impaired   persons,   that   combines  usage  of  GPS,  voice  and  ultrasonic  sensor  for  obstacle  detection.  In  the  proposed   system  SiRFstarIII  GR-­‐301  GPS  Receiver  is  used  for  outdoor  location  positioning.  No  GPS   accuracy  improvement  techniques  (RTK,  DGPS,  etc.)  are  used  in  order  to  improve  outdoor   location  accuracy.  

 

There  are  several  systems  designed  particularly  for  traffic  lights  detection  in  order  to  help   both   color-­‐blind   drivers   and   visually   impaired   pedestrians   [28,   29].   These   systems   are   based  on  image  recognition  and  video  processing  technologies.      

 

As  the  purpose  of  this  work  is  to  provide  an  easy  guidance  assistance  infrastructure  that   involves  android-­‐based  mobile  handheld  device,  the  most  relative  works  to  this  one  also   includes  a  mobile  device  and  its  equipped  technologies  like  GPS  and  Networking  modules.  

 

One  of  the  most  relevant  to  this  work  research  is  [2].  The  authors  proposed  cloud-­‐based   system  architecture  used  together  with  an  android-­‐based  mobile  phone  in  order  to  detect   traffic  light  status.  This  approach  is  based  on  video  analysis  techniques  and  requires  a  user   to  use  GPS,  Networking  and  Camera  functionality  on  the  mobile  phone.  

Proposed   in   [2]   infrastructure   includes   two   main   components   –   a   mobile   device   and   a   cloud   server   component.   A   mobile   device   computes   its   location   using   GPS   satellites   information  and  updates  the  cloud  server  with  the  current  user  location.  It  also  serves  as  a   video  recording  tool  to  capture  traffic  lights  status.  Cloud  server  component  is  responsible   for   processing   the   information   received   from   the   mobile   device   and   sending   back   a   response.  

Studies  [2]  proposed  architecture  is  shown  in  the  Figure  1.    

 

Figure  1  -­‐  Studies  [2]  proposed  system  architecture    

Although   this   work   introduces   interesting   architecture,   there   are   obviously   several   weaknesses  that  make  it  less  efficient  in  comparison  with  so-­‐called  communication-­‐based   model2,  introduced  in  this  work.    

 

In  our  opinion,  video  analysis  or  image  processing  based  models  would  always  introduce   several  important  drawbacks,  affecting  the  whole  system  usability  and  more  importantly   compromising  the  safety  of  a  visually  impaired/blind  person.    

 

One  the  biggest  concern  regarding  the  proposed  architecture  is  an  unhandled  safety  issue   when  a  visually  impaired  or  blind  person  is  supposed  to  cross  a  road.  Although,  the  authors   discuss   the   importance   of   fast   and   reliable   traffic   light   detection   capability   and   mention   real-­‐time   video   frames   processing,   still   the   system   lacks   of   actual   real-­‐time   traffic   light   information   status.   Let   us   imagine   the   following   case   scenario:   a   traffic   light   is   still   in  

“Green”  state,  but  it  is  going  to  change  its  status  to  “Red”  in  3  seconds.  A  mobile  phone  user   captures  traffic  light  (“Green”)  and  sends  frame  for  analysis  to  the  cloud.    Obviously  that   even  if  the  frame  is  analyzed  immediately,  and  a  person  gets  instruction  to  cross  the  road,   there   is   still   not   enough   time   for   them   to   comfortable   and   safely   cross   the   road.   This   unavailability  to  predict  traffic  light  status  changes  might  introduce  a  great  safety  problem   and  compromise  the  whole  system.  

 

Another   concern   regarding   proposed   architecture   is   certain   inconvenience   for   visually   impaired/blind   people   to   use   the   system.   A   requirement   to   record   video   along   the   path   may   lead   to   a   big   number   of   so-­‐called   “false   records”   when   a   user   is   not   able   not   make   camera   adjustments   manually.   Particularly   this   may   affect   an   ability   to   use   camera   in   unknown   environments,   when   exact   traffic   light   locations   and   positions   (including   their   height)   are   not   obvious.   Because   of   this   uncertainty   of   traffic   light   locations,   the   architecture  requires  an  introduction  of  additional  assistance  technology  in  order  to  easily   adjust  camera  for  successful  video  recording.  

 

One  more  specific  characteristic  of  the  proposed  in  [2]  architecture  is  related  to  outdoor   location   accuracy.   As   depicted   in   Figure   1,   Skyhook   Wireless   positioning   system   is   integrated   in   [2]   architecture.   Skyhook   is   a   software-­‐only   location   system   that   combines                                                                                                                  

2  The  name  of  so-­‐called  communication-­‐based  model  refers  to  the  idea  to  make  traffic  lights  status  information  available   online    

 

Wi-­‐Fi   positioning   together   with   GPS   and   cell   tower   triangulation,   its   location's   hybrid   positioning  accuracy  is  compared  to  both  GPS  and  A-­‐GPS  in  Figure  2.    

 

Although,  Skyhook  provided  services  are  flexible  and  fast,  their  location  accuracy  is  never   better  than  GPS.  For  some  applications  the  fastest  Time-­‐to-­‐Fix  and  constant  availability  is   the  most  important  characteristics  in  location  services.  These  characteristics  are  also  very   important   for   blind   navigation   system,   however   better   accuracy   in   location   positioning   detection  is  in  the  greatest  demand.    

 

Figure  2  -­‐  Skyhook  location  accuracy    

 

To  sum  up,  all  the  previously  mentioned  issues  introduce  several  obstacles  in  the  proposed   [2]  architecture  such  as:  

• Safety  issue  (real-­‐time  traffic  light  detection/prediction);  

• Usage  Inconvenience  (necessity  of  using  camera  for  a  blind  person);  

• Location  Accuracy      

Therefore,  the  navigation  system  proposed  in  this  Master  thesis,  is  aimed  to  improve  these   weaknesses  together  with  introducing  new  user  case  scenarios  for  outdoor  navigation.  

 

相關文件