• 沒有找到結果。

未來發展

在文檔中 中 華 大 學 碩 士 論 文 (頁 66-75)

五、 結論 47

5.3 未來發展

本研究所探討的現象都是發生於單一心室細胞內,在未來我們希 望能夠將單一細胞提升成二維心臟組織。透過二維心臟組織的模擬將

參考文獻

1. V. Iyer, R. Mazhari, and R. L. Winslow. A computational model of the human left-ventricular epicardial myocyte. Biophys.J. 87 (3):1507-1525, 2004.

2. C. H. Luo and Y. Rudy. A dynamic model of the cardiac ventricular action potential.

I. Simulations of ionic currents and concentration changes. Circ.Res. 74 (6):1071-1096, 1994.

3. Rivolta, C. E. Clancy, M. Tateyama, H. Liu, S. G. Priori, and R. S. Kass. A novel SCN5A mutation associated with long QT-3: altered inactivation kinetics and channel dysfunction. Physiol Genomics 10 (3):191-197, 2002.

4. C. H. Luo and Y. Rudy. A model of the ventricular cardiac action potential.

Depolarization, repolarization, and their interaction. Circ.Res. 68 (6):1501-1526, 1991.

5. L.Hodgkin and A.F.Huxley. A quantitative description of membrane current and its application to conduction and excitation in nerve. Anonymous. Anonymous. J.

Physiol 117:500-544, 1952.

6. Cimponeriu, C.Frank Starmer, and A.Bezerianos. A Theoretical Analysis of Acute Ischemia and Infarction Using ECG Reconstruction on a 2-D Model of Myocardium.

Anonymous. Anonymous. IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING(48 NO.1), 2001.

7. Rivolta I, Abriel H, Tateyama M, Liu H, Memmi M, and Vardas P. Brugada and long QT-3 syndrome mutations of a single residue of the cardiac sodium channel confer distinct channel and clinical phenotypes. Anonymous. Anonymous. J Biol Chem:30623-30630, 2001.

8. C. E. Clancy and Y. Rudy. Cellular consequences of HERG mutations in the long QT syndrome: precursors to sudden cardiac death. Cardiovasc.Res. 50 (2):301-313, 2001.

9. V. E. Bondarenko, G. P. Szigeti, G. C. Bett, S. J. Kim, and R. L. Rasmusson.

Computer model of action potential of mouse ventricular myocytes. Am.J.Physiol Heart Circ.Physiol 287 (3):H1378-H1403, 2004.

10. C. E. Clancy and R. S. Kass. Defective cardiac ion channels: from mutations to clinical syndromes. J.Clin.Invest 110 (8):1075-1077, 2002.

11. Lionel H.Opie. Drugs for the Heart. Anonymous. Anonymous. ROURTH EDITION, 1995.

12. C. E. Clancy and Y. Rudy. Na(+) channel mutation that causes both Brugada and long-QT syndrome phenotypes: a simulation study of mechanism. Circulation 105 (10):1208-1213, 2002.

13. S Vecchietti, I Rivolta, S Severi, C Napolitano, SG Priori, and S Cavalcanti.

Markovian Model for Wild-Type and Mutant (Y1795C and Y1795H) Human Cardiac Na+ Channel. Anonymous. Anonymous. Computers in Cardiology:283-286, 2003.

14. Mark T.Keating and Michael C.Sanguinetti. Molecular and Cellular Mechanisms of Cardiac Arrhythmias. Anonymous. Anonymous. Cell 104, 2001.

15. Mark E.Curran, Christine Foster, and Christopher R.Burrow. Molecular mechanism of a serious adverse drug reaction: Drug induced cardiac arrhythmias. Anonymous.

Anonymous. Pharmaceutical Discovery and Development , 2002.

16. Areles Molleman. Patch Clamping: An Introductory Guide To Patch Clamp Electrophysiology. Anonymous. Anonymous. John Wiley & Sons, Ltd , 2003.

17. Joseph R.Hume. Section III: Renal and cardiovascular. Anonymous. Anonymous.

Pharmacology 601 :44-67, 2005.

18. Alan C.Hindmarsh and Radu Serban. User Documentation for cvode v2.2.1.

Anonymous. Anonymous. 2005.

19. Igor Splawski, Katherine W.Timothy, Michihiro Tateyama, Colleen E.Clancy, Alka Malhotra, Alan H.Beggs, Francesco P.Cappuccio, Giuseppe A.Sagnella, Robert S.Kass, and Mark T.Keating. Variant of SCN5A Sodium Channel Implicated in Risk of Cardiac Arrhythmia. Anonymous. Anonymous. SCIENCE23 297:1333-1336, 2002.

20. J. P. Barach and J. P. Wikswo, Jr. A numerical reconstruction of the effects of late stimulation on a cardiac ventricular action potential. Comput.Biomed.Res. 25 (3):212-217, 1992.

22. J. Zeng and Y. Rudy. Early afterdepolarizations in cardiac myocytes: mechanism and rate dependence. Biophys.J. 68 (3):949-964, 1995.

23. C. E. Clancy and Y. Rudy. Cellular consequences of HERG mutations in the long QT syndrome: precursors to sudden cardiac death. Cardiovasc.Res. 50 (2):301-313, 2001.

24. X. H. Wehrens, H. Abriel, C. Cabo, J. Benhorin, and R. S. Kass. Arrhythmogenic mechanism of an LQT-3 mutation of the human heart Na(+) channel alpha-subunit: A computational analysis. Circulation 102 (5):584-590, 2000.

25. C. C. Chang, S. Acharfi, M. H. Wu, F. T. Chiang, J. K. Wang, T. C. Sung, and M.

Chahine. A novel SCN5A mutation manifests as a malignant form of long QT syndrome with perinatal onset of tachycardia/bradycardia. Cardiovasc.Res. 64 (2):268-278, 2004.

26. W. P. McNair, L. Ku, M. R. Taylor, P. R. Fain, D. Dao, E. Wolfel, and L. Mestroni.

SCN5A mutation associated with dilated cardiomyopathy, conduction disorder, and arrhythmia. Circulation 110 (15):2163-2167, 2004.

27. N. S. Mok, S. G. Priori, C. Napolitano, N. Y. Chan, M. Chahine, and G. Baroudi. A newly characterized SCN5A mutation underlying Brugada syndrome unmasked by hyperthermia. J.Cardiovasc.Electrophysiol. 14 (4):407-411, 2003.

28. F. Potet, P. Mabo, Coq G. Le, V. Probst, J. J. Schott, F. Airaud, G. Guihard, J. C.

Daubert, D. Escande, and Marec H. Le. Novel brugada SCN5A mutation leading to ST segment elevation in the inferior or the right precordial leads.

J.Cardiovasc.Electrophysiol. 14 (2):200-203, 2003.

29. P. C. Viswanathan, D. W. Benson, and J. R. Balser. A common SCN5A

polymorphism modulates the biophysical effects of an SCN5A mutation. J.Clin.Invest 111 (3):341-346, 2003.

30. N. Makita, M. Horie, T. Nakamura, T. Ai, K. Sasaki, H. Yokoi, M. Sakurai, I.

Sakuma, H. Otani, H. Sawa, and A. Kitabatake. Drug-induced long-QT syndrome associated with a subclinical SCN5A mutation. Circulation 106 (10):1269-1274, 2002.

31. J. M. Lupoglazoff, T. Cheav, G. Baroudi, M. Berthet, I. Denjoy, B. Cauchemez, F.

Extramiana, M. Chahine, and P. Guicheney. Homozygous SCN5A mutation in long-QT syndrome with functional two-to-one atrioventricular block. Circ.Res. 89 (2):E16-E21, 2001.

32. J. Akai, N. Makita, H. Sakurada, N. Shirai, K. Ueda, A. Kitabatake, K. Nakazawa, A.

Kimura, and M. Hiraoka. A novel SCN5A mutation associated with idiopathic ventricular fibrillation without typical ECG findings of Brugada syndrome. FEBS Lett. 479 (1-2):29-34, 2000.

附錄 模擬二維心臟組織電位傳導 [6]

A.1 心臟組織電位傳導微分方程式

圖 A1 心肌細胞網格計算 [6]

心臟電位傳導計算:

) 1 (

2 2 2 2

dy V d dx

V d I Ri

dt

CdV =− ionic + + (式 A1)

t j i, t

1 j i, t

1 -j i, t

j 1, i t

j 1, -i ionic

dt t

ij -dt I q V q V q V q V (1-4 q) V

V + = ⋅ + ⋅ + ⋅ + + ⋅ + ⋅ + + ⋅ ⋅ (式 A2)

dx2

dt Ri

q= 1 ⋅ (式 A3)

Iionic 單一心室細胞離子電流總和

Vt+dt 下ㄧ時間點的電位值

dV 動作電位

Vt 目前的電位值

Vij、Vi-1,j、Vi+1,j、Vi,j-1、Vi,j+1 如圖 A1 所示細胞位置

Ri 電阻

dx、dy 細胞 X、Y 軸距離間隔

A.2 平行處理系統

A.2.1 叢集式系統硬體設備

表 A1 平行系統硬體設備表

名稱 配備

作業系統 Redhat 9.2

Master(伺服器) 雙 CPU XEON 2.4GHz、

DDR400 256Mb*2 Node(*4)

P4 2.8GHz、DDR400 256Mb

A.2.2 平行傳輸架構

圖 A1 平行處理資料傳輸流程圖

圖 A2 Master 資料切割、Node 間資料交換示意圖 計算步驟:

Step 1. Master 分割需要計算的細胞區塊傳給 Node 1~4。

Step 2. Node 1~4 接收到資料後開始計算。

Step 3. Node 1~4 互相交換邊界資料(boundary data)放在 Buffer 中,方 便 Nodes 計算邊界細胞時取得所需資料。

Step 4. Node 1~4 將分割資料傳回 master,master 負責將所有資料儲存 到檔案裡。

Step 5. 重複 step 1~4,直到完成細胞週期性電位傳導。

A.3 結果輸出

模擬實例:

A. 參數設定

心臟組織: 200*200 個細胞

刺激位置: 在位置[5,1~200]給予一整排刺激 細胞動作電位週期: 500ms

B. 程式結果

圖 A3 在時間 34ms 時組織電位傳導

在文檔中 中 華 大 學 碩 士 論 文 (頁 66-75)

相關文件