• 沒有找到結果。

Chapter 7: Conclusions

7.2 Suggestions for Future Work

A variety of electrical characterization methods have been adopted to draw the complete picture of charge trapping and de-trapping in the pre-existing traps in Hf-based high-k gate dielectrics, including the physical model of charge trapping, the charge trapping and de-trapping behaviors of slow and fast high-k traps, and the space and energy distribution of fast high-k traps. With all these pieces of information, we could have a better understanding of the over-all charge trapping and de-trapping in Hf-based high-k gate dielectrics. However, there are some topics which have not yet been understood clearly nor verified with strong evidence support. Therefore, these topics deserve to be further studied in the near future:

1. In chapter 2, the physical meaning of the charge trapping model with dispersive capture time constants (stretched exponential growth) and its model parameters should be further studied. It is important to understand why this physical model could well describe the charge trapping behavior in high-k gate dielectrics and how this model could be used to predict the device lifetime under normal operation conditions. Also, this model could be re-arranged as the Weibull distribution (weakest link relation) which is commonly used in time-dependent dielectric breakdown (TDDB) studies. The similarity and discrepancy between these two reliability issues should be understood as well.

2. In chapter 3, the repetitive, reversible charge trapping and de-trapping behaviors indicate the charge carriers are trapped in the pre-existing high-k traps without

generating new high-k traps during the stress/recovery cycles or the amount of generated high-k traps is negligible as compared to the pre-existing high-k traps.

Moreover, the transient charging effect could be observed within 10-50 ns even for the slow high-k traps, and this asymmetric capture and emission time constants imply that these trapped charge carriers are located deeply in space distance or in energy levels. These uncertainties deserve to be clarified.

3. In chapter 4, the physical origin of dynamic energy loss tanδ and its relationship to the composition of high-k dielectrics (such as HfO2, HfSiO, and HfSiON) should be studied. Furthermore, the severe capacitance drop due to tunneling leakage current could not be completely recovered by the two-frequency C-V correction only. New circuit element should be added or higher measurement frequencies (Agilent 4294A, f= 40~110M Hz) should be used with appropriate phase compensation and OPEN/SHORT/LOAD calibrations.

4. In chapter 5 and 6, much effort should be made to understand the correlation between the border trap properties (such as the magnitude of border trap density, the space and energy distribution, and the transient charging and discharging behaviors) by low-frequency C-V measurement and by low-frequency charge pumping, and these results could be further verified by pulse Id-Vg technique in some extent. Moreover, the application limits of these two characterization methods should also be studied in terms of the frequency, gate area, and applied gate voltage since both methods may suffer measurement errors under testing conditions of huge tunneling leakage current. Also, the assumption of elastic direct tunneling at single energy level could be modified as the direct tunneling from multiple sub-bands in the Si conduction band states to obtain more accurate energy distribution of border traps.

5. Much effort should be made to study the charge trapping and de-trapping behaviors under static and dynamic negative bias stress in pMOSFETs with Hf-based high-k gate dielectric. Since gate electrons from metal gate electrode and channel holes from inverted n-Si substrate may be injected into the high-k gate dielectric simultaneously, threshold voltage instability should be considered as the combinational effect of both electron and hole trapping in the high-k gate dielectric, and charge recombination may also occur. This may lead to the faulty understanding of charge trapping and de-trapping behaviors under negative bias stress if the respective contributions of electrons and holes have not been clearly separated.

6. Optimized process conditions should be studied to reduce the number of the pre-existing traps in Hf-based high-k gate dielectric. Oxygen vacancies or crystalline defects in the grain boundaries have been identified as the possible causes to explain the physical origin of these pre-existing high-k traps, which seems to be an intrinsic materials problem regardless of deposition technique, post-deposition annealing temperature, or heat treatment ambient. Effective measures such as the Si incorporation, plasma nitridation, and fluorine implantation have to be taken to passivate these trapping centers, and the low-frequency C-V measurement in chapter 5 or low-frequency charge pumping method in chapter 6 could be readily used to monitor the amount of high-k traps located near the high-k/base oxide interface.

7. The function form of charge trapping model should be further clarified to explain different time dependences (power law, logarithmic, and stretched exponential growth) observed in this dissertation. An appropriate function form should be the basis to describe and to determine the charge trapping behavior and related

mechanisms with consistent physical concepts. In addition, the implications of time dependence should be further studied to understand the charge trapping behavior (charge filling in the pre-existing traps or additional trap generation).

8. The tunneling path into and out of high-k traps deserves to be further studied to realize the actual energy distribution of high-k bulk traps. Since the temperature and time dependences of charge trapping and de-trapping behaviors suggest the two-step thermal-assisted tunneling process (elastic direct tunneling plus lattice- relaxation multi-phonon emission), the thermal transition among different energy levels (ground and many excited states) by cascade phonon emission should be considered to determine the more accurate energy distribution of high-k traps.

9. Charge trapping and de-trapping into and out of the pre-existing high-k traps should be studied in terms of the 1/f low-frequency noise and random telegraph signal (RTS) methods, which have been widely used in the study of oxide traps.

In-depth understanding of different analysis methods could help us distinguish the similarities and discrepancies of charge trapping and de-trapping behaviors in conventional oxides and Hf-based high-k gate dielectrics.

References

Chapter 1

[1.1] “International technology roadmap for semiconductors: process integration, devices, and structures,” ITRS 2005 edition, San Jose, California.

[1.2] G. D. Wilk, R. M. Wallace, and J. M. Anthony, “High-k gate dielectrics:

current status and materials properties considerations,” J. Appl. Phys., vol.

89, no. 10, pp. 5243-5275, May 2001.

[1.3] Y. C. Yeo, T. J. King, and C. Hu, “MOSFET gate leakage modeling and selection guide for alternative gate dielectrics based on leakage considerations,” IEEE Trans. Electron Devices, vol. 50, no. 4, pp.

1027-1035, Apr. 2003.

[1.4] H.-S. P. Wong, “Beyond the conventional transistor,” IBM J. Res. Develop., vol. 46, no. 2/3, pp. 133–168, 2002.

[1.5] J. Robertson, “Band offsets of wide-band-gap oxides and implications for future electronic devices,” J. Vac. Sci. Tech. B, vol. 18, no. 3, pp.

1785-1791, May/Jun 2000.

[1.6] R. Beyers, “Thermodynamic considerations in refractory metal-silicon- oxygen systems,” J. Appl. Phys., vol. 56, no. 1, pp. 147-152, Jul. 1984.

[1.7] S. Q. Wang and J. W. Mayer, “Reactions of Zr thin films with SiO2

substrates,” J. Appl. Phys., vol. 64, no. 9, pp. 4711-4716, Nov. 1988.

[1.8] A. Kerber, E. Cartier, L. Pantisano, M. Rosmeulen, R. Degraeve, T.

Kauerauf, G. Groeseneken, H. E. Maes, and U. Schwalke, “Characterization of the Vt-instability in SiO2/HfO2 gate dielectrics,” IEEE Intl. Rel. Phys.

Symp., 2003, pp. 41-45.

[1.9] W. J. Zhu, T. P. Ma, S. Zafar, and T. Tamagawa, “Charge trapping in

ultrathin hafnium oxide,” IEEE Electron Device Lett., vol. 23, no. 10, pp.

597-599, Oct. 2002.

[1.10] K. Onishi, R. Choi, C. S. Kang, H. J. Cho, Y. H. Kim, R. E. Nieh, J. Han, S.

A. Krishnan, M. S. Akbar, and J. C. Lee, “Bias-temperature instabilities of poly-silicon gate HfO2 MOSFETs,” IEEE Trans. Electron Devices, vol. 50, no. 6, pp. 1517-1524, Jun. 2003.

[1.11] L. Pnatisano, E. Cartier, A. Kerber, R. Degraeve, M. Lorenzini, M.

Rosmeulen, G. Groeseneken, and H. E. Maes, “Dynamics of threshold voltage instability in stacked high-k dielectrics: role of the interfacial oxide,” IEEE Symp. VLSI Tech. Dig., 2003, pp. 163-164.

[1.12] C. Leroux, J. Mitard, G. Ghibaudo, X. Garros, G. Reimbold, B. Guillaumot, and F. Martin, “Characterization and modeling of hysteresis phenomenon in high-k dielectrics,” IEEE IEDM Tech. Dig., 2004, pp. 737-740.

[1.13] C. Shen, M. F. Li, X. P. Wang, H. Y. Yu, Y. P. Feng, A. T.-L. Lim, Y. C. Yeo, D. S.-H. Chan, and D. L. Kwong, “Negative U traps in HfO2 gate dielectrics and frequency dependence of dynamic BTI in MOSFETs,” IEEE IEDM Tech. Dig., 2004, pp. 733-736.

[1.14] F. P. Heiman and G. Warfield, “The effects of oxide traps on the MOS capacitance,” IEEE Trans. Electron Devices, vol. 12, no. 4, pp. 167-178, Apr. 1965.

[1.15] I. Lundstrom and C. Svensson, “Tunneling to traps in insulators,” J. Appl.

Phys., vol. 43, no. 12, pp. 5045-5047, Dec. 1972.

[1.16] H. Lakhdari, D. Vuillaume, and J. C. Bourgoin, “Spatial and energetic distribution of Si-SiO2 near-interface states,” Phys. Rev. B, vol. 38, no. 18, pp. 13124-13132, Dec. 1988.

[1.17] T. L. Tewksbury, and H. S. Lee, “Characterization, modeling, and minimization of transient threshold voltage shifts in MOSFETs,” IEEE J.

Solid-State Circuits, vol. 29, no. 3, pp. 239-252, Mar. 1994.

[1.18] Y. Maneglia and D. Bauza, “Extraction of slow oxide trap concentration profiles in metal-oxide-semiconductor transistors using the charge pumping method,” J. Appl. Phys., vol. 79, no. 8, pp. 4187-4192, Apr. 1996.

[1.19] D. Bauza and Y. Maneglia, “In-depth exploration of Si-SiO2 interface traps in MOS transistors using the charge pumping technique,” IEEE Trans.

Electron Devices, vol. 44, no. 12, pp. 2262-2266, Dec. 1997.

[1.20] R. E. Paulsen, R. R. Siergiej, M. L. French, and M. H. White, “Observation of near- interface oxide traps with charge pumping technique,” IEEE Electron Device Lett., vol. 13, no. 12, pp. 627-629, Dec. 1992.

[1.21] R. E. Paulsen and M. H. White, “Theory and application of charge pumping for the characterization of Si-SiO2 interface and near-interface oxide traps,”

IEEE Trans. Electron Devices, vol. 41, no. 7, pp. 1213-1216, Jul. 1994.

[1.22] D. M. Fleetwood, P. S. Winokur, R. A. Reber, Jr., T. L. Meisenheimer, J. R.

Schwank, M. R. Shaneyfelt, and L. C. Riewe, “Effects of oxide traps, interface traps, and border traps on metal-oxide-semiconductor devices,” J.

Appl. Phys., vol. 73, no. 10, pp. 5058-5074, May 1993.

Chapter 2

[2.1] K. Onishi, R. Choi, C. S. Kang, H. J. Cho, Y. H. Kim, R. E. Nieh, J. Han, S.

A. Krishnan, M. S. Akbar, and J. C. Lee, “Bias-temperature instabilities of poly-silicon gate HfO2 MOSFETs,” IEEE Trans. Electron Devices, vol. 50, no. 6, pp. 1517-1524, Jun. 2003.

[2.2] A. Kerber, E. Cartier, L. Pantisano, M. Rosmeulen, R. Degraeve, T.

Kauerauf, G. Groeseneken, H. E. Maes, and U. Schwalke, “Characterization of the Vt-instability in SiO2/HfO2 gate dielectrics,” IEEE Intl. Rel. Phys.

Symp., 2003, pp. 41-45.

[2.3] W. J. Zhu, T. P. Ma, S. Zafar, and T. Tamagawa, “Charge trapping in ultrathin hafnium oxide,” IEEE Electron Device Lett., vol. 23, no. 10, pp.

597-599, Oct. 2002.

[2.4] R. Degraeve, F. Crupi, D. H. Kwak, and G. Groeseneken, “On the defect generation and low voltage extrapolation of QBD in SiO2/HfO2 stacks,”

IEEE VLSI Tech. Dig., 2004, pp. 140-141.

[2.5] F. Crupi, R. Degraeve, A. Kerber, D. H. Kwak, and G. Groeseneken,

“Correlation between stress-induced leakage current (SILC) and the HfO2

bulk trap density in a SiO2/HfO2 stack,” IEEE Intl. Rel. Phys. Symp., 2004, pp. 181-187.

[2.6] R. Degraeve, A. Kerber, Ph. Roussel, E. Cartier, T. Kauerauf, L. Pantisano, and G. Groeseneken, “Effect of bulk trap density on HfO2 reliability and

yield,” IEEE IEDM Tech. Dig., 2003, pp. 935-938.

[2.7] A. Morioka, H. Watanabe, M. Miyamura, T. Tatsumi, M. Saitoh, T. Ogura, T.

Iwamoto, T. Ikarashi, Y. Saito, Y. Okada, H. Watanabe, Y. Mochizuki and T.

Mogami, “High mobility MISFET with low trapped charge in HfSiO films,”

IEEE Symp. VLSI Tech. Dig., 2003, pp. 165-166.

[2.8] T. Iwamoto, T. Ogura, M. Terai, H. Watanabe, H. Watanabe, N. Ikarashi, M.

Miyamura, T. Tatsumi, M. Saitoh, A. Morioka, K. Watanabe, Y. Saito, Y.

Yabe, T. Ikarashi, K. Masuzaki, Y. Mochizuki and T. Mogami, “A highly manufacturable low power and high speed HfSiO CMOSFET with dual poly-Si gate electrodes,” IEEE IEDM Tech. Dig., 2003, pp. 639-642.

[2.9] L. Pnatisano, E. Cartier, A. Kerber, R. Degraeve, M. Lorenzini, M.

Rosmeulen, G. Groeseneken, and H. E. Maes, “Dynamics of threshold voltage instability in stacked high-k dielectrics: role of the interfacial oxide,” IEEE Symp. VLSI Tech. Dig., 2003, pp. 163-164.

[2.10] W. J. Zhu, T. P. Ma, T. Tamagawa, J. Kim and Y. Di, “Current transport in metal/hafnium oxide/silicon structure,” IEEE Electron Device Lett., vol. 23, no. 2, pp. 97-99, 2002.

[2.11] S. Zafar; A. Callegari; E. Gusev; and M. V. Fischetti, “Charge trapping related threshold voltage instabilities in high permittivity gate dielectric stacks,” J. Appl. Phys., vol. 93, no. 11, pp. 9298-9303, Jun. 2003.

[2.12] I. Lundstrom and C. Svensson, “Tunneling to traps in insulators,” J. Appl.

Phys., vol. 43, no. 12, pp. 5045-5047, Dec. 1972.

Chapter 3

[3.1] W. J. Zhu, T. P. Ma, S. Zafar, and T. Tamagawa, “Charge trapping in ultrathin hafnium oxide,” IEEE Electron Device Lett., vol. 23, no. 10, pp.

597-599, Oct. 2002.

[3.2] K. Onishi, R. Choi, C. S. Kang, H. J. Cho, Y. H. Kim, R. E. Nieh, J. Han, S.

A. Krishnan, M. S. Akbar, and J. C. Lee, “Bias-temperature instabilities of poly-silicon gate HfO2 MOSFETs,” IEEE Trans. Electron Devices, vol. 50, no. 6, pp. 1517-1524, Jun. 2003.

[3.3] A. Shanware, M. R. Visokay, J. J. Chambers, A. L. P. Rotondaro, H. Bu, M.

J. Bevan, R. Khamankar, S. Aur, P. E. Nicollian, J. McPherson, and L.

Colombo, “ Evaluation of the positive biased temperature stress stability in HfSiON gate dielectrics,” IEEE Intl. Rel. Phys. Symp., 2003, pp. 208-213.

[3.4] A. Kerber, E. Cartier, L. Pantisano, M. Rosmeulen, R. Degraeve, T.

Kauerauf, G. Groeseneken, H. E. Maes, and U. Schwalke, “Characterization of the Vt-instability in SiO2/HfO2 gate dielectrics,” IEEE Intl. Rel. Phys.

Symp., 2003, pp. 41-45.

[3.5] L. Pnatisano, E. Cartier, A. Kerber, R. Degraeve, M. Lorenzini, M.

Rosmeulen, G. Groeseneken, and H. E. Maes, “Dynamics of threshold voltage instability in stacked high-k dielectrics: role of the interfacial oxide,” IEEE Symp. VLSI Tech. Dig., 2003, pp. 163-164.

[3.6] S. Zafar; A. Callegari; E. Gusev; and M. V. Fischetti, “Charge trapping related threshold voltage instabilities in high permittivity gate dielectric stacks,” J. Appl. Phys., vol. 93, no. 11, pp. 9298-9303, Jun. 2003.

[3.7] C. Leroux, J. Mitard, G. Ghibaudo, X. Garros, G. Reimbold, B. Guillaumot, and F. Martin, “Characterization and modeling of hysteresis phenomenon in high-k dielectrics,” IEEE IEDM Tech. Dig., 2004, pp. 737-740.

[3.8] G. Ribes, S. Bruyere, D. Roy, M. Muller, M. Denais, V. Huard, T. Skotnicki, and G. Ghibaudo, “Trapping and de-trapping mechanism in hafnium based dielectrics characterized by pulse gate voltage techniques,” IEEE International Integrated Reliability Workshop (IIRW), pp. 125-127, 2004.

[3.9] R. Choi, S. J. Rhee, J. C. Lee, B. H. Lee, and G. Bersuker, “Charge trapping and de-trapping characteristics in hafnium silicate gate stack under static and dynamic stress,” IEEE Electron Device Lett., vol. 26, no. 3, pp.

197-199, Mar. 2005.

[3.10] Y. T. Hou, F. Y. Yen, P. F. Hsu, V. S. Chang, P. S. Lim, C. L. Hung, L. G.

Yao, J. C. Jiang, H. J. Lin, Y. Jin, S. M. Jang, H. J. Tao, S. C. Chen, and M.

S. Liang, “High performance tantalum carbide metal gate stacks for nMOSFET application,” IEEE IEDM Tech. Dig., 2005, pp. 31-34.

[3.11] J. R. Hauser and K. Ahmed, “Characterization of ultrathin oxides using electrical C-V and I-V measurements,” Characterization and Metrology for ULSI Technology, AIP Conf. Proc., vol. 449, 1998, pp. 235-239.

[3.12] W. H. Wu, Y. T. Hou, Y. Jin, H. J. Tao, S. C. Chen, M. S. Liang, B. Y. Tsui, and M. C. Chen, “Threshold voltage instability in nMOSFETs with HfSiO/

SiO2 high-k gate stacks,” Solid State Devices and Materials 2005, pp.

498-499.

[3.13] S. J. Rhee, Y. H. Kim, C. Y. Kang, C. S. Kang, H. J. Cho, R. Choi, C. H.

Choi, M. S. Akbar, and J. C. Lee, “Dynamic positive bias temperature instability characteristics of ultrathin HfO2 nMOSFET,” IEEE Intl. Rel.

Phys. Symp., 2004, pp. 269-272.

[3.14] C. Shen, H. Y. Yu, X. P. Wang, M. F. Li, Y. C. Yeo, S. H. Chan, K. L. Bera, and D. L. Kwong, “Frequency dependent dynamic charge trapping in HfO2

and threshold voltage instability in MOSFETs,” IEEE Intl. Rel. Phys. Symp., 2004, pp. 601-602.

[3.15] X. Wang, J. Peterson, P. Majhi, M. I. Gardner, and D. L. Kwong, “Impacts of gate materials on threshold voltage instability in nMOS HfO2 gate stacks under DC and AC stressing,” IEEE Electron Device Lett., vol. 26, no. 8, pp.

553-556, Aug. 2005.

Chapter 4

[4.1] J. F. Lonnum and J. S. Johannessen, “Dual-frequency modified C/V technique,” Electron. Lett., vol. 22, no. 9, pp. 456-457, Apr. 1986.

[4.2] K. J. Yang and C. Hu, “MOS capacitance measurements for high-leakage thin dielectrics,” IEEE Trans. Electron Devices, vol. 46, no. 7, pp.

1500-1501, Jul. 1999.

[4.3] A. Nara, N. Yasuda, H. Satake, and A. Toriumi, “Applicability limits of the two-frequency capacitance measurement technique for the thickness extraction of ultrathin gate oxide,” IEEE Trans. Semi. Manuf., vol.15, no. 2, pp. 209-213, May 2002.

[4.4] H. T. Lue, C. Y. Liu, and T. Y. Tseng, “An improved two-frequency method of capacitance measurement for SrTiO3 as high-k gate dielectric,” IEEE Electron Device Lett., vol. 23, no. 9, pp. 553-555, Sep. 2002.

[4.5] Z. Luo and T. P. Ma, “A new method to extract EOT of ultrathin gate dielectric with high leakage current,” IEEE Electron Device Lett., vol. 25, no. 9, pp. 655-657, Sep. 2004.

[4.6] J. R. Hauser and K. Ahmed, “Characterization of ultrathin oxides using electrical C-V and I-V measurements,” Characterization and Metrology for ULSI Technology, AIP Conf. Proc., vol. 449, 1998, pp. 235-239.

[4.7] K. B. Chong, L. B. Kong, L. Chen, L. Yan, C. Y. Tan, T. Yang, C. K. Ong, and T. Osipowicz, “Improvement of dielectric loss tangent of Al2O3 doped Ba0.5Sr0.5TiO3 thin films for tunable microwave devices,” J. Appl. Phys., vol. 95, no. 3, pp. 1416-1419, Feb. 2004.

[4.8] S. H.-M. Jen, C. C. Enz, D. R. Pehlke, M. Schroter, and B. J. Sheu,

“Accurate modeling and parameter extraction for MOS transistors valid up to 10 GHz,” IEEE Trans. Electron Device, vol. 46, no. 11, pp. 2217-2227, Nov. 1999.

[4.9] J. Schmitz, F. N. Cubaynes, R. J. Havens, R. de Kort, A. J. Scholten, and L.

F. Tiemeijer, “RF capacitance-voltage characterization of MOSFETs with high leakage dielectrics,” IEEE Electron Device Lett., vol. 24, no. 1, pp.

37-39, Jan. 2003.

[4.10] J.-S. Goo, T. Mantei, K. Wieczorek, W. G. En, and A. B. Icel, “Extending two-element capacitance extraction method toward ultraleaky gate oxides using a short-channel length,” IEEE Electron Device Lett., vol. 25, no. 12, pp. 819-821, Dec. 2004.

Chapter 5

[5.1] A. Kerber, E. Cartier, L. Pantisano, M. Rosmeulen, R. Degraeve, T.

Kauerauf, G. Groeseneken, H. E. Maes, and U. Schwalke, “Characterization of the Vt-instability in SiO2/HfO2 gate dielectrics,” IEEE Intl. Rel. Phys.

Symp., 2003, pp. 41-45.

[5.2] C. Leroux, J. Mitard, G. Ghibaudo, X. Garros, G. Reimbold, B. Guillaumot, and F. Martin, “Characterization and modeling of hysteresis phenomenon in high-k dielectrics,” IEEE IEDM Tech. Dig., 2004, pp. 737-740.

[5.3] C. Y. Kang, R. Choi, J. H. Sim, C. Young, B. H. Lee, G. Bersuker, and J. C.

Lee, “Charge trapping effects in HfSiON dielectrics on the ring oscillator circuit and the single stage inverter operation,” IEEE IEDM Tech. Dig., 2004, pp. 485-488.

[5.4] F. P. Heiman and G. Warfield, “The effects of oxide traps on the MOS capacitance,” IEEE Trans. Electron Devices, vol. ED-12, pp. 167-178, Apr.

1965.

[5.5] I. Lundstrom and C. Svensson, ‘Tunneling to traps in insulators,” J. Appl.

Phys., vol. 43, no. 12, pp. 5045-5047, Dec. 1972.

[5.6] T. L. Tewksbury, and H. S. Lee, “Characterization, modeling, and minimization of transient threshold voltage shifts in MOSFET’s,” IEEE J.

Solid-State Circuits, vol. 29, no. 3, pp. 239-252, Mar. 1994.

[5.7] D. M. Fleetwood, “Border traps in MOS devices,” IEEE Trans. Nucl. Sci.,

vol. 39, no. 2, pp. 269-271, Apr. 1992.

[5.8] D. M. Fleetwood, P. S. Winokur, R. A. Reber, Jr., T. L. Meisenheimer, J. R.

Schwank, M. R. Shaneyfelt, and L. C. Riewe, “Effects of oxide traps, interface traps and border traps on metal-oxide-semiconductor devices,” J.

Appl. Phys., vol. 73, no. 10, pp. 5058-5074, May 1993.

[5.9] D. M. Fleetwood, T. L. Meisenheimer, and J. H. Scofield, “1/f noise and radiation effects in MOS devices,” IEEE Trans. Electron Devices, vol. 41, no. 11, pp. 1953-1964, 1994.

[5.10] J. R. Hauser and K. Ahmed, “Characterization of ultrathin oxides using electrical C-V and I-V measurements,” Characterization and Metrology for ULSI Technology, AIP Conf. Proc., vol. 449, 1998, pp. 235-239.

[5.11] R. E. Paulsen, R. R. Siergiej, M. L. French, and M. H. White, “Observation of near-interface oxide traps with the charge-pumping technique,” IEEE Electron Device Lett., vol. 13, no. 12, pp. 627-629, Dec. 1992.

[5.12] R. E. Paulsen and M. H. White, “Theory and application of charge pumping for the characterization of Si-SiO2 interface and near-interface oxide traps,”

IEEE Trans. Electron Devices, vol. 41, no. 7, pp. 1213-1216, Jul. 1994.

[5.13] H. Lakhdari and D. Vuillaume, “Spatial and energetic distribution of Si-SiO2 near-interface states,” Phys. Rev. B, vol. 38, no. 18, pp.

13124-13132, Dec. 1988.

[5.14] Y. T. Hou, M. F. Li, H. Y. Yu, Y. Jin, and D. L. Kwong, “Quantum tunneling and scalability of HfO2 and HfAlO gate stacks,” IEEE IEDM Tech. Dig., 2002, pp. 731-734.

[5.15] S. Christensson, I. Lundstrom, and C. Svensson, “Low frequency noise in MOS transistors,” Solid-State Electron, vol. 11, pp. 797-812, 1968.

Chapter 6

[6.1] G. Groeseneken, H. E. Maes, N. Beltran, and R. F. De Keersmaecker, “A reliable approach to charge pumping measurements in MOS transistors,”

IEEE Trans. Electron Devices, vol. ED-31, no. 1, pp. 42-53, Jan. 1984.

[6.2] P. Heremans, J. Witters, G. Groesenken, and H. E. Maes, “Analysis of the charge pumping technique and its application for the evaluation of MOSFET degradation,” IEEE Trans. Electron Devices, vol. 36, no. 7, pp.

1318-1335, Jun. 1989.

[6.3] R. E. Paulsen, R. R. Siergiej, M. L. French, and M. H. White, “Observation of near- interface oxide traps with charge pumping technique,” IEEE Electron Device Lett., vol. 13, no. 12, pp. 627-629, Dec. 1992.

[6.4] R. E. Paulsen and M. H. White, “Theory and application of charge pumping for the characterization of Si-SiO2 interface and near-interface oxide traps,”

IEEE Trans. Electron Devices, vol. 41, no. 7, pp. 1213-1216, Jul. 1994.

[6.5] Y. Maneglia and D. Bauza, “Extraction of slow oxide trap concentration profiles in metal-oxide-semiconductor transistors using the charge pumping method,” J. Appl. Phys., vol. 79, no. 8, pp. 4187-4192, Apr. 1996.

[6.6] D. Bauza and Y. Maneglia, “In-depth exploration of Si-SiO2 interface traps in MOS transistors using the charge pumping technique,” IEEE Trans.

Electron Devices, vol. 44, no. 12, pp. 2262-2266, Dec. 1997

[6.7] D. M. Fleetwood, P. S. Winokur, R. A. Reber, Jr., T. L. Meisenheimer, J. R.

Schwank, M. R. Shaneyfelt, and L. C. Riewe, “Effects of oxide traps, interface traps, and border traps on metal-oxide-semiconductor devices,” J.

Appl. Phys., vol. 73, no. 10, pp. 5058-5074, May 1993.

[6.8] F. P. Heiman and G. Warfield, “The effects of oxide traps on the MOS

capacitance,” IEEE Trans. Electron Devices, vol. 12, no. 4, pp. 167-178, Apr. 1965.

[6.9] I. Lundstrom and C. Svensson, “Tunneling to traps in insulators,” J. Appl.

Phys., vol. 43, no. 12, pp. 5045-5047, Dec. 1972.

[6.10] H. Lakhdari, D. Vuillaume, and J. C. Bourgoin, “Spatial and energetic distribution of Si-SiO2 near-interface states,” Phys. Rev. B, vol. 38, no. 18, pp. 13124-13132, Dec. 1988.

[6.11] T. L. Tewksbury, and H. S. Lee, “Characterization, modeling, and minimization of transient threshold voltage shifts in MOSFETs,” IEEE J.

Solid-State Circuits, vol. 29, no. 3, pp. 239-252, Mar. 1994.

[6.12] Y. T. Hou, F. Y. Yen, P. F. Hsu, V. S. Chang, P. S. Lim, C. L. Hung, L. G.

Yao, J. C. Jiang, H. J. Lin, Y. Jin, S. M. Jang, H. J. Tao, S. C. Chen, and M.

S. Liang, “High performance tantalum carbide metal gate stacks for

S. Liang, “High performance tantalum carbide metal gate stacks for

相關文件